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 Abstract—The evaluation and validation of Climate Data 

Records (CDRs) derived from remote sensing play crucial roles in 

their generation and applications. However, many existing 

evaluation schemes rely on simplistic, spatiotemporally invariant 

metrics to assess the products’ overall quality, which leads to the 

long-term neglect of intra-product inconsistencies stemming from 

observation conditions, algorithmic differences, and sensor 

degradation. Leaf Area Index (LAI) is a crucial variable for land 

surface and climate modeling, and the intra-product inconsistency 

will increase the uncertainty in related studies. In order to improve 

the evaluation scheme of LAI products and ensure their reliability, 

we propose a new perspective for evaluating global LAI time series. 

In this study, we utilize the MODIS C6.1 LAI product as an 

example to infer its internal consistency through cross-

comparisons among different sensors and spatiotemporal 

correlations between two adjacent years of the product. We found 

that compared to the main algorithm, the backup algorithm of the 

MODIS LAI product tends to underestimate the retrieval results. 

This inconsistency is particularly pronounced in tropical regions 

but relatively minor in most other areas. Additionally, these 

inconsistencies can lead to unusual fluctuations in the LAI time 

series, impacting the magnitude and direction of short-term 

vegetation monitoring. However, the influence on long-term 
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trend analyses are negligible. Therefore, special attention should 

be given to the intra-product consistency in certain studies. In 

conclusion, the evaluation perspective proposed in this study is of 

great significance for improving the LAI evaluation scheme and 

ensuring the use and improvement of remote sensing products. 

 

Index Terms—Leaf Area Index (LAI), Product evaluation, 

Internal consistency, MODIS, Climate Data Record (CDR). 

I. INTRODUCTION 

limate Data Records (CDRs) are time series of 

measurements that have sufficient length, consistency, 

and continuity. They offer reliable insights into the 

occurrence, extent, and spatial distribution of changes in land, 

oceans, atmosphere, and ice sheets, thereby aiding in the  

assessment of climate variability and change [1]. As an 

Essential Climate Variable (ECV) recognized by the Global 

Climate Observing System (GCOS), Leaf Area Index (LAI) is 

a pivotal component of CDRs [2]. LAI is commonly defined as 

half of the total green leaf area per unit of horizontal ground 

area [3, 4], serving to characterize the structure and function of 

vegetation canopies [5]. Moreover, LAI serves as a critical 

parameter in global carbon cycle, climate, hydrology, 

biogeochemistry, and ecology models [6-8]. It also acts as a 

fundamental input for various land surface process models [9-

12] and plays a crucial role in studies related to vegetation 

productivity and water use efficiency [3]. 

To ensure the reliability and accuracy of studies concerning 

global climate change, climate impacts, the carbon cycle, and 

emission source estimation, GCOS has established standards 

for satellite-derived datasets and products. These standards 

encompass various aspects, including spatial and temporal 

resolution, accuracy, and stability [2]. Based on these standards, 

extensive evaluation and validation efforts have been conducted 

to assess the quality and reliability of satellite-derived CDR 

data. Regarding LAI products, these efforts primarily involve 

direct comparisons with ground measurements [13-15], 

comparisons with upscaled high-resolution reference datasets 

[16-18], cross-validation among various LAI products or their 

iterative releases [19-22], and comparisons with model-

simulated LAI [23-25]. Factors such as cloud contamination, 

large-angle observations, and ice/snow cover can introduce 

variations in the accuracy of reflectance products across 

different time and geographical locations. Consequently, LAI 

products often employ different retrieval algorithms tailored to 

C 
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varying observation qualities. However, these studies often 

neglect internal inconsistencies in the inversion algorithms 

caused by factors such as observation quality, which can lead 

to differences in the precision, accuracy, stability and physical 

significance of the inversion results [19-21, 26]. 

MODIS LAI products are well-known for their clear physical 

interpretation, high spatial and temporal resolution, free 

accessibility, and global coverage [32]. The MODIS LAI 

product uses a main algorithm based on a three-dimensional 

radiative transfer (3D RT) equation and a backup algorithm 

based on the empirical relationship between the Normalized 

Difference Vegetation Index (NDVI) and LAI/FPAR [19]. The 

backup algorithm is activated only when the uncertainty of the 

input surface reflectance product is high enough to cause the 

main algorithm to fail. Similar to the MODIS LAI product, 

several commonly used LAI products contain results derived 

from different algorithms or varying qualities [see Table Ⅰ]. The 

PROBA-V LAI product employs a specialized processing 

technique for broadleaf evergreen forests. This is necessary 

because these forests are highly influenced by cloud cover, 

resulting in increased noise levels (false cloud detection) and 

missing data. Furthermore, three distinct computational 

methods were utilized to temporally smooth and synthesize 

instantaneous LAI estimates for other vegetation types [27]. 

The EUMETSAT Polar System (EPS) LAI product provides 

three quality indicators: 𝜎𝐺𝑃𝑅 , 𝜎𝑘0 , and Err (LAI). These 

indicators help identify invalid outliers, assess the reliability of 

the Bidirectional Reflectance Distribution Function (BRDF), 

and estimate overall errors. The uncertainty value determines 

the quality classification of EPS LAI products into three 

categories: Good, Medium, and Poor [28]. In addition, 

influenced by factors such as the observation quality or the 

amount of valid data, there are three retrieval methods for the 

GEOV2 LAI product: direct retrieval, climatology-based 

retrieval, and interpolation-based retrieval [21, 29]. The 

GLASS V6 LAI product generates the LAI product from the 

MODIS reflectance data using Bi-directional Long-Short Term 

Memory (Bi-LSTM). However, the Bi-LSTM model can only 

predict valid LAI values when the atmospherically corrected 

surface reflectance is above 70°N and the solar zenith angle 

(SZA) is less than 85°. Pixels with SZA greater than 85° can 

only be obtained by interpolating from nearby days [30]. As a 

continuation of MODIS LAI products, the VIIRS LAI product 

also comprises different algorithm paths [31]. These products 

exhibit clear internal inconsistencies, yet systematic internal 

consistency evaluations are lacking. 

