Global Vegetation Monitoring With Satellites

  1. Li et al., 2024. Vegetation greenness in 2023, Nature Reviews Earth & Environment, doi: 10.1038/s43017-024-00543-z
  2. Pu et al., 2024. Sensor-independent LAI/FPAR CDR: reconstructing a global sensor-independent climate data record of MODIS and VIIRS LAI/FPAR from 2000 to 2022, Earth Syst. Sci. Data, 16, 15–34, 2024, https://doi.org/10.5194/essd-16-15-2024
  3. Zhang et al., 2024. An Insight Into the Internal Consistency of MODIS Global Leaf Area Index Products, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024, doi: 10.1109/TGRS.2024.3434366
  4. Peng et al., 2024. Revisiting the consistency of MODIS LAI products from a new perspective of spatiotemporal variability, Intl. J. Digital Earth, doi:10.1080/17538947.2024.2407045
  5. Zhang et al., 2024. An Insight into The Internal Consistency of MODIS Global Leaf Area Index Products, IEEE Trans. Geosci. Remote Sens., doi: 10.1109/TGRS.2024.3434366
  6. Zhao et al., 2024. A global dataset of the fraction of absorbed photosynthetically active radiation for 1982–2022, Scientific Data, doi: 10.1038/s41597-024-03561-0
  7. Yan et al., 2024. HiQ LAI: A high-quality reprocessed MODIS leaf area index dataset with better spatiotemporal consistency from 2000 to 2002, Earth Syst. Sci. Data, 16, 1601-1622, 2024, doi: 10.5194/essd-16-1601-2024
  8. Roman et al., 2024. Continuity between NASA MODIS Collection 6.1 and VIIRS Collection 2 land products, Remote Sens. Environ., 302 (2024) 113963
  9. Cao et al., 2023. Spatiotemporally consistent global dataset of the GIMMS leaf area index (GIMMS LAI4g) from 1982 to 2020, Earth Syst. Sci. Data, 15, 4877–4899, 2023, https://doi.org/10.5194/essd-15-4877-2023
  10. Li et al., 2023. Spatiotemporally consistent global dataset of the GIMMS Normalized Difference Vegetation Index (PKU GIMMS NDVI) from 1982 to 2022, Earth Syst. Sci. Data, 15, 4181–4203, https://doi.org/10.5194/essd-15-4181-2023, 2023.
  11. Gao et al., 2023. Evaluating the saturation effect of vegetation indices in forests using 3D radiative transfer simulations and satellite observations. Remote Sens. Environ., doi: 10.1016/j.rse.2023.113665
  12. Li et al., 2023.A Novel Inversion Approach for the Kernel-Driven BRDF Model for Heterogeneous Pixels. J. Remote Sens., doi: 10.34133/remotesensing.0038
  13. Wang et al., 2023. Improving the Quality of MODIS LAI Products by Exploiting Spatiotemporal Correlation Information. IEEE Trans. Geosci. Remote Sens., doi: 10.1109/TGRS.2023.3264280
  14. Pu et al., 2023. Improving the MODIS LAI compositing using prior time-series information. Remote Sens.Env.,doi: 10.1016/j.rse.2023.113493
  15. Dong et al., 2023. A method for retrieving coarse-resolution leaf area index for mixed biomes using a mixed-pixel correction factor. IEEE Trans. Geosci. Remote Sens.,doi: 10.1109/TGRS.2023.3235949
  16. Jiang et al., 2022. Warming does not delay the start of autumnal leaf coloration but slows its progress rate. Global Ecol. Biogeography, doi: 10.1111/geb.13581
  17. Sun et al., 2022. Seasonal and long-term variations in leaf area of Congolese rainforest. Remote Sens. Environ., doi: 10.1016/j.rse.2021.112762
  18. Ni et al., 2021. Vegetation Angular Signatures of Equatorial Forests From DSCOVR EPIC and Terra MISR Observations. Frontiers in Remote Sens., doi: 10.3389/frsen.2021.766805
  19. Winkler et al., 2021. Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2. Biogeosciences, 18, 4985–5010, Publisher Site
  20. Hashimoto et al., 2021. New generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests. Nature Communications, https://doi.org/10.1038/s41467-021-20994-y
  21. Xu et al., 2021. Seasonal biological carryover dominates northern vegetation growth. Nature Communications, https://doi.org/10.1038/s41467-021-21223-2
  22. Cortes et al., 2021. Where are Global Vegetation Greening and Browning Trends Significant? Geophys. Res. Lett., doi: 10.1029/2020GL091496
  23. Yan et al., 2021. Performance stability of the MODIS and VIIRS LAI algorithms inferred from analysis of long time series of products. Remote Sensing of Environment, https://doi.org/10.1016/j.rse.2021.112438
