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Abstract— The evaluation and validation of climate data
records (CDRs) derived from remote sensing play crucial roles
in their generation and applications. However, many existing
evaluation schemes rely on simplistic, spatiotemporally invariant
metrics to assess the products’ overall quality, which leads to
the long-term neglect of intra-product inconsistencies stemming
from observation conditions, algorithmic differences, and sensor
degradation. Leaf area index (LAI) is a crucial variable for land
surface and climate modeling, and the intra-product inconsis-
tency will increase the uncertainty in related studies. In order
to improve the evaluation scheme of LAI products and ensure
their reliability, we propose a new perspective for evaluating
global LAI time series. In this study, we utilize the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) C6.1 LAI
product as an example to infer its internal consistency through
cross-comparisons among different sensors and spatiotemporal
correlations between two adjacent years of the product. We found
that compared to the main algorithm, the backup algorithm of
the MODIS LAI product tends to underestimate the retrieval
results. This inconsistency is particularly pronounced in tropical
regions but relatively minor in most other areas. Additionally,
these inconsistencies can lead to unusual fluctuations in the LAI
time series, impacting the magnitude and direction of short-term
vegetation monitoring. However, the influence on long-term
trend analyses is negligible. Therefore, special attention should
be given to the intra-product consistency in certain studies.
In conclusion, the evaluation perspective proposed in this study is
of great significance for improving the LAI evaluation scheme and
ensuring the use and improvement of remote sensing products.

Index Terms— Climate data record (CDR), internal consis-
tency, leaf area index (LAI), Moderate Resolution Imaging
Spectroradiometer (MODIS), product evaluation.
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I. INTRODUCTION

CLIMATE data records (CDRs) are time series of mea-
surements that have sufficient length, consistency, and

continuity. They offer reliable insights into the occurrence,
extent, and spatial distribution of changes in land, oceans,
atmosphere, and ice sheets, thereby aiding in the assess-
ment of climate variability and change [1]. As an essential
climate variable (ECV) recognized by the Global Climate
Observing System (GCOS), leaf area index (LAI) is a pivotal
component of CDRs [2]. LAI is commonly defined as half
of the total green leaf area per unit of horizontal ground
area [3], [4], serving to characterize the structure and func-
tion of vegetation canopies [5]. Moreover, LAI serves as a
critical parameter in global carbon cycle, climate, hydrology,
biogeochemistry, and ecology models [6], [7], [8]. It also
acts as a fundamental input for various land surface pro-
cess models [9], [10], [11], [12] and plays a crucial role
in studies related to vegetation productivity and water use
efficiency [3].

To ensure the reliability and accuracy of studies concerning
global climate change, climate impacts, the carbon cycle, and
emission source estimation, GCOS has established standards
for satellite-derived datasets and products. These standards
encompass various aspects, including spatial and temporal res-
olution, accuracy, and stability [2]. Based on these standards,
extensive evaluation and validation efforts have been con-
ducted to assess the quality and reliability of satellite-derived
CDR data. Regarding LAI products, these efforts primarily
involve direct comparisons with ground measurements [13],
[14], [15], comparisons with upscaled high-resolution refer-
ence datasets [16], [17], [18], cross-validation among various
LAI products or their iterative releases [19], [20], [21], [22],
and comparisons with model-simulated LAI [23], [24], [25].
Factors such as cloud contamination, large-angle observations,
and ice/snow cover can introduce variations in the accuracy
of reflectance products across different time and geographical
locations. Consequently, LAI products often employ different
retrieval algorithms tailored to varying observation qualities.
However, these studies often neglect internal inconsistencies
in the inversion algorithms caused by factors such as obser-
vation quality, which can lead to differences in the precision,
accuracy, stability, and physical significance of the inversion
results [19], [20], [21], [26].

Moderate Resolution Imaging Spectroradiometer (MODIS)
LAI products are well-known for their clear physical interpre-
tation, high spatial and temporal resolution, free accessibility,
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TABLE I
SEVERAL GLOBAL MODERATE RESOLUTION LAI PRODUCTS

and global coverage [32]. The MODIS LAI product uses
a main algorithm based on a 3-D radiative transfer (3-D
RT) equation and a backup algorithm based on the empiri-
cal relationship between the normalized difference vegetation
index (NDVI) and LAI/FPAR [19]. The backup algorithm
is activated only when the uncertainty of the input surface
reflectance product is high enough to cause the main algorithm
to fail. Similar to the MODIS LAI product, several commonly
used LAI products contain results derived from different
algorithms or varying qualities (see Table I). The PROBA-V
LAI product employs a specialized processing technique for
broadleaf evergreen forests. This is necessary because these
forests are highly influenced by cloud cover, resulting in
increased noise levels (false cloud detection) and missing
data. Furthermore, three distinct computational methods were
utilized to temporally smooth and synthesize instantaneous
LAI estimates for other vegetation types [27]. The EUMET-
SAT Polar System (EPS) LAI product provides three quality
indicators: σGPR, σk0 , and Err (LAI). These indicators help
identify invalid outliers, assess the reliability of the bidirec-
tional reflectance distribution function (BRDF), and estimate
overall errors. The uncertainty value determines the quality
classification of EPS LAI products into three categories: good,
medium, and poor [28]. In addition, influenced by factors such
as the observation quality or the amount of valid data, there
are three retrieval methods for the GEOV2 LAI product: direct

retrieval, climatology-based retrieval, and interpolation-based
retrieval [21], [29]. The GLASS V6 LAI product generates
the LAI product from the MODIS reflectance data using
bidirectional long-short term memory (Bi-LSTM). However,
the Bi-LSTM model can only predict valid LAI values when
the atmospherically corrected surface reflectance is above
70◦N and the solar zenith angle (SZA) is less than 85◦.
Pixels with SZA greater than 85◦ can only be obtained by
interpolating from nearby days [30]. As a continuation of
MODIS LAI products, the VIIRS LAI product also comprises
different algorithm paths [31]. These products exhibit clear
internal inconsistencies, yet systematic internal consistency
evaluations are lacking.