Internal inconsistencies in the satellite-derived LAI product 

increase the uncertainty in the overall product. These 

uncertainties ultimately lead to uncertainties in downstream 

applications. Therefore, there is an urgent need to quantitatively 

TABLE I 

SEVERAL GLOBAL MODERATE RESOLUTION LAI PRODUCTS 

Products Sensor Version 
Spatial 

resolution 

Temporal 

resolution 

Algorithm paths 

or quality flags 
References 

PROBA-V PROBA-V V1 300 m 
10-day 

(2014−) 

1. EBF case: 1) based on daily 

observations; 2) based on previous 

dekadal product 

2. Non-EBF case: 1) second degree 

polynomials fit; 2) linear fit; 3) 
interpolation between the two 

nearest dates 

[27] 

EUMETSAT 

Polar System 
MetOp / AVHRR V1 1.1 km 

10-day 

(2015−) 

1. Ice / Atmospheric Anomaly 

Indicator (𝜎𝐺𝑃𝑅) 

2. BRDF reliability indicator (𝜎𝑘0) 

3. Overall error indicator (Err (LAI)) 

[28] 

GEOV2 

SPOT /  

VEGETATION, 
MODIS 

V2 1 / 112° 
10-day 

(1999−) 

1. Direct retrieval 

2. Climatology-based retrieval 

3. Interpolation-based retrieval 

[29] 

MODIS Terra / Aqua C6 500 m 
8-day 

(2000−) 

1. Main algorithm based on radiative 

transfer model 

2. Backup algorithm based on LAI-

NDVI empirical relationship 

[19, 20] 

GLASS MODIS V6 
250 m /  

500m 

8-day 

(2000−) 

1.Solar zenith angle less than 85°: 

Predict using the Bi-LSTM model 

2.Solar zenith angle greater than 

85°: Interpolate using the nearby 

days' valid LAI values 

[30] 

VIIRS SNPP / VIIRS V1 500 m 
8-day 

(2012−) 

1. Main algorithm based on radiative 

transfer model 

2. Backup algorithm based on LAI-

NDVI empirical relationship 

[31] 
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and qualitatively evaluate the internal consistency of global 

LAI products, which is crucial for improving the modeling of 

land surface and climate, as well as accurately monitoring 

global vegetation. In this study, we use the MODIS C6.1 LAI 

product as an example to introduce a new perspective for 

validating and evaluating remote sensing data products. 

Specifically, it emphasizes that intra-product results should 

have consistent performance and behavior under similar spatial 

and temporal conditions. The research will help improve the 

framework for validating and assessing remote sensing data 

products, as well as offer guidance for their use and refinement. 

This paper is organized as follows: Section II and Section III 

describes the dataset and methodology used to assess the 

internal consistency. In Section IV, we compare the 

spatiotemporal distribution of the retrieval results from 

different algorithms, the internal consistency of the MODIS 

LAI product, and the impact of internal inconsistency on long-

time series trend tests. Section V discusses the causes of internal 

inconsistencies, potential impacts on product applications, and 

directions for improvement in detail. Finally, Section VI 

provides concluding remarks. 

II. DATASETS 

A. MODIS C6.1 LAI Products 

The latest version of the MODIS LAI product is Collection 

6.1 (MODIS C6.1 LAI products), which was publicly released 

in April 2020. It includes LAI products from Terra MODIS, 

Aqua MODIS, and the Terra + Aqua MODIS combination [33]. 

Terra’s LAI products (MOD15A2H) cover the period from 

2000 to the present, while Aqua’s products (MYD15A2H) 

cover the period from 2002 to the present. No changes have 

been made to the scientific algorithms for the MODIS C6.1 LAI 

products. Any improvements or differences compared to the 

previous C6 version are the result of improved calibration 

methods for the MODIS L1B products, as well as updates to the 

polarization corrections applied during the reprocessing [33]. In 

this study, we used the MODIS C6.1 LAI products 

(MOD15A2H, MYD15A2H) for our analyses, which have a 

standard data product with a spatial resolution of 500 meters 

and a temporal resolution of 8 days. It typically produces 46 

composites per year, but one or two composites may be lost due 

to sensor problems or other factors. All MODIS LAI products 

are available via LP DAAC 

(https://lpdaac.usgs.gov/products/mod15a2hv061/). 

The MODIS LAI operational algorithm is composed of a 

main algorithm and a backup algorithm. The main algorithm is 

based on the Radiative Transfer Equation (RTE), while the 

backup algorithm relies on the empirical correlation between 

the NDVI and canopy LAI. The input data includes 

Bidirectional Reflectance Factors (BRFs) in the red and near-

infrared bands, their uncertainties, four observation geometries, 

and a biome classification map [33]. According to the quality 

control document, the main algorithm can be categorized as 

“Main algorithm without saturation” (QA=0) and “Main 

algorithm with saturation” (Main-S) (QA=1). Backup 

algorithms can be categorized into “BackUp-G algorithm” 

(QA=2) which is caused by poor observation geometry and 

“BackUp-O algorithm” (QA=3) which is caused by problems 

other than geometry. The algorithm path information is stored 

in the 'FparLai_QC' layer for user reference. 

B. MODIS Land Cover Product 

The MCD12Q1 dataset is a MODIS land cover product that 

provides an annual global distribution of land cover types at a 

500-meter resolution. It is derived from supervised 

classification of MODIS reflectance data and is further refined 

through post-processing and integration of auxiliary 

information to optimize specific categories [34]. In this study, 

the LAI product’s internal consistency was analyzed using a 

classification scheme based on the LAI/FPAR classification of 

vegetation (LC_Type3). For this scheme, global vegetation is 

categorized into eight biomes. The eight biomes are (B1) 

grasses and cereal crops, (B2) shrubs, (B3) broadleaf crops, 

(B4) savannas, (B5) evergreen broadleaf forest (EBF), (B6) 

deciduous broadleaf forest (DBF), (B7) evergreen needleleaf 

forest (ENF), (B8) deciduous needleleaf forest (DNF). The 

MCD12Q1 C6.1 product is available via LP DAAC 

(https://lpdaac.usgs.gov/products/mcd12q1v061/). 