  24. Chen et al., 2021. Prototyping of LAI and FPAR Retrievals From GOES-16 Advanced Baseline Imager Data Using Global Optimizing Algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sens., DOI: 10.1109/JSTARS.2021.3094647
  25. Yan et al., 2021. A Bibliometric Visualization Review of the MODIS LAI/FPAR Products from 1995 to 2020. Journal of Remote Sensing, https://doi.org/10.34133/2021/7410921
  26. Chi et al., 2020. Biophysical impacts of Earth greening largely controlled by aerodynamic resistance. Sci. Adv., 6 : eabb1981
  27. Piao et al., 2019. Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth and Environment, doi: 10.1038/s43017-019-0001-x
  28. Chen et al., 2019. China and India lead in greening of the world through land-use management. Nature Sustainability, doi:10.1038/s41893-019-0220-7
  29. Pu et al., 2020. Evaluation of the MODIS LAI/FPAR Algorithm Based on 3D-RTM Simulations: A Case Study of Grassland. Remote Sens., doi:10.3390/rs12203391
  30. Xu et al., 2020. Improving leaf area index retrieval over heterogeneous surface mixed with water. Remote Sens. Environ., doi:10.1016/j.rse.2020.111700
  31. Fan et al., 2019. Satellite-observed pantropical carbon dynamics. Nature Plants, doi:10.1038/s41477-019-0478-9
  32. Winkler et al., 2019. Investigating the applicability of emergent constraints. Earth System Dynamics, doi:10.5194/esd-10-501-2019
  33. Park et al., 2019. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Global Change Biology, doi:10.1111/gcb.14638
  34. Chen et al., 2019. Generation and Evaluation of LAI and FPAR Products from Himawari-8 Advanced Himawari Imager (AHI) Data. Remote Sens., doi:10.3390/rs11131517
  35. Niu et al., 2019. Ecological engineering projects increased vegetation cover, production, and biomass in semiarid and subhumid Northern China. Land Degrad Dev., doi:10.1002/ldr.3351
  36. Tømmervik et al., 2019. Legacies of Historical Exploitation of Natural Resources Are More Important Than Summer Warming for Recent Biomass Increases in a Boreal–Arctic Transition Region. Ecosystems, doi:10.1007/s10021-019-00352-2
  37. Hashimoto et al., 2019. Constraints to Vegetation Growth Reduced by Region-Specific Changes in Seasonal Climate. Climate, doi:10.3390/cli7020027
  38. Wu et al., 2018. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nature Climate Change, https://doi.org/10.1038/s41558-018-0346-z
  39. Tian et al., 2018. Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite. Nature Ecology and Evolution, doi:10.1038/s41559-018-0630-3
  40. Liu et al., 2018. Extension of the growing season increases vegetation exposure to frost. Nature Communications, doi:10.1038/s41467-017-02690-y
  41. Tong et al., 2018. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nature Sustainability, https://doi.org/10.1038/s41893-017-0004-x
  42. Song et al., 2018. Implications of Whole-Disc DSCOVR EPIC Spectral Observations for Estimating Earth’s Spectral Reflectivity Based on Low-Earth-Orbiting and Geostationary Observations, Remote Sens. 2018, 10, 1594; doi : 10.3390/rs10101594
  43. Xu et al., 2018. An integrated method for validating long-term leaf area index products using global networks of site-based measurements. Remote Sens. Environ., doi:10.1016/j.rse.2018.02.049
  44. Xu et al., 2018. Analysis of Global LAI/FPAR Products from VIIRS and MODIS Sensors for Spatio-Temporal Consistency and Uncertainty from 2012–2016. Forests, doi:10.3390/f9020073
  45. Li et al., 2018. Recent Changes in Global Photosynthesis and Terrestrial Ecosystem Respiration Constrained From Multiple Observations. Geophys. Res. Lett., doi:10.1002/2017GL076622
  46. Fauchald et al., 2017. Arctic greening from warming promotes declines in caribou populations. Science Advances, 3, e1601365 (2017)
  47. Zeng et al., 2017. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nature Climate Change, doi: 10.1038/NCLIMATE3299
  48. Piao et al., 2017. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nature Climate Change, doi: 10.1038/NCLIMATE3277
