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ABSTRACT  
Leaf Area Index (LAI) is a critical vegetation structural parameter for 
characterizing vegetation canopy structure. Multiple LAI products 
derived from the Moderate Resolution Imaging Spectroradiometer 
(MODIS) observations have made a noteworthy impact on global 
energy fluxes, climate change, and biogeochemistry research. It is 
essential to examine the long-term performance of global LAI products 
and quantitatively evaluate their quality. However, traditional methods, 
which often rely on single overall accuracy metrics, fail to assess the 
ability to capture vegetation’s internal heterogeneity and temporal 
dynamics. This study introduces a new approach by combining spatial 
heterogeneity and temporal stability to assess product consistency, 
using MOD15A2H and MYD15A2H as examples. We observed that the 
local spatial heterogeneity (within 5 × 5 pixels) of the two products 
exhibited similar distribution pattern. The MYD15A2H LAI exhibits 
better time-series stability and lower spatially heterogeneous 
anomalous fluctuations in the tropical forest region. Both products 
demonstrate sustainable usability in the time series, and their spatial 
heterogeneity exhibit consistent trends. In conclusion, this study shows 
the comparability and stability of MOD15A2H and MYD15A2H in terms 
of the spatiotemporal variability of LAI. For differences stemming from 
unavoidable reflectivity issues, it is recommended to filter for high- 
quality inversion results or to utilize reliable reanalysis datasets.
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1. Introduction

Climate Data Records (CDR) are robust, sustainable, and scientifically sound climate records. These 
datasets are thoroughly vetted time series measurements with the longevity, consistency, and con
tinuity to assess and measure climate variability and change (Climate Data Records from Environ
mental Satellites 2004). Leaf Area Index (LAI), an essential variable of CDR, is a critical vegetation 
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structural parameter for characterizing vegetation canopy structure and has been defined as an 
important climate variable by the Global Climate Observing System (GCOS) (Fang, Baret, et al. 
2019). In broadleaf and coniferous canopies, it is represented, respectively, by the one-sided 
green leaf area per unit of ground horizontally and the projected needle leaf area (Myneni et al. 
2002). Its applications extend to vegetation growth monitoring, crop yield estimation, simulation 
of land surface processes, and global climate change research (Ahl et al. 2006; Doraiswamy et al. 
2004; Gao et al. 2023; Lu and Zhuang 2010; Yan et al. 2021; Zhu et al. 2016).

Since its launch aboard the Terra and Aqua satellites in 2000 and 2002, the Moderate Resolution 
Imaging Spectroradiometer (MODIS) has ushered in a new era of Earth observation for vegetation 
monitoring. MODIS LAI is one of the most widely used LAI products due to its clear theoretical 
foundation, relatively high spatial and temporal resolution, and open access policy (Knyazikhin 
1999). This Radiative Transfer Model (RTM)-based LAI product has made significant contributions 
to understanding the ‘Greening Earth’ phenomenon, biogeochemical cycles, and the dynamics of 
energy and flux exchanges (Huang et al. 2007; Li et al. 2023; Zhu et al. 2016).

The reliability and effectiveness of conclusions drawn from the study and application of LAI pro
ducts largely depend on the quality of the products used. It is therefore crucial to quantify and assess 
the accuracy of these products fully and accurately. A variety of assessment and validation schemes 
have been developed to evaluate the quality of datasets. These methods include validation with field 
measurements (De Kauwe et al. 2011; Fang et al. 2019; Fang, Wei, and Liang 2012), cross-validation 
among different products (Camacho et al. 2013; Fang et al. 2013; Liu et al. 2018; Xiao, Liang, and 
Jiang 2017; Yan et al. 2016), and indirect validation in conjunction with climate and other relevant 
environmental parameters (Yan et al. 2016). Long-term LAI data are crucial in land surface mod
eling and global terrestrial ecosystem monitoring (Hill et al. 2006; Lafont et al. 2012). Product inter
comparison, a cost-effective quality assessment method, allows for the effective quantification of 
long-term data consistency. Studies of MODIS LAI have shown improvements in accuracy and 
reliability compared to previous versions and consistency with its successor, VIIRS LAI (Xu 
et al. 2018; Yan et al. 2016).