Internal inconsistencies in the satellite-derived LAI prod-
uct increase the uncertainty in the overall product. These
uncertainties ultimately lead to uncertainties in downstream
applications. Therefore, there is an urgent need to quan-
titatively and qualitatively evaluate the internal consistency
of global LAI products, which is crucial for improving the
modeling of land surface and climate, as well as accurately
monitoring global vegetation. In this study, we use the MODIS
C6.1 LAI product as an example to introduce a new perspec-
tive for validating and evaluating remote sensing data products.
Specifically, it emphasizes that intra-product results should
have consistent performance and behavior under similar spatial
and temporal conditions. The research will help improve
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the framework for validating and assessing remote sensing
data products, as well as offer guidance for their use and
refinement.

This article is organized as follows. Sections II and III
describe the dataset and methodology used to assess the inter-
nal consistency. In Section IV, we compare the spatiotemporal
distribution of the retrieval results from different algorithms,
the internal consistency of the MODIS LAI product, and the
impact of internal inconsistency on long-time series trend tests.
Section V discusses the causes of internal inconsistencies,
potential impacts on product applications, and directions for
improvement in detail. Finally, Section VI provides concluding
remarks.

II. DATASETS

A. MODIS C6.1 LAI Products

The latest version of the MODIS LAI product is Collec-
tion 6.1 (MODIS C6.1 LAI products), which was publicly
released in April 2020. It includes LAI products from Terra
MODIS, Aqua MODIS, and the Terra + Aqua MODIS
combination [33]. Terra’s LAI products (MOD15A2H) cover
the period from 2000 to the present, while Aqua’s products
(MYD15A2H) cover the period from 2002 to the present.
No changes have been made to the scientific algorithms
for the MODIS C6.1 LAI products. Any improvements or
differences compared to the previous C6 version are the
result of improved calibration methods for the MODIS L1B
products, as well as updates to the polarization corrections
applied during the reprocessing [33]. In this study, we used
the MODIS C6.1 LAI products (MOD15A2H, MYD15A2H)
for our analyses, which have a standard data product with
a spatial resolution of 500 m and a temporal resolution of
8 days. It typically produces 46 composites per year, but one
or two composites may be lost due to sensor problems or other
factors. All MODIS LAI products are available via LP DAAC
(https://lpdaac.usgs.gov/products/mod15a2hv061/).

The MODIS LAI operational algorithm is composed of a
main algorithm and a backup algorithm. The main algorithm
is based on the radiative transfer equation (RTE), while the
backup algorithm relies on the empirical correlation between
the NDVI and canopy LAI. The input data includes bidirec-
tional reflectance factors (BRFs) in the red and near-infrared
bands, their uncertainties, four observation geometries, and a
biome classification map [33]. According to the quality control
document, the main algorithm can be categorized as “Main
algorithm without saturation” (QA = 0) and “Main algorithm
with saturation” (Main-S) (QA = 1). Backup algorithms can
be categorized into “BackUp-G algorithm” (QA = 2), which
is caused by poor observation geometry and “BackUp-O
algorithm” (QA = 3), which is caused by problems other
than geometry. The algorithm path information is stored in
the “FparLai_QC” layer for user reference.

B. MODIS Land Cover Product

The MCD12Q1 dataset is a MODIS land cover product
that provides an annual global distribution of land cover
types at a 500-m resolution. It is derived from supervised

classification of MODIS reflectance data and is further refined
through post-processing and integration of auxiliary infor-
mation to optimize specific categories [34]. In this study,
the LAI product’s internal consistency was analyzed using a
classification scheme based on the LAI/FPAR classification
of vegetation (LC_Type3). For this scheme, global vegetation
is categorized into eight biomes. The eight biomes are (B1)
grasses and cereal crops, (B2) shrubs, (B3) broadleaf crops,
(B4) savannas, (B5) evergreen broadleaf forest (EBF), (B6)
deciduous broadleaf forest (DBF), (B7) evergreen needleleaf
forest (ENF), and (B8) deciduous needleleaf forest (DNF).
The MCD12Q1 C6.1 product is available via LP DAAC
(https://lpdaac.usgs.gov/products/mcd12q1v061/).

III. METHODOLOGY

A. Framework for Evaluating Internal Consistency

An evaluation framework has been devised to assess the
internal consistency of the MODIS C6.1 LAI product, as illus-
trated in Fig. 1. The framework comprises an evaluation of
intra-product consistency and an analysis of its impact on
vegetation monitoring. In this study, we initially pre-processed
the land cover and LAI products. Subsequently, we inferred
internal consistency through cross-comparisons between the
various algorithm retrieval results of Terra and Aqua products
and spatiotemporal correlation analysis of the Terra LAI
product over two adjacent years. Finally, to investigate the
impact of internal inconsistency on long-term trend analyses,
we compared the consistency of LAI trends across different
algorithmic control methods. This framework is an important
reference for evaluating the internal consistency of CDR
products with multiple algorithmic branches.