  49. Bastos et al., 2017. Was the extreme Northern Hemisphere greening in 2015 predictable? Environ. Res. Lett., doi.org/10.1088/1748-9326/aa67b5
  50. Yan et al., 2017. Generating Global Products of LAI and FPAR From SNPP-VIIRS Data: Theoretical Background and Implementation. IEEE Trans. Geosci. Remote Sens., doi:10.1109/TGRS.2017.2775247
  51. Chen et al., 2017. Prototyping of LAI and FPAR Retrievals from MODIS Multi-Angle Implementation of Atmospheric Correction (MAIAC) Data. Remote Sensing, doi:10.3390/rs9040370
  52. Yang et al., 2017. Estimation of leaf area index and its sunlit portion from DSCOVR EPIC data: Theoretical basis. Remote Sens. Environ., http://dx.doi.org/10.1016/j.rse.2017.05.033
  53. Jiang et al., 2017. Inconsistencies of interannual variability and trends in long-term satellite leaf area index products. Global Change Biology, doi: 10.1111/gcb.13787
  54. Zhu et al., 2016. Greening of the Earth and its Drivers. Nature Climate Change, doi:10.1038/nclimate3004
  55. Mao et al., 2016. Human-induced Greening of the Northern Extratropical Land Surface. Nature Climate Change, doi: 10.1038/nclimate3056
  56. Park et al., 2016. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Env. Res. Lett., doi:10.1088/1748-9326/11/8/084001
  57. Yan et al., 2016. Evaluation of MODIS LAI/FPAR Product Collection 6. Part 1: Consistency and Improvements, Remote Sensing, doi:10.3390/rs8050359
  58. Yan et al., 2016. Evaluation of MODIS LAI/FPAR Product Collection 6. Part 2: Validation and Intercomparison, Remote Sensing, doi:10.3390/rs8060460
  59. Bi et al., 2016. Amazon Forests’ Response to Droughts: A Perspective from the MAIAC Product, Remote Sensing, doi:10.3390/rs8040356
  60. Chen et al., 2016. Satellite-observed changes in terrestrial vegetation growth trends across the Asia-Pacific region associated with land cover and climate from 1982 to 2011. Int. J. Digital Earth (doi:10.1080/17538947.2016.1180549)
  61. Yin et al., 2016. Nonlinear variations of forest leaf area index over China during 1982–2010 based on EEMD method. Int J Biometeorol., DOI 10.1007/s00484-016-1277-x
  62. Ukkola et al., 2015. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nature Climate Change, 2015 (DOI: 10.1038/NCLIMATE2831)
  63. Bi et al., 2015. Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests. Environ. Res. Lett., 2015 (doi: 10.1088/1748-9326/10/6/064014)
  64. Piao et al., 2015. Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications, 2015 (doi: 10.1038/ncomms7911)
  65. Xu et al., 2015. Satellite observation of tropical forest seasonality: spatial patterns of carbon exchange in Amazonia. Environ. Res. Lett., 2015 (doi: 10.1088/1748-9326/10/8/084005)
  66. Shen et al., 2015. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. USA, 2015 (www.pnas.org/cgi/doi/10.1073/pnas.1504418112)
  67. Hilker et al., 2015. On the measurability of change in Amazon vegetation from MODIS. Remote Sens. Environ., 2015 (http://dx.doi.org/10.1016/j.rse.2015.05.020)
  68. Tian et al., 2015. Response of vegetation activity to climatic change and ecological programs in Inner Mongolia from 2000 to 2012. Ecol. Eng. (http://dx.doi.org/10.1016/j.ecoleng.2015.04.098)
  69. Wang et al., 2015. Has the advancing onset of spring vegetation green-up slowed down or changed abruptly over the last three decades? Global Ecol. Biogeography, 2015 (doi: 10.1111/geb.12289)
  70. Hilker et al., 2015. Reply to Gonsamo et al.: Effect of the Eastern Atlantic-West Russia pattern on Amazon vegetation has not been demonstrated, Proc. Nat. Acad. Sci. USA, 2015 (www.pnas.org/cgi/doi/10.1073/pnas.1423471112)
  71. Piao et al., 2015. Detection and attribution of vegetation greening trend in China over the last 30 years, Global Change Biology, 2015 (doi: 10.1111/gcb.12795)
  72. Piao et al., 2014. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity, Nature Communications, 2014 (doi:10.1038/ncomms6018)
  73. Traore et al., 2014. Evaluation of the ORCHIDEE ecosystem model over Africa against 25 years of satellite-based water and carbon measurements, J. Geophys. Res. Biogeosci., 119, 1554–1575, doi:10.1002/2014JG002638.