Reliability of LAI products is critical for simulating carbon and water fluxes, assessing climate 
change response, and monitoring global terrestrial ecosystems (Kala et al. 2014; Liang, Yi, and 
Liu 2015). However, traditional LAI evaluation practices have often focused on characterizing pro
duct quality by relying on single overall accuracy metrics or deviations from ground-based 
measurements. On the other hand, combining multiple types of data offers significant advantages 
over using a single feature in time or space. (Padhee and Dutta 2019; Privette et al. 2002), resulting 
in a more comprehensive assessment. Atmospheric perturbations and BRDF effects can disrupt 
temporal consistency in long-term datasets, introducing uncertainty into vegetation analyses (Cor
petti et al. 2019). Regarding spatial aspects, habitat heterogeneity has been recognized as an impor
tant landscape feature that is closely related to biodiversity and its functions (Kerr and Packer 1997; 
MacArthur and MacArthur 1961). The spatial heterogeneity of vegetation based on remote sensing 
products, as standardized, large-scale, high-resolution, and timely-updatable heterogeneity infor
mation, is the key to understanding this relationship (Tuanmu and Jetz 2015; Turner 2014). Incon
sistency in spatial heterogeneity across products can interfere understanding of biodiversity 
patterns and the development of conservation policies. Ignoring spatial heterogeneity of LAI, 
which reflects vegetation-environment interactions, may result in inaccurate estimates of ecosystem 
carbon exchange in process-based models (Dufrêne et al. 2005). Therefore, there is an urgent need 
to assess the consistency of products from the perspective of combining spatial heterogeneity and 
temporal variability to ensure the reliability of studies on vegetation dynamics, biodiversity, and 
other related studies. MOD15A2H and MYD15A2H, as two similar LAI products, are often used 
without distinction, which can lead to overlooking their differences, potentially impacting research 
results or causing misinterpretations. In this study, we use MOD15A2H and MYD15A2H as 
examples to revisit the consistency between LAI products based on spatial distribution, degree of 
dispersion, long-term trend, and interannual variation of LAI spatiotemporal variability.
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Section 2 of this paper describes the methods and datasets used to analyze LAI consistency from 
the perspective of spatiotemporal variability. Section 3 compares and analyzes the spatial distri
bution, correlation, magnitude, and statistically analyzes the inter-annual variability, intra-annual 
variability, and long-term trends of the spatiotemporal variability of MOD15A2H LAI and 
MYD15A2H LAI. Section 4 discusses the driving factors of LAI spatiotemporal variability, the 
sources of inconsistency between different products, the impact of different window sizes and 
the limitations of the study. Finally, Section 5 summarizes the research and provides concluding 
remarks.

2. Datasets and methods

2.1. MODIS LAI products

The MOD15A2H LAI and MYD15A2H LAI products are generated as 8-day composites, featuring 
a spatial resolution of 500 m. These composites are projected onto a sinusoidal grid (Myneni, Knya
zikhin, and Park 2015). LAI retrieval for MOD15A2H (since 2000) and MYD15A2H (since 2002) is 
from Terra MODIS and Aqua MODIS, respectively. The operational MODIS algorithm includes 
the main algorithm based on the Radiative Transfer Equation (RTE) and a backup algorithm 
based on an empirical relationship between the Normalized Difference Vegetation Index (NDVI) 
and canopy LAI. Key indicators of retrieval quality are the algorithm paths, categorized into: (1) 
the main algorithm without saturation; (2) the main algorithm with saturation; (3) the backup 
algorithm due to sun-sensor geometry; (4) the backup algorithm due to other reasons such as 
cloud contamination or snow cover; (5) not produced due to invalid BRF.

2.2. MODIS land cover product

In this study, the MODIS land cover product (MCD12Q1) is used as the base map for the analysis. 
In the MODIS retrieval algorithm, the biome map is used to parameterize variables in the spectral 
transmission theory and acts as an auxiliary dataset to minimize retrieval uncertainties. MCD12Q1 
is derived by supervised classification of reflectance data from Terra and Aqua MODIS, producing a 
global land cover type map with a spatial resolution of 500 m and a temporal resolution of one year. 
It consists of thirteen scientific datasets, of which we have selected the third category, namely the 
annual LAI, which includes Grasslands, Shrublands, Broadleaf Croplands (BC), Savannas, Ever
green Broadleaf Forests (EBF), Deciduous Broadleaf Forests (DBF), Evergreen Needleleaf Forests 
(ENF), and Deciduous Needleleaf Forests (DNF) (Sulla-Menashe and Friedl 2018). The 
MCD12Q1 data used in this study cover the period from 2001 to 2022.