B. Data Pre-Processing

In this study, we first reduced the spatial resolution of
the LAI products and MCD12Q1 to 5 × 5 km using the
nearest neighbor sampling method. This approach allowed
us to reduce the data volume and enhance computational
efficiency. Subsequently, we masked the non-vegetated areas
(water bodies, bare land, urban, permanent snow, and ice)
in each year’s LAI product using each year’s MCD12Q1
product to minimize the impact on the study results. Finally,
we extracted the main algorithm LAI (QA = 0 and QA = 1)
and the backup algorithm LAI (QA = 2 and QA = 3) based
on the “FparLai_QC” layer for further analysis.

C. Inferring Product Internal Consistency Through Terra
and Aqua Product Cross-Comparisons

The Terra MODIS LAI (MOD15A2H) and Aqua MODIS
LAI (MYD15A2H) products demonstrate a high degree of
consistency and comparability, owing to the employment of
identical sensor types, inversion algorithms, and multiday
synthesis methods [35]. Therefore, the internal consistency
of MODIS LAI products can be inferred by comparing
the differences in different algorithm LAI of the two sen-
sors. The differences include the main algorithm LAI (Both
Main), backup algorithm LAI (Both BackUp), MOD15A2H’s
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Fig. 1. Framework of internal consistency evaluation.

main algorithm LAI and MYD15A2H’s backup algorithm
LAI (MOD Main–MYD BackUp), and MYD15A2H’s main
algorithm LAI and MOD15A2H’s backup algorithm LAI
(MOD BackUp–MYD Main). If the differences between the
different algorithm LAI are similar to the “Both Main” sce-
nario, this indicates good consistency in the MODIS LAI
product. To minimize the effect of individual extremes or
outliers and to improve reliability and stability, we calculated
a multiyear average of the LAI difference for each composite
data, the equations are as follows:

δLAIt = LAIMOD(i) − LAIMYD( j) (1)

δLAIs =

∑n+11
t=n δLAIt

12
(s = MAM, JJA, SON, DJF) (2)

δLAI =

∑y+19
y=2003 (δLAIs)y

19
(3)

where δLAIt represents the difference between the t th com-
posite of the two products, i , j represents the algorithm
path, δLAIs represents the mean difference between the
12 composites in a quarter, n represents the number of initial
composites of the quarter s, and δLAI denotes the mean of
δLAIs for a total of 19 years between 2003 and 2021. MAM:
March–April–May; JJA: June–July–August; SON: September–
October–November; DJF: December–January–February.

D. Inferring Product Internal Consistency Through
Spatiotemporal Correlation of Adjacent Years

According to the first law of geography, everything is
connected, but objects that are in close proximity are typi-
cally more closely connected to each other than those that
are farther apart [36]. Vegetation in adjacent years can be
influenced by various factors, including inter-annual meteo-
rological changes, natural growth and decline, and human
activities. However, a strong correlation is generally antic-
ipated among pixel pairs located at the same location and
season on a global scale. The LAI products with higher
quality, greater inversion accuracy, and increased algorith-
mic robustness and stability are better able to capture
this correlation. By analyzing the spatiotemporal correla-
tions between different LAI algorithms over two adjacent
years, we can assess intra-product consistency and evaluate
the impact of algorithmic changes on short-term vegetation
monitoring.

To comprehensively compare the consistency of algorithms,
we initially matched LAI pixels for the same composite period
in two adjacent years one by one. Subsequently, we catego-
rized the global two-year pixel pairs according to latitudinal
bands, seasons, and biome types. Finally, we computed the
correlation coefficients (R) and mean bias (Bias) of the pixel
pairs for the neighboring years, with R and Bias determined
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using the following equations:

R =

∑n
i=1

(
xi − x̄

)(
yi − ȳ

)√∑n
i=1

(
xi − x̄

)2 ∑n
i=1

(
yi − ȳ

)2
(4)

Bias =

∑n
i=1(yi − xi )

n
(5)

where xi and yi denote the i th individual LAI value in the set
of pixel pairs, x̄ and ȳ represent the mean LAI values of the
pixel sets in the first and second year, respectively.

The algorithm changes for pixels over the two years can
be categorized into four groups: Both Main (using the main
algorithm in both years), Both Backup (using the backup
algorithm in both years), Main to Backup (changing from the
main algorithm to the backup algorithm), and Backup to Main
(changing from the backup algorithm to the main algorithm).
To enhance study reliability, we calculated the mean values
of R and Bias for the periods 2003–2004, 2010–2011, and
2020–2021 for analysis. If the R and Bias in the “Both Main”
scenario are similar to the other three algorithm scenarios,
it indicates that there is consistency in the inversion results
of the different algorithms. This also suggests that changes
in algorithmic paths have a minimal impact on short-term
vegetation monitoring.

E. Comparing Long Time-Series Trend Consistency

In order to analyze the effect of internal inconsistencies
on the trend analysis of LAI long time series, we compared
the trends of the main algorithm LAI (Main LAI) and the
LAI of the mixed all algorithms (Mixed LAI). For missing
values in the two sets of time-series data, we used the simple
arithmetic mean method in climatology to fill them in. This
method calculates multiyear averages contemporaneous with
the missing values as the filled data [37]. In order to avoid
time-series data being mostly filled data, we masked pixels
with less than one-third of the effective data volume over
the 20 years. In this study, the data used for filling are the
20-year averages from 2002 to 2021. We used the northern
hemisphere growing season average LAI (GSA LAI) for the
analysis. Referring to previous studies [38], [39], we defined
the vegetation growing season in the northern hemisphere as
May to September each year. This period is the peak and
critical period of vegetation growth. The GSA LAI can be
given based on the following:

GSA LAI =

∑16
i=1 LAIi

16
(6)

where GSA LAI represents the average LAI of 16 composites
for a given pixel over the growing season.