  74. Yan et al., 2014. Development of a remotely sensing seasonal vegetation-based Palmer Drought Severity Index and its application of global drought monitoring over 1982-2011, J. Geophys. Res. Atmos.,
    119, 9419–9440, doi:10.1002/2014JD021673
  75. Zhao et al., 2014. Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau, Landscape Ecol., 6, doi:10.1007/s10980-014-0095-y
  76. Poulter et al., 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle, Nature, 2014 (doi:10.1038/nature13376)
  77. Zhou et al., 2014. Widespread decline of Congo rainforest greenness in the past decade, Nature, 2014 (doi: 10.1038/nature13265)
  78. Weiss et al., 2014. On Line Validation Exercise (OLIVE): A Web Based Service for the Validation of Medium Resolution Land Products. Application to FAPAR Products, Remote Sensing, 2014 (doi: 10.3390/rs6054190)
  79. Xu et al., 2014. Changes in Vegetation Growth Dynamics and Relations with Climate over China’s Landmass from 1982 to 2011, Remote Sens. 2014 (doi: 10.3390/rs6043263)
  80. Chen et al., 2014. Changes in vegetation photosynthetic activity trends across the Asia-Pacific region over the last three decades, Remote Sens. Environ. 144: 28-41.
  81. Barichivitch et al., 2014. Temperature and snow-mediated controls of summer photosynthetic activity in northern terrestrial ecosystems between 1982 and 2011, Remote Sens., 6: 1390-1431.
  82. Ganguly et al., 2014. Green leaf area and fraction of photosynthetically active radiation absorbed by vegetation, In: J. M. Hanes (ed.), Biophysical Applications of Satellite Remote Sensing, Springer Remote Sensing/Photogrammetry, DOI: 10.1007/978-3-642-25047-7_2, 2014.
  83. Xu et al., 2013. Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, doi: 10.1038/NCLIMATE1836
    Supplementary Information
  84. Ichii et al., 2013 Recent changes in terrestrial gross primary productivity in Asia from 1982 to 2011, Remote Sens., doi: 10.3390/rs5116043
  85. Xin et al., 2013 A production efficiency model-based method for satellite estimates of corn and soybean yields in the midwestern US, Remote Sens., doi: 10.3390/rs5115926
  86. Barichivich et al., 2013. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011, Global Change Biol., doi: 10.1111/gcb.12283
  87. Wang et al., 2013. Evaluation of CLM4 Solar Radiation Partitioning Scheme Using Remote Sensing and Site Level FPAR Datasets, Remote Sens., doi: 10.3390/rs5062857
  88. Bi et al., 2013. Divergent Arctic-Boreal Vegetation Changes Between North America and Eurasia Over the Past 30 Years, Remote Sens., doi:10.3390/rs5052093
  89. Fang et al., 2013. Characterization and Intercomparison of Global Moderate Resolution Leaf Area Index (LAI) Products: Analysis of Climatologies and Theoretical Uncertainties, J. Geophys. Res.Biogeosci., doi:10.1002/jgrg.20051
  90. Mohammat et al., 2013. Drought and Spring Cooling Induced Recent Decrease in Vegetation Growth in Inner Asia, Agric. For. Meteorol., http://dx.doi.org/10.1016/j.agrformet.2012.09.014
  91. Poulter et al., 2013. Recent Trends in Inner Asian Forest Dynamics to Temperature and Precipitation Indicate High Sensitivity to Climate Change, Agric. For. Meteorol., http://dx.doi.org/10.1016/j.agrformet.2012.12.006
  92. Mao et al., 2013. Global Latitudinal-Asymmetric Vegetation Growth Trends and Their Driving Mechanisms: 1982-2009, Remote Sens., doi:10.3390/rs5031484
  93. Zhu et al., 2013. Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011, Remote Sens., doi:10.3390/rs5020927
    Supplementary Information
  94. Luo et al., 2013. Assessing Performance of NDVI and NDVI3g in Monitoring Leaf Unfolding Dates of the Deciduous Broadleaf Forest in Northern China, Remote Sens., doi:10.3390/rs5020845
  95. Fang et al., 2013. The Impact of Potential Land Cover Misclassification on MODIS Leaf Area Index (LAI) Estimation: A Statistical Perspective, Remote Sens., doi:10.3390/rs5020830
  96. Knyazikhin et al., 2012. Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA, www.pnas.org/cgi/doi/10.1073/pnas.1210196109
  97. Samanta et al., 2012. Why is remote sensing of Amazon forest greenness so challenging? Earth Int., doi: 10.1175/2012EI440.1
  98. W. Yang and R.B. Myneni, 2012. Analysis, Improvement and Application of the MODIS LAI Products, LAP Lambert Academic Publishing GmbH and Co., Saarbruecken, Germany, ISBN: 978-3-659-00068-3.