In this study, a pixel-wise statistical analysis of the frequency of occurrence of each land cover 
type was conducted, and the type with the highest frequency was designated as the dominant land 
cover type mask for the corresponding pixel. This approach reduces the uncertainties and biases 
introduced by observational errors, classification inaccuracies or other noise factors, thereby pro
viding a relatively robust and reliable framework for extended temporal analysis of land cover types.

2.3. Spatiotemporal variability analysis

2.3.1. Analysis of LAI coefficient of variation (CV) within sliding windows
The LAI CV is calculated using a sliding window method to quantify the local spatial heterogeneity 
of vegetation. Initially, a fixed window size is set and in this study a 5 × 5-pixel window is selected. 
This window is initially placed with its center pixel in the upper left corner of the LAI image and 
slides horizontally pixel by pixel to the end of each row. After completing each row, the window 
resets to the leftmost position of the next row to continue the analysis, ensuring the entire image 
is covered. The LAI CV value calculated for each slide is assigned to the center pixel to represent 
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the local spatial heterogeneity of LAI within that window range (Abdi 2010),

LAI · CV =
sLAI

mLAI
× 100% (1) 

where sLAI and mLAI represent the standard deviation and mean, respectively, of the LAI pixels 
within the window. As a dimensionless index, the LAI CV measures the dispersion of the data rela
tive to the mean, regardless of the unit of the variable or its absolute size.

In this study, quality control was conducted on MOD15A2H and MYD15A2H products to 
exclude pixels that were contaminated by clouds, shadows, cirrus, and snow. If more than 50% 
of the pixels within the window contained invalid data, the center pixel was assigned the no-data 
value. For the statistical analysis by land cover type, we preconfigured the necessary settings for 
pixel filtering: the center pixel of the window will be considered as the corresponding land cover 
type pixel only if more than 50% of the pixels in the window belong to the same land cover type.

2.3.2. Time-series stability (TSS)
TSS is an indicator that quantifies the fluctuation of time series (Zou et al. 2022). Absolute TSS 
reflects the distance between the target time remote sensing data value and its linear interpolation 
prediction line, which can be calculated using the point-to-line distance formula (see Eq. (2)). Con
sidering the significant differences in LAI values among different vegetation types, the concept of 
relative TSS is introduced to eliminate the influence of the magnitude of LAI values on absolute 
TSS in the analysis (see Eq. (3)),

absolute TSS(t) =

t − t1

t− 1 − t1
X(t− 1)+

t − t− 1

t1 − t− 1
X(t1)

􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌

����������������������������������
(X(t1) − X(t− 1))2 + (t1 − t− 1)2

􏽰 (2) 

relative TSS(t) =
absolute TSS (t)

LAI(t)
× 100% (3) 

where X(t1) and X(t− 1)are the adjacent time series data obtained at the previous moment and the 
next moment, respectively.

2.3.3. Anomaly pixel count (APC)
To quantify the discretization of LAI CV on a pixel-by-pixel basis over long time scales, in this study 
we propose a metric called Anomaly Pixel Count (APC). The core of this method is to systemati
cally analyze the multi-year statistical distribution of each pixel in the long-term LAI CV dataset, 
identify anomalous discrete pixels, and count their frequency of occurrence in the time series. 
For the long-term LAI CV pixel value set S = (x1, x2, . . . xn), where n pixel values come from 
LAI CV images of the same period in different years. Based on the set S, the IQR method is 
used to calculate the number of pixels identified as anomalies over several years at a given pixel 
location, referred to as IQR-APC (see Eq. (4)). By analyzing these n pixel values using the relative 
deviation method, the number of pixels exceeding a given relative deviation threshold is defined as 
RD-APC (see Eq. (5)). In this study, the relative deviation threshold was set at 60%, which was 
determined after several validation analyses for the purpose of enhancing the visualisation of the 
comparative analyses.