The coefficient of variation (CV) was utilized to measure the
fluctuation in the GSA LAI over the time series. This metric
provides a dimensionless measure that is independent of the
unit and absolute value of the variable [40], [41]. A higher CV
value indicates a greater annual variation in GSA LAI, while
a lower CV value indicates a more stable GSA LAI. The CV
can be calculated as

CV =
Std(X)

Mean(X)
(7)

where Std(X) and Mean(X) represent the standard deviation
and mean of the GSA LAI from 2002 to 2021, respectively.

The Mann–Kendal (MK) test is a trend analysis tool rec-
ommended by the World Meteorological Organization (WMO)
[42]. It was first proposed by Mann [44] and reformulated by
Kendall [43]. In this study, the MK test was used to analyze
the trend of multiyear GSA LAI. The MK test statistic (S) can
be expressed by

S =

n−1∑
i=1

n∑
j=i+1

sgn
(
x j − xi

)
(8)

where xi and x j represent data points in the time series and
satisfy the following:

sgn
(
x j − xi

)
=


+1,

(
x j − xi

)
> 0

0,
(
x j − xi

)
= 0

−1,
(
x j − xi

)
< 0.

(9)

The variance estimate for S is given by the following:

var(St ) =
n(n − 1)(2n + 5) −

∑m
i=1 ti (ti − 1)(2ti + 5)

18
(10)

where m represents the number of tied groups, and ti repre-
sents the size of the ath value within tied groups. The MK
statistic (Z) can be obtained using the following:

Z =


St − 1

√
var(St )

, St > 0

0, St = 0
St + 1

√
var(St )

, St < 0.

(11)

The null hypothesis (i.e., no trend) is rejected when |Z | >

Z1–α/2, where α is the specific significance level. When |Z |

is greater than or equal to 1.64 (α = 0.1), 1.96 (α = 0.05),
and 2.58 (α = 0.01), the time series passes the significance
test at the 90%, 95%, and 99% confidence levels, respectively.
In this article, α = 0.1 has been chosen in order to obtain as
many comparisons as possible.

In this study, the magnitude of the trend is assessed using
Sen’s estimator of the slope [45], and calculated as follows:

Si =
xb − xa

b − a
, i = 1, . . . , N (12)

where xa and xb represent the time-series values at time points
a and b, respectively (where b > a). The median of the N
values for Si was taken to obtain the Sen’s slope estimator.
A positive value of Sen’s slope estimator indicates an upward
trend, while a negative value indicates a downward trend.

IV. RESULTS

A. Spatiotemporal Distribution of Algorithm Paths

Fig. 2 illustrates the global distribution of the backup
algorithm inversion rate across the various seasons of the
global MOD15A2H in 2021. The regions with a high rate of
backup algorithms are concentrated in high-latitude regions of
the northern hemisphere and tropical regions. During winter
(DJF), the backup algorithms exhibit a higher rate, particularly
in the high-latitude regions of the northern hemisphere, where
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Fig. 2. Global distribution of the rate of pixel-by-pixel backup algorithms
for four periods in 2021. MAM: March–April–May; JJA: June–July–August;
SON: September–October–November; DJF: December–January–February.

the rate exceeds 80% in most areas. Conversely, a lower rate
is observed during summer (JJA). Regarding vegetation types,
the rate of backup algorithms is lower in summer compared to
winter, particularly in biome types 7 and 8 (see Fig. 3). This
difference can be attributed to the lower SZA in winter at high
latitudes, which leads to the failure of the main algorithm and
the activation of the backup algorithm. Notably, biome types
7 and 8 are primarily distributed in the high-latitude regions
of the northern hemisphere.

Fig. 4 presents frequency distribution and box plots of
monthly average LAI for the main and backup algorithms.
The analysis was limited to pixels with both the main and
backup algorithm LAI in a given month. The main and
backup algorithms exhibited similar numerical distributions
for grasses/cereal crops and broadleaf crops (except JJA).
However, for other biome types, the backup algorithm’s LAI
box plots indicated relatively lower median, upper quartile,
and lower quartile values, particularly in EBFs. This suggests
that there are more backup algorithm pixels with LAI values
predominantly distributed in the lower range.

B. Cross-Comparison of Terra/Aqua Products

Fig. 5 illustrates the global spatial distribution pattern of
LAI differences between different algorithm paths for the
Terra and Aqua LAI products. When the algorithms were
consistent, the differences between the two sensors were min-
imal. However, when the algorithms differed, the differences
became more pronounced, with the backup algorithm LAI
underestimating the main algorithm. The absolute value of the
global mean difference when comparing the same algorithms
(“Both Main” and “Both Backup”) was below 0.08 for all sea-
sons. However, the “MOD Main–MYD Backup” and “MOD
Backup–MYD Main” values exceeded 0.15. Specifically, the
“MOD Main–MYD Backup” value was positive, while “MOD
Backup–MYD Main” was negative. In most latitude zones, the
difference is small when the algorithm paths of the two sensors
are the same, but larger when the algorithm paths are different
(see Fig. 6). In the tropical zone, the difference between the
backup algorithm and the main algorithm reaches a maximum

Fig. 3. Retrieval rates of different algorithm paths for different biome types
globally. Comparisons are made for the four periods: MAM, JJA, SON, and
DJF (four bars from bottom to top).