  99. Samanta et al., 2012. Interpretation of variations in MODIS-measured greenness levels of Amazon forests during 2000 to 2009, Environ. Res. Lett., doi:10.1088/1748-9326/7/2/024018
  100. Ganguly et al., 2012. Generating global Leaf Area Index from Landsat: Algorithm formulation and demonstration, Remote Sens. Environ. doi:10.1016/j.rse.2011.10.032, (2012)
  101. Samanta et al., 2012. Seasonal changes in leaf area of Amazon forests from leaf flushing and abscission, J. Geophys. Res. VOL. 117, G01015, doi:10.1029/2011JG001818
  102. Peng et al., 2012. Surface Urban Heat Island Across 419 Global Big Cities, Environ. Sci. & Tech., Environ. Sci. Technol., doi: 10.1021/es2030438
  103. Hashimoto et al., 2012. Exploring Simple Algorithms for Estimating Gross Primary Production in Forested Areas from Satellite Data, Remote Sensing, doi: 10.3390/rs4010303
  104. Samanta et al., 2011. Comment on “Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009”, Science, Vol. 333, p. 1093, DOI: 10.1126/science.1199048
    Supplementary Online Material
  105. Xu and Samanta et al., 2011. Widespread decline in greenness of Amazonian vegetation due to the 2010 drought, Geophys. Res. Lett., doi: 10.1029/2011GL046824, 2011.
  106. Zhousen et al., 2011. Retrieval of canopy height using moderate-resolution imaging spectroradiometer (MODIS) data, Remote Sens. Environ., doi: 10.1016/j.rse.2011.02.010, 2011.
  107. Samanta et al., 2010. MODIS Enhanced Vegetation Index data do not show greening of Amazon forests during the 2005 drought, New Phytologist, doi: 10.1111/j.1469-8137.2010.03516.x
  108. Samanta et al., 2010. Amazon forests did not green-up during the 2005 drought, Geophys. Res. Lett., Vol. 37, L05401, doi:10.1029/2009GL042154
    Supplemental Information
  109. Ganguly et al., 2008. Generating vegetation leaf area index earth system data records from multiple sensors. Part 1: Theory. Remote Sens. Environ.,  doi: 10.1016/j.rse.2008.07.014
  110. Ganguly et al., 2008. Generating vegetation leaf area index earth system data records from multiple sensors. Part 2: Implementation, Analysis and Validation. Remote Sens. Environ., doi: 10.1016/j.rse.2008.07.013
  111. Robinson et al., 2008. An empirical approach to retrieve monthly evapotranspiration over Amazonia, Int. J. Remote Sens., Vol. 29:7045–7063, 2008.
  112. Garrigues et al., 2008. Validation and Intercomparison of Global Leaf Area Index Products Derived from Remote Sensing Data, J. Geophys. Res., doi: 10.1029/2007JG000635, 2008.
  113. Garrigues et al., 2008. Intercomparison and sensitivity analysis of leaf area index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands, Agric. For. Meteorol., doi:10.1016/j.agrformet.2008.02.014
  114. Gao et al., 2008. An Algorithm to Produce Temporally and Spatially Continuous MODIS-LAI Time Series. Geophys. Res. Lett., doi: 10.1109/LGRS.2007.907971
  115. Huang et al., 2008. Stochastic transport theory for investigating the three-dimensional canopy structure from space measurement, Remote Sensing of Environ., 112:35–50.
  116. Myneni et al., 2007. Large seasonal changes in leaf area of amazon rainforests. Proc. Natl. Acad. Sci., doi:10.1073/pnas.0611338104
  117. Huang et al., 2007. Canopy spectral invariants for remote sensing and model applications, Remote Sens. Environ., 106: 106–122.
  118. Tan et al., 2006. The impact of geolocation offsets on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration, Remote Sens. Environ., 105: 98–114.