AnomalyIQR =
1 if x , (Q1 − 1.5× (Q3 − Q1))or x . (Q3 + 1.5× (Q3 − Q1))
0 otherwise

􏼚

(4) 

AnomalyRD =
1 if

(x − x̅)
x̅
× 100% . 120%

0 otherwise

􏼨

(5) 
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In this context, x represents the LAI CV data and ̅x refers to the long-term average of the concurrent 
LAI CV values. The third and first quartiles are denoted by Q3 and Q1, respectively. In IQR-APC 
analysis, if the pixel falls outside the range of x , (Q1 − 1.5× (Q3 − Q1)) and 
x . (Q3 + 1.5× (Q3 − Q1)), it is marked as an anomaly. Similarly, in the RD-APC analysis, if 
the relative deviation exceeds 60%, it is marked as an anomalous pixel.

After performing the above anomaly detection on all data over multiple years (in this study, from 
2003 to 2022), for a given pixel location P, the number of times it has been marked as an anomaly 
over these nine years is counted, yielding the APC (see Eq. (6)),

APC(P) =

􏽐46

t=1
Anomalyt(P)

􏽐46

t=1
Sumt(P)

× 100% (6) 

where Anomalyt(P) is the multi-year sum of the number of LAI CV anomaly pixels in the t period 
and Sumt(P) is the sum number of pixels in the t period (22 in this study).

RD-APC focuses on the deviation of pixel values from the long-term average and is more sen
sitive to rapid, short-term fluctuations that deviate from the long-term trend. IQR-APC, on the 
other hand, provides a robust assessment of variability fluctuations by examining the distribution 
range of the data to identify anomalies.

2.3.4. Sen-MK trend test
The Theil-Sen Median method, also referred to as the Sen Slope Estimator, is a robust, non-para
metric statistical approach utilized for trend computation (see Eq. (7)),

b = mean
xj − xi

j − i

􏼒 􏼓

, ∀j . i (7) 

where xj and xi represent the data within the time series. A b greater than 0 indicates an ascending 
trend in the time series, while b less than 0 signifies a descending trend.

In all trend analyses conducted, the Mann-Kendall (MK) test was utilized to ensure the detected 
trends hold significant statistical relevance (see Eqs. (8)-(10)). The MK test is a common statistical 
tool in climate diagnostics and forecasting, employed to ascertain the presence of discernible trends 
within a time series,

S =
􏽘n− 1

i=1

􏽘n

j=i+1
sgn(xj − xi) (8) 

Var(S) =
n(n − 1)(2n+ 5) −

􏽐m

i=1
ti(ti − 1)(2ti + 5)

19
(9) 

Z =

S − 1
��������
Var(S)
√ , if S . 0

0, if S = 0
S+ 1
��������
Var(S)
√ , if S , 0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(10) 

where S is the sum of the step function values of the differences between any two different points in 
the time series. Where n is the number of data points, m represents the number of tied groups (sets 
of repeated data), and ti denotes the count of ties (number of occurrences of each tie of size i). When 
|ZS| − Z1− a/2, the null hypothesis (indicating no trend) is rejected at a specific significance level, 
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denoted by a. In this study, an a value of 0.05 was selected, corresponding to 
a = 0.05,Z1− a/2 = 1.96.

2.3.5. Indicators of spatiotemporal variability
TSS quantifies the time-series stability of a product and describes the volatility of its quality, which 
is directly affected by the product quality itself. For example, meteorological conditions during 
observation (e.g. clouds and aerosols) and sensor degradation can affect product quality, which 
in turn impacts TSS values. LAI CV quantifies the local spatial heterogeneity of the LAI. In addition 
to the quality of the LAI product itself, LAI CV is affected by actual spatial surface variability caused 
by extreme hazards like fires and droughts, biological factors such as biodiversity, and anthropo
genic factors like urban expansion. The main difference between MOD and MYD is the time of 
observation, specifically the morning and afternoon of the same day. Therefore, factors that directly 
affect the quality of LAI products, such as atmospheric conditions like aerosols, cloud pollution, and 
BRDF effects due to changes in observation geometry, are more likely to result in differences in LAI 
CVs between the two products over a short period of time than changes in the actual surface het
erogeneity of LAI. Thus, in this study, the LAI CV is more inclined to reflect the effect of product 
quality on spatial heterogeneity. RD-APC and IQR-APC quantify the discrete changes in LAI CV 
over long time series. RD-APC primarily focuses on the deviation of pixel values from the long- 
term mean and is more sensitive to rapid short-term fluctuations in heterogeneity that deviate 
from the long-term trend. Suitable for capturing real heterogeneous changes in the surface. On 
the other hand, On the other hand, IQR-APC identifies anomalies by examining the range of the 
data distribution and focuses on analyzing systematic uncertainty by partially reducing the impact 
of extreme values. We conducted the analysis using Google Earth Engine (GEE) and Python, mak
ing use of Python’s rasterio and GDAL libraries for geospatial data processing, and matplotlib for 
visualization.