TABLE II
PERCENTAGE OF LAI DIFFERENCES BETWEEN DIFFERENT ALGORITHMS

FOR TERRA AND AQUA

and shows an underestimation. This may be due to the fact
that when the vegetation is denser, NDVI does not provide
more information about the vegetation due to the saturation
effect.

The percentage of LAI differences for the different algo-
rithms for the two sensors is shown in Table II. In the
“Both Main” scenario, more than 85% of the retrievals

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 14,2024 at 12:00:22 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: INSIGHT INTO THE INTERNAL CONSISTENCY OF MODIS GLOBAL LAI PRODUCTS 4411716

Fig. 4. Histogram and box plots of monthly average LAI for the main and backup algorithms for the period 2017–2021, including median, quartiles, and
whiskers. Only pixels with both main and backup algorithms in one month were used as analysis pixels. Bin in the frequency distribution histogram is 30.
The first y-axis (left) represents the y-axis of the histogram of the frequency distribution and the second y-axis (right) represents the y-axis of the box plots.
Only pixels with no change in land cover between 2017 and 2021 were used as analyzed pixels.

Fig. 5. Global distribution of LAI differences (MOD15A2H–MYD1512H) for different combinations of Terra and Aqua algorithms for the period 2003–2021.
Results are from seasonal means and multiyear means of each composite difference.

showed LAI differences within ±0.5, and less than 1% of
the retrievals exceeded LAI differences above ±1.5, indicating
that the LAI distributions of the main algorithms for the Terra
and Aqua sensors were consistent, with no systematic bias

observed. When the algorithms were different, the percentage
of retrievals with differences within ±0.5 decreased to less
than 85%. Conversely, the percentage of pixels with differ-
ences exceeding ±1.5 increased and surpassed 2% across all
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Fig. 6. Distribution of latitudinal mean differences for different algorithm
LAI of MOD15A2H and MYD15A2H. The latitude interval is 1◦.

four seasons. Notably, a portion of the pixels with larger
differences originated from the tropical forest region (see
Fig. 5).

Fig. 7 shows the frequency histograms of the LAI
differences between two sensors. The LAI was more consis-
tent with smaller mean differences and standard deviations
when the algorithms were consistent. Conversely, inconsis-
tent algorithms led to larger differences. The EBF biome
type showed the greatest difference between the backup
and main algorithms, with four-season difference means of
0.892, 0.884, 1.027, and 0.827 for the “MOD Main–MYD
BackUp” and −1.106, −0.760, −0.596, and −1.046 for the
“MOD BackUp–MYD Main,” while 0.128, 0.224, 0.485, and
0.097 for “Both Main.” When the algorithms were the same,
the center of the difference curve was closer to 0, while the
center line of the “MOD Main–MYD BackUp” was shifted
to the right and the center line of the “MOD BackUp–MYD
Main” was shifted to the left. Overall, the backup algorithm
underestimates the LAI of the main algorithm, and this under-
estimation is most pronounced in the EBF biome type.

C. Spatiotemporal Correlation of Adjacent Years

We calculated the correlation of pixel pairs between two
adjacent years for different algorithmic change scenarios to
assess the internal consistency of the MODIS product (see
Fig. 8). Fig. 8(a) shows that the correlation between the
“Both Main” LAI pixel pairs is high at different latitudes,
seasons, and vegetation types, in the range of [0.6, 0.9]. The
correlation was noticeably lower when both years used backup
algorithms or when the algorithm path was changed, within the

range of [0.2, 0.6]. The R-values of the other three algorithm
scenarios were more consistent with the “Both Main” scenario
between 30◦N and 60◦N during the MAM. For biome types,
the correlation was higher for non-forested vegetation (B1–B4)
than for forested vegetation types (B5–B8). Fig. 8(b) shows
the R-values after averaging over all seasons and latitudinal
bands for each biome type. “Both Main” shows the highest
correlation, while the correlation decreases for the remaining
three algorithm scenarios. In addition, non-forested biomes
(B1–B4) have higher correlations, and the biome type with the
lowest correlation is B5 (EBF). Overall, the main and backup
algorithms show noticeable inconsistencies. The correlation
decreases when both years were backup algorithms or when
the algorithm path changes. This indicates that the main
algorithm exhibits higher stability, robustness, and responsive-
ness to natural vegetation variability.

By comparing the LAI bias of pixel pairs between two
adjacent years, we can evaluate the impact of internal inconsis-
tencies on short-term vegetation change monitoring. Fig. 8(c)
shows that when the algorithm remained the same in two
adjacent years, the LAI change exhibited relative stability,
with a bias in the range of [−0.05, 0.05]. However, when
there was a change in the algorithm, the magnitude of LAI
changes increased. In the “Main to BackUp” scenario, LAI
generally decreases, with a bias in the range of [−0.5, 0.1].
Conversely, in the “BackUp to Main” scenario, LAI generally
increases, with a bias in the range of [−0.1, 1]. After averaging
over all seasons and latitudinal bands for each biome type,
we observed that a constant algorithm resulted in a small
bias, whereas a varying algorithm led to a large bias [see
Fig. 8(d)]. In addition, the exhibited similar magnitudes but
with opposite positive and negative values. This difference was
most pronounced in the B5 biome type, where the bias for
“Both Main” and “Both BackUp” was nearly zero, while the
absolute value of the bias for “Main to BackUp” and “BackUp
to Main” exceeded 1 (−1.14 versus 1.16).