  119. Yang et al., 2006. Analysis of prototype collection 5 products of leaf area index from Terra and Aqua MODIS sensors, Remote Sens. Environ., 104, 297–312.
  120. Ahl et al., 2006. Monitoring Spring Canopy Phenology of a Deciduous Broadleaf Forest Using MODIS, Remote Sens. Environ., 104: 88–95.
  121. Huang et al., 2006. The Importance of Measurement Error for Deriving Accurate Reference Leaf Area Index Maps for Validation of the MODIS LAI Product. IEEE Trans. Geosci. Remote Sens., 44:1866-1871.
  122. Yang et al., 2006. Analysis of Leaf Area Index and Fraction of PAR Absorbed by Vegetation Products from the Terra MODIS Sensor: 2000-2005. IEEE Trans. Geosci. Remote Sens., 44: 1829-1842.
  123. Yang et al., 2006. MODIS Leaf Area Index Products: From Validation to Algorithm Improvement. IEEE Trans. Geosci. Remote Sens., 44: 1885-1898.
  124. Baret et al., 2006. Evaluation of the representativeness of networks of sites for the validation and inter-comparison of global land biophysical products. Proposition of the CEOS-BELMANIP. IEEE Trans. Geosci. Remote Sens., 44: 1794-1803.
  125. Morisette et al., 2006. Validation of global moderate resolution LAI Products: a framework proposed within the CEOS Land Product Validation subgroup. IEEE Trans. Geosci. Remote Sens. 44: 1804-1817.
  126. Zhang et al., 2006. Monitoring of the 2005 U.S. Corn-belt Yield using Satellite Data, Eos, Vol. 87, No. 15.
  127. Potter et al., 2003. Satellite data help predict terrestrial carbon sinks. EOS, 84(46): pages 502 & 508.
  128. Zhou et al., 2003. Comparison of seasonal and spatial variations of albedos from MODIS and the Common Land Model. J. Geophys. Res., doi: 10.1029/2002JD003326
  129. Lotsch et al., 2003. Land cover mapping in support of LAI/FPAR retrievals from EOS-MODIS and MISR: Classification methods and sensitivities to errors, Int. J. Remote Sesns. 24, 1997-2016.
  130. Shabanov et al., 2003. The effect of spatial heterogeneity in validation of the MODIS LAI and FPAR algorithm over broadleaf forests, Remote Sens. Environ., 85: 410-423.
  131. Wang et al., 2003. A new parameterization of canopy spectral response to incident solar radiation: case study with hyperspectral data from pine dominant forest, Remote Sens. Environ., 85:304-315.
  132. Tian et al., 2002. Radiative transfer based scaling of LAI/FPAR retrievals from reflectance data of different resolutions. Remote Sens. Environ., 84:143-159.
  133. Combal et al., 2002. Retrieval of Canopy Biophysical Variables from Bidirectional Refectance: Using Prior Information to solve the Ill-posed Inverse Problem, Remote Sens. Environ., 84:1-15.
  134. Tian et al., 2002. Multiscale Analysis and Validation of the MODIS LAI Product. I. Uncertainty Assessment. Remote Sens. Environ., 83:414-430.
  135. Tian et al., 2002. Multiscale Analysis and Validation of the MODIS LAI Product. II. Sampling Strategy. Remote Sens. Environ., 83:431-441.
  136. Privette et al., 2002. Early spatial and temporal validation of MODIS LAI product in Africa. Remote Sens. Environ., 83: 232-243.
  137. Myneni et al., 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ., 83: 214-231.
  138. Wang et al., 2001. Investigation of product accuracy as a function of input and model uncertainities: Case study with SeaWiFS and MODIS LAI/FPAR Algorithm. Remote Sens. Environ., 78:296-311.
  139. Panferov et al., 2001. The role of canopy structure in the spectral variation of transmission and absorption of solar radiation in vegetation canopies. IEEE Trans. Geosci. Remote Sens., 39:241-253.
  140. Tian et al., 2000. Prototyping of MODIS LAI and FPAR algorithm with LASUR and LANDSAT data. IEEE Trans. Geosci. Remote Sens., 38(5): 2387-2401.
  141. Privette et al., 1998. Global validation of EOS LAI and FPAR products. The Earth Observer, 10(6):39-42.
  142. Knyazikhin et al., 1998. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. Res., 103:32,257-32,276.
  143. Justice, et al., 1998. The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosc. Remote Sens., 36:1228-1249.