III. METHODOLOGY 

A. Framework for Evaluating Internal Consistency 

An evaluation framework has been devised to assess the 

internal consistency of the MODIS C6.1 LAI product, 

illustrated in Fig. 1. The framework comprises an evaluation of 

intra-product consistency and an analysis of its impact on 

vegetation monitoring. In this study, we initially pre-processed 

the land cover and LAI products. Subsequently, we inferred 

internal consistency through cross-comparisons between the 

various algorithm retrieval results of Terra and Aqua products 

and spatiotemporal correlation analysis of the Terra LAI 

product over two adjacent years. Finally, to investigate the 

impact of internal inconsistency on long-term trend analyses, 

we compared the consistency of LAI trends across different 

algorithmic control methods. This framework is an important 

reference for evaluating the internal consistency of CDR 

products with multiple algorithmic branches. 

B. Data Pre-processing 

In this study, we first reduced the spatial resolution of the 

LAI products and MCD12Q1 to 5 km × 5 km using the nearest 

neighbor sampling method. This approach allowed us to reduce 

the data volume and enhance computational efficiency. 

Subsequently, we masked the non-vegetated areas (water 

bodies, bare land, urban, permanent snow and ice) in each year's 

LAI product using each year's MCD12Q1 product to minimize 

the impact on the study results. Finally, we extracted the main 

algorithm LAI (QA=0 and QA=1) and the backup algorithm 

LAI (QA=2 and QA=3) based on the "FparLai_QC" layer for 

further analysis. 
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C. Inferring Product Internal Consistency Through Terra and 

Aqua Product Cross-comparisons 

The Terra MODIS LAI (MOD15A2H) and Aqua MODIS 

LAI (MYD15A2H) products demonstrate a high degree of 

consistency and comparability, owing to the employment of 

identical sensor types, inversion algorithms, and multi-day 

synthesis methods [35]. Therefore, the internal consistency of 

MODIS LAI products can be inferred by comparing the 

differences in different algorithm LAI of the two sensors. The 

differences include the main algorithm LAI (Both Main), 

backup algorithm LAI (Both BackUp), MOD15A2H's main 

algorithm LAI and MYD15A2H's backup algorithm LAI 

(MOD Main – MYD BackUp), and MYD15A2H's main 

algorithm LAI and MOD15A2H's backup algorithm LAI 

(MOD BackUp – MYD Main). If the differences between the 

different algorithm LAI are similar to the " Both Main" 

scenario, this indicates good consistency in the MODIS LAI 

product. To minimize the effect of individual extremes or 

outliers and to improve reliability and stability, we calculated a 

multi-year average of the LAI difference for each composite 

data, the equations are as follows: 

 𝛿𝐿𝐴𝐼𝑡 = 𝐿𝐴𝐼𝑀𝑂𝐷(𝑖) − 𝐿𝐴𝐼𝑀𝑌𝐷(𝑗) (1) 

 𝛿𝐿𝐴𝐼𝑠 =
∑ 𝛿𝐿𝐴𝐼𝑡
𝑛+11
𝑡=𝑛

12
 (𝑠 = 𝑀𝐴𝑀, 𝐽𝐽𝐴, 𝑆𝑂𝑁, 𝐷𝐽𝐹) (2) 

 𝛿𝐿𝐴𝐼 =
∑ (𝛿𝐿𝐴𝐼𝑠)
𝑦+19
𝑦=2003 𝑦

19
 (3) 

where 𝛿𝐿𝐴𝐼𝑡  represents the difference between the t-th 

composite of the two products, i, j represents the algorithm path, 

𝛿𝐿𝐴𝐼𝑠  represents the mean difference between the 12 

composites in a quarter, n represents the number of initial 

composites of the quarter 𝑠 , and 𝛿𝐿𝐴𝐼  denotes the mean of 

𝛿𝐿𝐴𝐼𝑠 for a total of 19 years between 2003 and 2021. MAM: 

March-April-May; JJA: June-July-August; SON: September-

October-November; DJF: December-January-February. 

D. Inferring Product Internal Consistency Through 

Spatiotemporal Correlation of Adjacent Years 

According to the first law of geography, everything is 

connected, but objects that are in close proximity are typically 

more closely connected to each other than those that are farther 

apart [36]. Vegetation in adjacent years can be influenced by 

various factors, including inter-annual meteorological changes, 

natural growth and decline, and human activities. However, a 

strong correlation is generally anticipated among pixel pairs 

Fig. 1. The framework of internal consistency evaluation. 
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located at the same location and season on a global scale. The 

LAI products with higher quality, greater inversion accuracy, 

and increased algorithmic robustness and stability are better 

able to capture this correlation. By analyzing the spatiotemporal 

correlations between different LAI algorithms over two 

adjacent years, we can assess intra-product consistency and 

evaluate the impact of algorithmic changes on short-term 

vegetation monitoring. 

To comprehensively compare the consistency of algorithms, 

we initially matched LAI pixels for the same composite period 

in two adjacent years one by one. Subsequently, we categorized 

the global two-year pixel pairs according to latitudinal bands, 

seasons, and biome types. Finally, we computed the correlation 

coefficients (R) and mean bias (Bias) of the pixel pairs for the 

neighboring years, with R and Bias determined using equations 

(4) and (5) 

 𝑅 =
∑ (𝑥𝑖
𝑛
𝑖=1 −�̅�)(𝑦𝑖−�̅�)

√∑ (𝑥𝑖
𝑛
𝑖=1 −�̅�)2∑ (𝑦𝑖

𝑛
𝑖=1 −�̅�)2

 (4) 

 𝐵𝑖𝑎𝑠 =
∑ (𝑦𝑖
𝑛
𝑖=1 −𝑥𝑖)

𝑛
 (5) 

where 𝑥𝑖、𝑦𝑖  denote the i-th individual LAI value in the set of 

pixel pairs, �̅� and �̅� represent the mean LAI values of the pixel 

sets in the first and second year, respectively. 

The algorithm changes for pixels over the two years can be 

categorized into four groups: Both Main (using the main 

algorithm in both years), Both Backup (using the backup 

algorithm in both years), Main to Backup (changing from the 

main algorithm to the backup algorithm), and Backup to Main 

(changing from the backup algorithm to the main algorithm). 

To enhance study reliability, we calculated the mean values of 

R and Bias for the periods 2003–2004, 2010–2011, and 2020–

2021 for analysis. If the R and Bias in the "Both Main " scenario 

are similar to the other three algorithm scenarios, it indicates 

that there is consistency in the inversion results of the different 

algorithms. This also suggests that changes in algorithmic paths 

have a minimal impact on short-term vegetation monitoring. 