D. Impact of Inconsistency on 20-Year LAI Trends

The multiyear average GSA LAI from 2002 to 2021 indi-
cates that in 99.25% of the vegetation pixels in the northern
hemisphere, the Mixed LAI was lower than or approximately
equal to the Main LAI [see Fig. 9(a)]. Among these, approxi-
mately 31.09% of the Mixed LAI had smaller values compared
to the Main LAI. To quantify the effect of internal inconsis-
tency on the stability of the LAI time series, we compared
the CV of the main algorithm LAI and the Mixed LAI over
a 20-year period [see Fig. 9(b)]. The results showed that the
CV of Mixed LAI was greater than or approximately equal
to that of Main LAI for 99.86% of the pixels, with 52.55%
of the regions being greater. Regions with unequal CV values
and mean GSA LAI were mainly found in the high latitudes
of the northern hemisphere and in the tropics, where there
tended to be a noticeable proportion of backup algorithm LAI
in the time series. Overall, the internal inconsistency of the
MODIS LAI product resulted in differences in the absolute
magnitude of LAI values and heightened the probability of
abnormal temporal fluctuations.
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Fig. 7. Frequency histogram curves of LAI differences for different algorithm paths. These curves were generated from the data in Statistical Fig. 5, and
the analysis only included pixels where the biome type did not change over 19 years. The bin size is set to 70.

Fig. 8. (a) Heat map of R between pixel pairs for two adjacent years. (b) Mean values of R for LAI pixel pairs for all latitudinal bands and seasons across
eight biome types. (c) Heat map of Bias between pixel pairs for two adjacent years. (d) Mean values of Bias for LAI pixel pairs for all latitudinal bands and
seasons across eight biome types. Obtained by averaging three sets of results for 2003–2004, 2010–2011, and 2020–2021. Each grid cell represents all pixels
of a particular biome type within the 15◦ latitude band. Only pixels with no change in vegetation type between adjacent years were used as analyzed pixels.
Gray cells indicate a lack of vegetation pixels or fewer than 50 valid pixels.

Fig. 10 displays the spatial distribution of the trend test
from 2002 to 2021, indicating that intra-product inconsistency
has a minimal impact on the LAI trend test results. Without

the MK test, approximately 82.04% of the vegetation area
exhibited nearly equal annual changes between Main LAI
and Mixed LAI, with larger differences concentrated in the
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Fig. 9. Spatial distribution of GSA LAI in the northern hemisphere and their differences under different algorithm control methods. (a) Multiyear mean
of GSA LAI for 2002–2021. (b) CV of GSA LAI time series for 2002–2021. The white areas on the surface are considered to be roughly equal when the
differences are small.

Fig. 10. Spatial distribution of GSA LAI trends and their differences under different algorithm control methods. (a) Trend estimates were based on Sen’s
slopes. (b) Trend estimates that passes the MK significance test (p < 0.1). The white areas on the surface are considered to be roughly equal when the
differences are small.

tropics and high latitudes [see Fig. 10(a)]. The areas of the
two algorithmic control methods that passed the trend test
were very close in size (p < 0.1) and overlapped considerably
[see Fig. 10(b)]. Among these regions, approximately 31.94%
of pixels exhibited a significant increase in Main LAI, while

30.64% showed a significant increase in Mixed LAI. These
increases were primarily concentrated in Asian regions, includ-
ing China and India. Additionally, regions with a significant
decrease accounted for 4.80% in Main LAI and 4.55% in
Mixed LAI.
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Fig. 11. Trend scatter density distribution of Main LAI and Mixed LAI. Only data that passed the trend test were counted. Only pixels with no change in
land cover between 2002 and 2021 were used as analyzed pixels.

Fig. 11 shows the scatter density plots of Main LAI and
Mixed LAI trends. The results showed that the trends of Main
LAI and Mixed LAI were very consistent. The coefficients of
determination (R2) exceed 0.7 for all vegetation types, with
grasses/cereal crops, broadleaf crops, and shrubs exhibiting the
highest R2 values (>0.94). Conversely, the lowest R2 value
was observed in the DBF biome type, with an R2 of 0.73.
Additionally, the trend consistency of the non-forested biome
was higher than that of the forested biome, exhibiting a higher
R2 value, and the fit line is closer to the 1:1 line. The scatter
points were predominantly distributed in the first quadrant,
indicating a significant increasing trend for both Main LAI
and Mixed LAI. However, a small number of scatter points in
the second and fourth quadrants suggest an opposite trend for
the shrub and EBF biome types. Fig. 12 illustrates the trend
percentage plots for the different biome types under the two
algorithmic control methods. The results indicate comparable
trends between Main LAI and Mixed LAI for different biome
types, with a difference of less than 3% in the percentages of
significant increase and decrease. Main LAI shows a slightly
higher percentage of significant increase compared to Mixed
LAI in all vegetation types, except for B8 (DNF).