3. Results

3.1. LAI spatial heterogeneity

Figure 1(a–b) shows the distribution of MOD15A2H and MYD15A2H LAI CVs in July and Feb
ruary 2020, as well as the distribution of the differences. In terms of global distribution, there is 
no significant visual difference between the two data sets, with absolute differences ranging from 
–4% to 4% in most regions, and higher inter-product differences in February than in July. MOD 
LAI CV is lower than MYD in the Amazon rainforest and Central African forests, and higher in 
southern North America and Eastern Europe. The latitudinal distribution curve (Figure 1(c)) 
shows that MOD and MYD LAI CVs are in good agreement for most latitudes in July, while 
MOD is lower in the tropical regions near 0°. In February, there are more fluctuations in the incon
sistency of LAI CV between the two products relative to July. The comparison of Difference Value 
(DV) percentage distributions (Figure 1(d)) reveals no significant difference in DV between the two 
products in July. However, in February, the percentage of area where the DV is positive (DV > 1%, 
orange and red) is 5% higher than the percentage of area where the DV is negative (DV < −1%, light 
blue and dark blue). This suggests that MOD had higher LAI CVs relative to MYD in more regions 
in February. According to Fig. S1, we compared VIIRS LAI CV with MODIS. In July, differences 
between VIIRS and MODIS were small, but increased in February. VIIRS was slightly higher 
than MODIS in parts of the Amazon and Central Africa, but generally lower elsewhere. MYD 
was slightly higher than VIIRS overall. The proportion of areas where MODIS LAI CV was higher 
than VIIRS was 9%−13% greater in July and 17%−18% greater in February.

To further evaluate the consistent performance of the LAI CVs across different biome types, we 
mapped the density of various vegetation types in July and February 2020 (Figure 2). In July, the R² 
values for nonforest biomes were above 0.8, while the RRMSE ranged from 20.53% to 29.25%. On 
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the other hand, the R² values for the forest biomes were below 0.8, with the lowest value for type 
ENF being only 0.45, and RRMSE ranging from 36.23% to 39.93%. The LAI CV correlation between 
the products was lower in forest biomes than in nonforest biomes. In February, the global R² 
decreased from 0.86 in July to 0.79, with significant decreases in R² observed mainly for vegetation 
types grasslands, shrubs, and EBF.

Figure 1. Panel (a) shows the global spatial distribution of MOD15A2H and MYD15A2H LAI CVs for July and February 2020, while 
panel (b) presents the difference map between these two products. The LAI CVs of the two products were mapped using the 
nearest neighbor resampling method (from 500 m to 5 km). Panels (c-1) and (c-2) display latitudinal LAI CV maps at 1° intervals, 
with solid lines for the mean and shaded areas for the standard deviation. Panel (d) shows the proportion of Difference Value (DV) 
between MOD and MYD LAI CV.

Figure 2. Panel (a-i) shows the global correlation density distributions of LAI CVs for MOD15A2H and MYD15A2H in July and 
February 2020. (a-1) to (i-1) represent July and (a-2) to (i-2) represent February.
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3.2. LAI temporal variability

To compare the global consistency of MOD15A2H and MYD15A2H LAI in terms of temporal stab
ility, we have mapped the spatial distribution of the annual mean relative TSS of both products in 
2020 (Figure 3). Overall, MOD and MYD TSS show good agreement in most regions of the world. 
However, in the Amazon rainforest and Central Africa, where EBF is the dominant vegetation type, 
MOD TSS is higher than MYD TSS. The latitudinal distribution curves also indicate that MOD TSS 
has a higher mean and standard deviation near 0°N as well as in the 20°−30°N latitude range. Fig. S2 
shows the relative TSS distribution for VIIRS. VIIRS TSS is generally lower than MODIS in the tro
pics and Southeast Asia. Near the equator (0°) and in the 15°−30°N region, VIIRS, MYD, and MOD 
TSS increase sequentially.