E. Comparing Long Time-series Trend Consistency 

In order to analyze the effect of internal inconsistencies on 

the trend analysis of LAI long time series, we compared the 

trends of the main algorithm LAI (Main LAI) and the LAI of 

the mixed all algorithms (Mixed LAI). For missing values in 

the two sets of time series data, we used the simple arithmetic 

mean method in climatology to fill them in. This method 

calculates multi-year averages contemporaneous with the 

missing values as the filled data [37]. In order to avoid time-

series data being mostly filled data, we masked pixels with less 

than one-third of the effective data volume over the 20 years. In 

this study, the data used for filling are the 20-year averages from 

2002 to 2021. We used the northern hemisphere growing season 

average LAI (GSA LAI) for the analysis. Referring to previous 

studies [38, 39], we defined the vegetation growing season in 

the Northern Hemisphere as May to September each year. This 

period is the peak and critical period of vegetation growth. The 

GSA LAI can be given based on (6) 

 GSA LAI =
∑ LAI𝑖
16
𝑖=1

16
 (6) 

where GSA LAI represents the average LAI of 16 composites 

for a given pixel over the growing season. 

The Coefficient of Variation (CV) was utilized to measure 

the fluctuation in the GSA LAI over the time series. This metric 

provides a dimensionless measure that is independent of the 

unit and absolute value of the variable [40, 41]. A higher CV 

value indicates a greater annual variation in GSA LAI, while a 

lower CV value indicates a more stable GSA LAI. The CV can 

be calculated as 

 𝐶𝑉 =
𝑆𝑡𝑑(𝑋)

𝑀𝑒𝑎𝑛(𝑋)
 (7) 

where 𝑆𝑡𝑑(𝑋)and 𝑀𝑒𝑎𝑛(𝑋) represent the standard deviation 

and mean of the GSA LAI from 2002 to 2021, respectively. 

The Mann-Kendal (MK) test is a trend analysis tool 

recommended by the World Meteorological Organization 

(WMO) [42]. It was first proposed by Mann and reformulated 

by Kendall [43, 44]. In this study, the MK test was used to 

analyses the trend of multi-year GSA LAI. The MK test statistic 

(S) can be expressed by 

 𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1  (8) 

where 𝑥𝑖  and 𝑥𝑗  represent data points in the time series and 

satisfy (9) 

 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = {

+1   (𝑥𝑗 − 𝑥𝑖) > 0

 0     (𝑥𝑗 − 𝑥𝑖) = 0

−1   (𝑥𝑗 − 𝑥𝑖) < 0

 (9) 

The variance estimate for S is given by (10): 

 𝑣𝑎𝑟(𝑆𝑡) =
𝑛(𝑛−1)(2𝑛+5)−∑ 𝑡𝑖(𝑡𝑖−1)(2𝑡𝑖+5)

𝑚
𝑖=1

18
 (10) 

where 𝑚  represents the number of tied groups, and 𝑡𝑖 
represents the size of the 𝑎-th value within tied groups. The MK 

statistic(𝑍) can be obtained using (11) 

 𝑍 =

{
 
 

 
 

𝑆𝑡−1

√𝑣𝑎𝑟(𝑆𝑡)
       𝑆𝑡 > 0 

     0             𝑆𝑡 = 0
𝑆𝑡+1

√𝑣𝑎𝑟(𝑆𝑡)
       𝑆𝑡 < 0

 (11) 

The null hypothesis (i.e., no trend) is rejected when |Z| > Z1–

α/2, where α is the specific significance level. When |Z| is 

greater than or equal to 1.64 (α = 0.1), 1.96 (α = 0.05), and 2.58 

(α = 0.01), the time series passes the significance test at the 

90%, 95%, and 99% confidence levels, respectively. In this 

paper, α = 0.1 has been chosen in order to obtain as many 

comparisons as possible. 

In this study, the magnitude of the trend is assessed using 

Sen’s estimator of the slope [45], and calculated as follows: 

 𝑆𝑖 =
𝑥𝑏−𝑥𝑎

𝑏−𝑎
 𝑖 = 1, … , 𝑁 (12) 

where 𝑥𝑎 and 𝑥𝑏 represent the time series values at time points 

𝑎  and 𝑏 , respectively (where 𝑏 > 𝑎 ). The median of the 𝑁 
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values for 𝑆𝑖 was taken to obtain the Sen’s slope estimator. A 

positive value of the Sen’s slope estimator indicates an upward 

trend, while a negative value indicates a downward trend. 

IV. RESULTS 

A. Spatiotemporal Distribution of Algorithm Paths  

Fig. 2 illustrates the global distribution of the backup 

algorithm inversion rate across the various seasons of the global 

MOD15A2H in 2021. The regions with a high rate of backup 

algorithms are concentrated in high-latitude regions of the 

northern hemisphere and tropical regions. During winter (DJF), 

the backup algorithms exhibit a higher rate, particularly in the 

high-latitude regions of the northern hemisphere, where the rate 

exceeds 80% in most areas. Conversely, a lower rate is observed 

during summer (JJA). Regarding vegetation types, the rate of 

backup algorithms is lower in summer compared to winter, 

particularly in biome types 7 and 8 [see Fig. 3]. This difference 

can be attributed to the lower SZA in winter at high latitudes, 

which leads to the failure of the main algorithm and the 

activation of the backup algorithm. Notably, biome types 7 and 

8 are primarily distributed in the high-latitude regions of the 

northern hemisphere. 

Fig. 4 presents frequency distribution and box plots of 

monthly average LAI for the main and backup algorithms. The 

analysis was limited to pixels with both the main and backup 

algorithm LAI in a given month. The main and backup 

algorithms exhibited similar numerical distributions for 

grasses/cereal crops and broadleaf crops (except JJA). However, 

for other biome types, the backup algorithm's LAI box plots 

indicated relatively lower median, upper quartile, and lower 

quartile values, particularly in evergreen broadleaf forests 

(EBF). This suggests that there are more backup algorithm 

pixels with LAI values predominantly distributed in the lower 

range. 