V. DISCUSSION

A. Causes of Internal Inconsistencies

The “optimal” inversion algorithms for LAI products often
cannot be implemented when inputting reflectance data with
high uncertainty. This is due to suboptimal atmospheric
corrections and poor observing conditions, such as cloud
contamination, large angle observations, and snow/ice cover.
As a result, “compromise” algorithms with poor precision,
accuracy, and stability are used instead [19], [20], [26], [28],
[29], [30], [31]. The first step in the MODIS LAI algorithm
is to run the main algorithm. If the vegetation density is too
high, the reflectance may become saturated. This saturation
reduces the main algorithm’s sensitivity to changes in canopy

Fig. 12. Percentage of trends in Main LAI (left bars) and Mixed LAI (right
bars) by biome type. The trend was categorized as no significant trend if
it did not pass the significance test or passed the significance test but the
absolute value of the change was less than 0.001 and as a significant increase
(decrease) if it passed the significance test and the absolute value of the change
was greater than 0.001. Only pixels with no change in land cover between
2002 and 2021 were used as analyzed pixels.

attributes, which may result in less accurate MODIS LAI
seasonal variations [46]. In addition, when the sun-observation
zenith angle is too large, the accuracy of the radiative transfer
model will decrease. It also exacerbates the field-of-view
effect of multiangle observations (where the observed range
is larger than the true range), and the interaction of the
radiative signal with the atmosphere is enhanced, leading to
the failure of the main algorithms. When the atmospheric
correction is unsatisfactory or there is ice/snow cover on the
surface, the BRF may have large uncertainties, resulting in
a decrease in the accuracy of the LAI/FPAR retrieval [47].
Additionally, MODIS LAI products use a biome map as
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Fig. 13. Internal consistency of the eight biome types is comprehensively
ranked based on the above results. A smaller rank indicates higher consistency
or quality according to this index. Where Trend R2 represents the trend
consistency of Main LAI and Mixed LAI (growing season only); RI represents
the proportion of main algorithm retrievals in 2021; δLAI indicates the
difference in retrievals by different algorithms for Terra and Aqua, while R
and Bias represent the correlation and bias of pixels in adjacent years.

a priori knowledge to minimize the unknowns of the “ill-
posed” inverse problem [19], which can also lead to failure
of the main algorithm when inaccurate biome classification
maps are input [25]. Therefore, the primary reason for internal
inconsistencies in the downstream LAI product is the variation
in quality of the input upstream product.

Secondly, the “compromise” algorithms of existing LAI
products have some limitations. In the MODIS LAI product,
the backup algorithm is derived from the fitting correla-
tion between the main algorithm LAI and its corresponding
NDVI. This approach overcomes issues such as sensitivity
to atmospheric conditions and background settings that arise
when fitting LAI using a single band [48], [49]. However,
in tropical and subtropical regions at low latitudes, NDVI is
not effective in characterizing surface vegetation due to the sat-
uration effect of NDVI [50]. This may explain the pronounced
differences between the main and backup algorithms observed
in the tropics in our study. For middle and high latitudes,
the reflectance in the red and near-infrared bands increases
noticeably when the surface is covered with snow and ice. This
causes the NDVI to become close to 0 [51] and the backup
algorithm will then provide LAI and FPAR retrieval results
also close to 0 [35]. Finally, LAI is spatially heterogeneous, its
relationship with NDVI is influenced by the phenological stage
and is typically nonlinear [52]. Therefore, there are limitations
in using empirical fitting methods to obtain the LAI-NDVI
relationship.

B. Comprehensive Ranking of Internal Consistency of LAI
Products

Fig. 13 summarizes the internal consistency rankings of
products from different vegetation types and seasons. This

section provides a summary comparison of the relevant indi-
cators in the results. In this context, higher rankings indicate
higher levels of internal consistency or product quality. Over-
all, we found that products with higher overall quality (RI)
tended to perform better on other metrics. In terms of veg-
etation types, we found that the simpler vegetation showed
better internal consistency. Specifically, internal consistency
was noticeably higher for grasses/cereal crops (B1), shrubs
(B2), and broadleaf crops (B3). The savannas (B4), DBF (B6),
ENF (B7), and DNF (B8) had comparable internal consistency,
but it was worse compared to grasses/cereal crops (B1), shrubs
(B2), and broadleaf crops (B3). EBF (B5) had the lowest
internal consistency and this biome type is predominantly
found in tropical regions. Additionally, we observed that the
internal consistency of the products varied with the seasons,
with DNF (B8) being the most affected and EBF (B5) being
the most stable. This is because reflectance product quality
tends to correlate with the seasons. In winter, in mid to high-
latitude regions, it is affected by snow and ice cover, resulting
in very high surface reflectance. During cloudy and rainy
seasons, it is affected by cloud cover and aerosols, resulting
in higher reflectance uncertainty.

C. Potential Impact of Internal Inconsistency on LAI
Applications

The LAI products have been widely utilized in various
fields, including seasonal and interannual vegetation monitor-
ing [53], regional phenological studies [54], [55], assessment
and prediction of drought trends [56], [57], as well as the
analysis of global greening trends [58], [59], [60]. Our
study identifies internal inconsistencies in LAI products. This
inconsistency is mainly reflected in the fact that the backup
algorithm retrieval results tend to underestimate the main
algorithm retrieval results. When performing short-term veg-
etation change estimation, algorithmic changes can lead to
an overestimation of the magnitude of LAI change or even
an incorrect determination of the greening and browning of
vegetation [see Fig. 8(d)]. For trend analysis of long time
series, the internal inconsistency of the product increases
the volatility of the time-series data, but the effect on the
results of the trend test is very small (see Fig. 10). This
may be because the backup algorithm is built based on the
empirical relationship between the main algorithm LAI and
the corresponding NDVI for a specific vegetation type, thus
maximizing the consistency between the backup algorithm
LAI and the main algorithm LAI, and the differences that
exist are systematic.