B. Cross-comparison of Terra/Aqua Products 

Fig. 5 illustrates the global spatial distribution pattern of LAI 

differences between different algorithm paths for the Terra and 

Aqua LAI products. When the algorithms were consistent, the 

differences between the two sensors were minimal. However, 

when the algorithms differed, the differences became more 

pronounced, with the backup algorithm LAI underestimating 

the main algorithm. The absolute value of the global mean 

difference when comparing the same algorithms ("Both Main" 

and " Both Backup") was below 0.08 for all seasons. However, 

the "MOD Main – MYD Backup" and "MOD Backup – MYD 

Main" values exceeded 0.15. Specifically, the "MOD Main – 

MYD Backup" value was positive, while "MOD Backup – 

MYD Main" was negative. In most latitude zones, the 

difference is small when the algorithm paths of the two sensors 

are the same, but larger when the algorithm paths are different 

[see Fig. 6]. In the tropical zone, the difference between the 

backup algorithm and the main algorithm reaches a maximum 

and shows an underestimation. This may be due to the fact that 

when the vegetation is denser, NDVI does not provide more 

information about the vegetation due to the saturation effect. 

 

 
Fig. 2. Global distribution of the rate of pixel-by-pixel backup 

algorithms for four periods in 2021. MAM: March-April-May; 

JJA: June-July-August; SON: September-October-November; 

DJF: December-January-February. 

 
Fig. 3. Retrieval rates of different algorithm paths for different 

biome types globally. Comparisons are made for the four 

periods MAM, JJA, SON, and DJF (four bars from bottom to 

top). 

The percentage of LAI differences for the different 

algorithms for the two sensors is shown in Table II. In the "Both 

Main" scenario, more than 85% of the retrievals showed LAI 

differences within ±0.5, and less than 1% of the retrievals 

exceeded LAI differences above ±1.5, indicating that the LAI 

distributions of the main algorithms for the Terra and Aqua 

sensors were consistent, with no systematic bias observed. 

When the algorithms were different, the percentage of retrievals 

with differences within ±0.5 decreased to less than 85%. 

Conversely, the percentage of pixels with differences exceeding 

±1.5 increased and surpassed 2% across all four seasons. 
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Fig. 4. Histogram and box plots of monthly average LAI for the main and backup algorithms for the period 2017-

2021, including median, quartiles and whiskers. Only pixels with both main and backup algorithms in one month 

were used as analysis pixels. Bin in the frequency distribution histogram is 30. The first y-axis (left) represents 

the y-axis of the histogram of the frequency distribution and the second y-axis (right) represents the y-axis of the 

box plots. Only pixels with no change in land cover between 2017 and 2021 were used as analyzed pixels. 

Fig. 5. Global distribution of LAI differences (MOD15A2H–MYD1512H) for different combinations of Terra and 

Aqua algorithms for the period 2003 to 2021. Results are from seasonal means and multi-year means of each 

composite difference. 
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Fig. 6. Distribution of latitudinal mean differences for 

different algorithm LAI of MOD15A2H and MYD15A2H. 

The latitude interval is 1°. 

 

Notably, a portion of the pixels with larger differences 

originated from the tropical forest region [see Fig. 5]. 

Fig. 7 shows the frequency histograms of the LAI differences 

between two sensors. The LAI was more consistent with 

smaller mean differences and standard deviations when the 

algorithms were consistent. Conversely, inconsistent 

algorithms led to larger differences. The EBF biome type 

showed the greatest difference between the backup and main 

algorithms, with four-season difference means of 0.892, 0.884,  

1.027, and 0.827 for the "MOD Main – MYD BackUp" and –

1.106, –0.760, –0.596, and –1.046 for the "MOD BackUp – 

MYD Main", while 0.128, 0.224, 0.485, and 0.097 for "Both 

Main". When the algorithms were the same, the center of the 

difference curve was closer to 0, while the center line of the 

"MOD Main – MYD BackUp" was shifted to the right and the 

center line of the "MOD BackUp – MYD Main" was shifted to 

the left. Overall, the backup algorithm underestimates the LAI 

of the main algorithm, and this underestimation is most 

pronounced in the EBF biome type. 

C. Spatiotemporal Correlation of Adjacent Years 

We calculated the correlation of pixel pairs between two 

adjacent years for different algorithmic change scenarios to 

assess the internal consistency of the MODIS product [see Fig. 

8]. Fig. 8(a) shows that the correlation between the “Both 

Main” LAI pixel pairs is high at different latitudes, seasons, and 

vegetation types, in the range of [0.6, 0.9]. The correlation was 

noticeably lower when both years used backup algorithms or 

when the algorithm path was changed, within the range of [0.2, 

0.6]. The R-values of the other three algorithm scenarios were 

more consistent with the “Both Main” scenario between 30° and 

60° N during the MAM. For biome types, the correlation was 

higher for non-forested vegetation (B1−B4) than for forested 

vegetation types (B5−B8). Fig. 8(b) shows the R-values after 

averaging over all seasons and latitudinal bands for each biome 

type. "Both Main" shows the highest correlation, while the 

correlation decreases for the remaining three algorithm 

scenarios. In addition, non-forested biomes (B1−B4) have 

higher correlations, and the biome type with the lowest 

correlation is B5 (EBF). Overall, the main and backup 

algorithms show noticeable inconsistencies. The correlation 

decreases when both years were backup algorithms or when the 

algorithm path changes. This indicates that the main algorithm 

exhibits higher stability, robustness, and responsiveness to 

natural vegetation variability. 

By comparing the LAI bias of pixel pairs between two 

adjacent years, we can evaluate the impact of internal 

inconsistencies on short-term vegetation change monitoring. 

Fig. 8(c) shows that when the algorithm remained the same in 

two adjacent years, the LAI change exhibited relative stability, 

with a bias in the range of [–0.05, 0.05]. However, when there 

was a change in the algorithm, the magnitude of LAI changes 

increased. In the "Main to BackUp" scenario, LAI generally 

decreases, with a bias in the range of [–0.5, 0.1]. Conversely, in 

the "BackUp to Main" scenario, LAI generally increases, with 

a bias in the range of [–0.1, 1]. After averaging over all seasons 

and latitudinal bands for each biome type, we observed that a 

constant algorithm resulted in a small bias, whereas a varying 

algorithm led to a large bias [see Fig. 8(d)]. In addition, the 

exhibited similar magnitudes but with opposite positive and 

 

TABLE Ⅱ 

THE PERCENTAGE OF LAI DIFFERENCES BETWEEN 

DIFFERENT ALGORITHMS FOR TERRA AND AQUA 

Algorithm 

differences 
Seasons 

Within 

±0.5 

[±0.5, 

±1.5] 

Over 

±1.5 

Both Main 

MAM 95.69% 3.80% 0.51% 

JJA 95.36% 4.27% 0.37% 

SON 93.62% 5.96% 0.42% 

DJF 95.73% 3.82% 0.45% 

Both BackUp 

MAM 87.41% 10.87% 1.72% 

JJA 81.36% 16.26% 2.38% 

SON 88.72% 9.94% 1.34% 

DJF 88.67% 10.01% 1.33% 

MOD Main − 

MYD BackUp 

MAM 80.28% 16.25% 3.47% 

JJA 76.14% 20.46% 3.40% 

SON 80.40% 16.08% 3.52% 

DJF 80.84% 15.56% 3.61% 

MOD BackUp 

− MYD Main 

MAM 79.74% 14.61% 5.65% 

JJA 77.55% 18.62% 3.83% 

SON 82.21% 15.88% 1.92% 

DJF 77.59% 16.98% 5.42% 
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Fig. 8. (a) Heat map of R between pixel pairs for two adjacent years. (b) Mean values of R for LAI pixel pairs for all 

latitudinal bands and seasons across eight biome types. (c) Heat map of Bias between pixel pairs for two adjacent years. 
(d) Mean values of Bias for LAI pixel pairs for all latitudinal bands and seasons across eight biome types. Obtained by 

averaging three sets of results for 2003-2004, 2010-2011, and 2020-2021. Each grid cell represents all pixels of a 

particular biome type within the 15° latitude band. Only pixels with no change in vegetation type between adjacent 

years were used as analyzed pixels. Grey cells indicate a lack of vegetation pixels or fewer than 50 valid pixels.  

Fig. 7. The frequency histogram curves of LAI differences for different algorithm paths. 

These curves were generated from the data in Statistical Fig. 5, and the analysis only included 

pixels where the biome type did not change over the 19 years. The bin size is set to 70.  
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negative values. This difference was most pronounced in the B5 

biome type, where the bias for "Both Main" and "Both BackUp" 

was nearly zero, while the absolute value of the bias for "Main 

to BackUp" and "BackUp to Main" exceeded 1 (–1.14 versus 

1.16). 

Fig. 9. Spatial distribution of GSA LAI in the Northern Hemisphere and their differences under 

different algorithm control methods. (a) Multi-year mean of GSA LAI for 2002-2021. (b) CV of 

GSA LAI time series for 2002-2021. The white areas on the surface are considered to be roughly 

equal when the differences are small. 

Fig. 10. Spatial distribution of GSA LAI trends and their differences under different algorithm 

control methods. (a) The trend estimates were based on Sen’s slopes. (b) The trend estimates that 

passes the MK significance test (P < 0.1). The white areas on the surface are considered to be 

roughly equal when the differences are small. 
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D. Impact of Inconsistency on 20-Year LAI Trends 

The multiyear average GSA LAI from 2002 to 2021 indicates 

that in 99.25% of the vegetation pixels in the Northern 

Hemisphere, the Mixed LAI was lower than or approximately 

equal to the Main LAI [see Fig. 9(a)]. Among these, 

approximately 31.09% of the Mixed LAI had smaller values 

compared to the Main LAI. To quantify the effect of internal 

inconsistency on the stability of the LAI time series, we 

compared the CV of the master algorithm LAI and the Mixed 

LAI over a 20-year period [see Fig. 9(b)]. The results showed 

that the CV of Mixed LAI was greater than or approximately 

equal to that of Main LAI for 99.86% of the pixels, with 52.55% 

of the regions being greater. Regions with unequal CV values 

and mean GSA LAI were mainly found in the high latitudes of 

the Northern Hemisphere and in the tropics, where there tended 

to be a noticeable proportion of backup algorithm LAI in the 

time series. Overall, the internal inconsistency of the MODIS 

LAI product resulted in differences in the absolute magnitude 

of LAI values and heightened the probability of abnormal 

temporal fluctuations. 

Fig. 10 displays the spatial distribution of the trend test from 

2002 to 2021, indicating that intra-product inconsistency has a 

minimal impact on the LAI trend test results. Without the MK 

test, approximately 82.04% of the vegetation area exhibited 

nearly equal annual changes between Main LAI and Mixed 

LAI, with larger differences concentrated in the tropics and 

high latitudes [see Fig. 10(a)]. The areas of the two algorithmic 

control methods that passed the trend test were very close in 

size (p < 0.1) and overlapped considerably [see Fig. 10(b)]. 

Among these regions, approximately 31.94% of pixels  

exhibited a significant increase in Main LAI, while 30.64% 

showed a significant increase in Mixed LAI. These increases 

were primarily concentrated in Asian regions, including China 

and India. Additionally, regions with a significant decrease 

accounted for 4.80% in Main LAI and 4.55% in Mixed LAI. 

 
Fig. 12. Percentage of trends in Main LAI (left bars) and Mixed 

LAI (right bars) by biome type. The trend was categorized as 

no significant trend if it did not pass the significance test or 

passed the significance test but the absolute value of the change 

was less than 0.001 and as a significant increase (decrease) if it 

passed the significance test and the absolute value of the change 

was greater than 0.001. Only pixels with no change in land 

cover between 2002 and 2021 were used as analyzed pixels. 

Fig. 11 shows the scatter density plots of Main LAI and 

Mixed LAI trends. The results showed that the trends of main 

LAI and mixed LAI were very consistent. The coefficients of 

determination (R2) exceed 0.7 for all vegetation types, with 

grasses/cereal crops, broadleaf crops, and shrubs exhibiting the 

highest R2 values (> 0.94). Conversely, the lowest R2 value 

was observed in the DBF biome type, with an R2 of 0.73. 