However, for studies that are more concerned with absolute
values of LAI, such as surface system modeling, the internal
inconsistency of the product may introduce greater uncertainty.
Accurate LAI is a key biophysical parameter for model-
ing gross primary productivity (GPP) and evapotranspiration
(ET), and is also critical for modeling the terrestrial carbon
cycle [61]. Existing studies have shown that uncertainty in
LAI products can lead to uncertainty in GPP and ET simulated
by ecosystem models [62]. Inaccurate LAI may introduce
considerable uncertainty into MODIS GPP estimates based on
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light use efficiency models [63], and the problems of overes-
timation, underestimation, and discontinuity of MODIS LAI
products over time limit their global application in modeling
forest ecosystems’ carbon cycle [63], [64], [65], [66].

D. Methods to Eliminate Product Internal Inconsistency

Eliminating internal inconsistencies in MODIS LAI prod-
ucts is crucial for their effective utilization. There are several
possible solutions to explore. First, the original surface
reflectance product could be reconstructed, thus removing the
internal inconsistencies in the observations due to observation
geometry and thick cloud cover [67]. Mismatches between
biomes and specific LUTs can result in failure of the main
algorithm or incorrect LAI values. Therefore, improvements
can be made to the land cover classification algorithm and the
auxiliary datasets used to obtain more accurate biome cover
maps and reduce the proportion of backup algorithms [19],
[68]. In addition, each vegetation index (VI) has its strengths
and limitations, so it may be more appropriate to base the
LAI–VI relationship on actual ground conditions or vegetation
types. For example, it may be more appropriate to choose a VI
with better resistance to saturation in densely forested areas,
or to use a combination of multiple VI [50].

Surface reflectance is susceptible to influences from clouds,
aerosols, and poor solar sensor geometry [69]. As a result,
multiday compositing of daily products is often required. The
MODIS LAI product utilizes a maximum fraction of photosyn-
thetically active radiation (Max-FPAR) composite algorithm,
which selects the best observations from an 8-day composite,
thereby reducing potential reflectance errors [47]. However,
inconsistencies in observation quality can lead to differences in
time intervals (1–15 days) and algorithm paths between neigh-
boring composites, which can impact the temporal smoothness
of MODIS LAI products [70]. Therefore, employing more
advanced multiday synthesis methods presents another effec-
tive approach to address internal inconsistencies in remote
sensing products. For example, compared to the Max-FPAR
composite method, the prior knowledge time-series compos-
ite algorithm (PKA) combines a linear kernel-driven (LKD)
model with prior temporal knowledge, effectively improving
the accuracy and temporal stability of LAI products [70].

Finally, existing remote sensing products can be repro-
cessed and reanalyzed to eliminate internal inconsistencies.
An effective solution is to utilize the spatiotemporal corre-
lation and quality information of the single product itself to
reduce the noise level in the LAI time series. For example,
the high-quality LAI product (HiQ-LAI) is generated by
combining raw high-quality observations and spatiotempo-
ral correlations from the MODIS C6.1 LAI product, which
offers higher stability and reliability [71], [72]. Another
approach is to integrate high-quality inversion results from
multiple sensors to improve the overall quality of the product.
For example, the sensor-independent (SI) LAI/FPAR CDR
fuses high-quality LAI/FPAR retrievals from each of the
Terra-MODIS/Aqua-MODIS/VIIRS sensors and applies spa-
tiotemporal tensor (ST-Tensor) complete model to extrapolate
the high-quality retrievals to other regions, resulting in a more
stable, accurate, and internally consistent LAI product [73].

VI. CONCLUSION

Although many LAI validation studies have been con-
ducted, the potential uncertainties and impacts of internal
inconsistencies remain unknown because these efforts only
use spatiotemporal invariant metrics to assess the products’
overall quality. However, internally inconsistent LAI prod-
ucts can increase uncertainty in studies such as land surface
process modeling, global primary productivity, water cycle,
and carbon cycle analysis. Therefore, there is a pressing need
for a new perspective and methodology to qualitatively and
quantitatively evaluate the level of internal consistency of LAI
products. In this study, the MODIS C6.1 LAI product was used
as an example to comprehensively assess the consistency of
different algorithmic retrieval results within the product. This
assessment was based on multiproduct cross-validation and
the spatiotemporal correlation of the product itself. The results
show that there are certain inconsistencies in the MODIS LAI
product, which are mainly reflected in the underestimation of
the backup algorithm LAI compared to the main algorithm
LAI. This underestimation is more severe in regions with
dense tropical vegetation. Additionally, we found that the inter-
nal inconsistency of the products has a minimal effect on long
time-series trend analysis. However, when making short-term
vegetation change estimates, changes in the algorithm paths
can lead to incorrect estimates of the magnitude and direction
of change.

Under poor observational conditions, the best inversion
algorithms of many remote sensing products often fail,
so backup algorithms with poorer performance have to be
used. This situation leads to widespread internal inconsis-
tencies in the products. In order to eliminate these internal
inconsistencies, several directions can be explored: improving
the quality of the input data, using better backup algorithm,
improving multiday composite algorithms, and reprocessing
existing products. In summary, our results provide a new
perspective on validating and evaluating global LAI products,
which can help construct a more comprehensive evaluation
system and ensure the rational application and improvement
of these products. Additionally, we recommend that users refer
to the data quality layers when using LAI products to select the
appropriate data. If spatiotemporally continuous LAI data is
not needed, it is recommended to only use the main algorithm
retrieval. Otherwise, we recommend utilizing post-processed
datasets with higher internal consistency, such as HiQ-LAI
and SI LAI.
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