Additionally, the trend consistency of the non-forested biome 

was higher than that of the forested biome, exhibiting a higher 

Fig. 11. Trend scatter density distribution of Main LAI and Mixed LAI. Only data that passed the trend test were 

counted. Only pixels with no change in land cover between 2002 and 2021 were used as analyzed pixels. 
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R2 value, and the fitted line is closer to the 1:1 line. The scatter 

points were predominantly distributed in the first quadrant, 

indicating a significant increasing trend for both Main LAI and 

Mixed LAI. However, a small number of scatter points in the 

second and fourth quadrants suggest an opposite trend for the 

shrub and EBF biome types. Fig. 12 illustrates the trend 

percentage plots for the different biome types under the two 

algorithmic control methods. The results indicate comparable 

trends between Main LAI and Mixed LAI for different biome 

types, with a difference of less than 3% in the percentages of 

significant increase and decrease. Main LAI shows a slightly 

higher percentage of significant increase compared to Mixed 

LAI in all vegetation types, except for B8 (DNF). 

V. DISCUSSION 

A. Causes of Internal Inconsistencies 

The “optimal” inversion algorithms for LAI products often 

cannot be implemented when inputting reflectance data with 

high uncertainty. This is due to suboptimal atmospheric 

corrections and poor observing conditions, such as cloud 

contamination, large angle observations, and snow/ice cover. 

As a result, “compromise” algorithms with poor precision, 

accuracy, and stability are used instead [19, 20, 26, 28-31]. The 

first step in the MODIS LAI algorithm is to run the main 

algorithm. If the vegetation density is too high, the reflectance 

may become saturated. This saturation reduces the main 

algorithm’s sensitivity to changes in canopy attributes, which 

may result in less accurate MODIS LAI seasonal variations 

[46]. In addition, when the sun-observation zenith angle is too 

large, the accuracy of the radiative transfer model will decrease. 

It also exacerbates the field-of-view effect of multi-angle 

observations (where the observed range is larger than the true 

range), and the interaction of the radiative signal with the 

atmosphere is enhanced, leading to the failure of the main 

algorithms. When the atmospheric correction is unsatisfactory 

or there is ice/snow cover on the surface, the BRF may have 

large uncertainties, resulting in a decrease in the accuracy of the 

LAI/FPAR retrieval [47]. Additionally, MODIS LAI products 

use a biome map as a priori knowledge to minimize the 

unknowns of the “ill-posed” inverse problem [19], which can 

also lead to failure of the main algorithm when inaccurate 

biome classification maps are input [25]. Therefore, the primary 

reason for internal inconsistencies in the downstream LAI 

product is the variation in quality of the input upstream product. 

Secondly, the “compromise” algorithms of existing LAI 

products have some limitations. In the MODIS LAI product, the 

backup algorithm is derived from the fitting correlation 

between the main algorithm LAI and its corresponding NDVI. 

This approach overcomes issues such as sensitivity to  

atmospheric conditions and background settings that arise when 

fitting LAI using a single band [48, 49]. However, in tropical 

and subtropical regions at low latitudes, NDVI is not effective 

in characterizing surface vegetation due to the saturation effect 

of NDVI [50]. This may explain the pronounced differences 

between the main and backup algorithms observed in the tropics 

in our study. For middle and high latitudes, the reflectance in 

 
Fig. 13. The internal consistency of the eight biome types is 

comprehensively ranked based on the above findings. A smaller 

Rank indicates higher consistency or quality according to this 

index. Where Trend R2 represents the trend consistency of Main 

LAI and Mixed LAI (growing season only); RI represents the 

proportion of main algorithm retrievals in 2021; 𝛿𝐿𝐴𝐼 indicates 

the difference in retrievals by different algorithms for Terra and 

Aqua, while R and Bias represent the correlation and bias of 

pixels in adjacent years. 

the red and near-infrared bands increase noticeably when the 

surface is covered with snow and ice. This causes the NDVI to 

become close to 0 [51] and the backup algorithm will then 

provide LAI and FPAR retrieval results also close to 0 [35]. 

Finally, LAI is spatially heterogeneous, its relationship with 

NDVI is influenced by the phenological stage and is typically 

nonlinear [52]. Therefore, there are limitations in using 

empirical fitting methods to obtain the LAI-NDVI relationship. 

B. Comprehensive Ranking of Internal Consistency of LAI 

Products 

Fig. 13 summarizes the internal consistency rankings of 

products from different vegetation types and seasons. This 

section provides a summary comparison of the relevant 

indicators in the results. In this context, higher rankings indicate 

higher levels of internal consistency or product quality. Overall, 

we found that products with higher overall quality (RI) tended 

to perform better on other metrics. In terms of vegetation types, 

we found that the simpler vegetation showed better internal 

consistency. Specifically, internal consistency was noticeably 

higher for grasses/cereal crops (B1), shrubs (B2), and broadleaf 

crops (B3). The savannas (B4), DBF (B6), ENF (B7), and DNF 

(B8) had comparable internal consistency, but it was worse 

compared to grasses/cereal crops (B1), shrubs (B2), and 

broadleaf crops (B3). EBF (B5) had the lowest internal 

consistency and this biome type is predominantly found in 

tropical regions. Additionally, we observed that the internal 

consistency of the products varied with the seasons, with DNF 
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(B8) being the most affected and EBF (B5) being the most 

stable. This is because reflectance product quality tends to 

correlate with the seasons. In winter, in mid to high-latitude 

regions, it is affected by snow and ice cover, resulting in very 

high surface reflectance. During cloudy and rainy seasons, it is 

affected by cloud cover and aerosols, resulting in higher 

reflectance uncertainty. 

C. The Potential Impact of Internal Inconsistency on LAI 

Applications 

The LAI products have been widely utilized in various fields, 

including seasonal and interannual vegetation monitoring [53], 

regional phenological studies [54, 55], assessment and 

prediction of drought trends [56, 57], as well as the analysis of 

global greening trends [58-60]. Our study identifies internal 

inconsistencies in LAI products. This inconsistency is mainly 

reflected in the fact that the backup algorithm retrieval results 

tend to underestimate the main algorithm retrieval results. 

When performing short-term vegetation change estimation, 

algorithmic changes can lead to an overestimation of the 

magnitude of LAI change or even an incorrect determination of 

the greening and browning of vegetation [see Fig. 8(d)]. For 

trend analysis of long time series, the internal inconsistency of 

the product increases the volatility of the time series data, but 

the effect on the results of the trend test is very small [see Fig. 

10]. This may be because the backup algorithm is built based 

on the empirical relationship between the main algorithm LAI 

and the corresponding NDVI for a specific vegetation type, thus 

maximizing the consistency between the backup algorithm LAI 

and the main algorithm LAI, and the differences that exist are 

systematic. 

However, for studies that are more concerned with absolute 

values of LAI, such as surface system modeling, the internal 

inconsistency of the product may introduce greater uncertainty. 

Accurate LAI is a key biophysical parameter for modeling 

Gross Primary Productivity (GPP) and Evapotranspiration 

(ET), and is also critical for modeling the terrestrial carbon 

cycle [61]. Existing studies have shown that uncertainty in LAI 

products can lead to uncertainty in GPP and ET simulated by 

ecosystem models [62]. Inaccurate LAI may introduce 

considerable uncertainty into MODIS GPP estimates based on 

light use efficiency models [63], and the problems of 

overestimation, underestimation, and discontinuity of MODIS 

LAI products over time limit their global application in 

modeling forest ecosystems' carbon cycle [63-66].  

D. Methods to Eliminate Product Internal Inconsistency 

Eliminating internal inconsistencies in MODIS LAI products 

is crucial for their effective utilization. There are several 

possible solutions to explore. First, the original surface 

reflectance product could be reconstructed, thus removing the 

internal inconsistencies in the observations due to observation 

geometry and thick cloud cover [67]. Mismatches between 

biomes and specific LUTs can result in failure of the main 

algorithm or incorrect LAI values. Therefore, improvements 

can be made to the land cover classification algorithm and the 

auxiliary datasets used to obtain more accurate biome cover 

maps and reduce the proportion of backup algorithms [19, 68]. 

In addition, each Vegetation Index (VI) has its strengths and 

limitations, so it may be more appropriate to base the LAI-VI 

relationship on actual ground conditions or vegetation types. 

For example, it may be more appropriate to choose a VI with 

better resistance to saturation in densely forested areas, or to use 

a combination of multiple VI [50]. 

Surface reflectance is susceptible to influences from clouds, 

aerosols, and poor solar sensor geometry [69]. As a result, 

multi-day compositing of daily products is often required. The 

MODIS LAI product utilizes a Maximum Fraction of 

Photosynthetically Active Radiation (Max-FPAR) composite 

algorithm, which selects the best observations from an 8-day 

composite, thereby reducing potential reflectance errors [47]. 

However, inconsistencies in observation quality can lead to 

differences in time intervals (1−15 days) and algorithm paths 

between neighboring composites, which can impact the 

temporal smoothness of MODIS LAI products [70]. Therefore, 

employing more advanced multi-day synthesis methods 

presents another effective approach to address internal 

inconsistencies in remote sensing products. For example, 

compared to the Max-FPAR composite method, the Prior 

Knowledge Time Series Composite Algorithm (PKA) 

combines a Linear Kernel-Driven (LKD) model with prior 

temporal knowledge, effectively improving the accuracy and 

temporal stability of LAI products.[70]. 

Finally, existing remote sensing products can be reprocessed 

and reanalyzed to eliminate internal inconsistencies. An 

effective solution is to utilize the spatiotemporal correlation and 

quality information of the single product itself to reduce the 

noise level in the LAI time series. For example, the high-quality 

LAI product (HiQ-LAI) is generated by combining raw high-

quality observations and spatiotemporal correlations from the 

MODIS C6.1 LAI product, which offers higher stability and 

reliability [71, 72]. Another approach is to integrate high-

quality inversion results from multiple sensors to improve the 

overall quality of the product. For example, the Sensor-

Independent (SI) LAI/FPAR CDR fuses high-quality 

LAI/FPAR retrievals from each of the Terra-MODIS/Aqua-

MODIS/VIIRS sensors and applies Spatio-Temporal Tensor 

(ST-Tensor) complete model to extrapolate the high-quality 

retrievals to other regions, resulting in a more stable, accurate, 

and internally consistent LAI product [73]. 

VI. CONCLUSION 

Although many LAI validations studies have been 

conducted, the potential uncertainties and impacts of internal 

inconsistencies remain unknown because these efforts only use 

spatiotemporal invariant metrics to assess the products' overall 

quality. However, internally inconsistent LAI products can 

increase uncertainty in studies such as land surface process 

modeling, global primary productivity, water cycle, and carbon 

cycle analysis. Therefore, there is a pressing need for a new 

perspective and methodology to qualitatively and quantitatively 

evaluate the level of internal consistency of LAI products. In 

this study, the MODIS C6.1 LAI product was used as an 
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example to comprehensively assess the consistency of different 

algorithmic retrieval results within the product. This assessment 

was based on multi-product cross-validation and the 

spatiotemporal correlation of the product itself. The results 

show that there are certain inconsistencies in the MODIS LAI 

product, which are mainly reflected in the underestimation of 

the backup algorithm LAI compared to the main algorithm LAI. 

This underestimation is more severe in regions with dense 

tropical vegetation. Additionally, we found that the internal 

inconsistency of the products has a minimal effect on long time-

series trend analysis. However, when making short-term 

vegetation change estimates, changes in the algorithm paths can 

lead to incorrect estimates of the magnitude and direction of 

change.  

Under poor observational conditions, the best inversion 

algorithms of many remote sensing products often fail, so 

backup algorithms with poorer performance have to be used. 

This situation leads to widespread internal inconsistencies in 

the products. In order to eliminate these internal 

inconsistencies, several directions can be explored: improving 

the quality of the input data, using better backup algorithm, 

improving multi-day composite algorithms, and reprocessing 

existing products. In summary, our results provide a new 

perspective on validating and evaluating global LAI products, 

which can help construct a more comprehensive evaluation 

system and ensure the rational application and improvement of 

these products. Additionally, we recommend that users refer to 

the data quality layers when using LAI products to select the 

appropriate data. If spatiotemporally continuous LAI data is not 

needed, it is recommended to only use the main algorithm 

retrieval. Otherwise, we recommend utilizing post-processed 

datasets with higher internal consistency, such as HiQ-LAI and 

SI LAI. 
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