Figure 4 shows the relative TSS distributions of the two products for different vegetation types. 
The approximate distribution ranges of TSS for MOD and MYD were similar, with both showing 
shorter overall ranges in the nonforest biomes and longer ranges in the forest biomes. Consistent 
with the findings drawn from Figure 3, the mean value of MOD TSS was 12.3% higher than that of 
MYD for EBF, which is the most significant difference among all vegetation types. The differences 
between the two products in the remaining vegetation types were relatively minor, ranging from 
0.2% to 2.9%.

3.3. Anomaly analysis of spatiotemporal variability

Figure 5 shows the spatial distribution of RD-APC and IQR-APC for the MOD15A2H and 
MYD15A2H products from 2003 to 2022. The aim of this analysis is to evaluate anomalous fluctu
ations in the local spatial heterogeneity of LAI across products over a long period of time. The RD- 
APC metric quantifies the deviation of LAI CV from the long-term mean and is more sensitive to 
short-term, intense anomalies. The IQR-APC metric quantifies the degree of stability based on the 
range of LAI CVs in long time series, which is more sensitive to long-term systematic anomalies. 
From the IQR-APC distributions of the two products (Figure a-1, b-1), the IQR-APC of MOD is 
generally higher in the South American and African regions, and MYD shows more light-colored 
pixels. The IQR-APC latitude curve also reveals that MOD is higher than MYD in the 0°−40°S lati
tude region, approximately 0.7% higher. The MOD IQR-APC standard deviation (shaded in red) is 
also within the range of the MYD IQR-APC standard deviation (shaded in blue). By comparing Fig. 
a-2 with b-2, we observe that in the Amazon rainforest as well as in the Central African region, there 
are more dark-colored areas dominating in the RD-APC of MOD. Analysis of the latitudinal dis
tribution of RD-APC values shows that MOD generally exhibits higher values around 0° latitude 
compared to MYD, while the two products demonstrate good consistency across other latitudinal 
ranges. This indicates that MYD exhibits better LAI CV long time series stability.

Figure 3. Global annual mean relative TSS spatial distribution maps of MOD15A2H (a) and MYD15A2H (b) in 2020.
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Figure 4. TSS distribution range between MOD15A2H and MYD15A2H LAI over different biome types. The horizontal line in each 
violin plot indicates the mean value, and the dark cyan and dark red numbers above indicate the mean values of MOD TSS and 
MYD TSS, respectively.

Figure 5. RD-APC spatial distribution maps of MOD15A2H (a-1) and MYD15A2H (b-1) from 2003 to 2022. The corresponding (a-2), 
(b-2) are the IQR-APC spatial distribution maps. RD-APC focuses on the deviation of LAI CV from the long-term mean, and is more 
sensitive to the short-term rapid fluctuations that deviate from the long-term trend; IQR-APC focuses on analysing the distri
bution of the data to identify the anomalies, and pays more attention to the internal consistency and stability of the LAI CV.
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3.4. Annual and seasonal variation of spatiotemporal variability

The LAI CVs of the two products showed similar spatial patterns of trend changes (Figure 6(a)). 
11.1% and 8.1% of the areas with significant increases in MOD LAI CVs and MYD LAI CVs, 
respectively, were concentrated in the southern part of South America, the eastern part of China, 
and the eastern part of Europe. Significantly decreasing areas accounted for 14.5% and 13.1%, 
mainly in northern North America and southwestern China. From the histograms, the MOD 
LAI CV has a smaller concentration range of values compared to the MYD trend, mainly between 
–2 × 10−3 and 2 × 10−3. Figure 6(b) shows that pixel density with significant TSS trends is signifi
cantly lower than LAI CV, with most regions showing no significant trend. This indicates that 
the TSS of both products has remained stable over the years.

Figure 7(a,b) illustrate the distribution of pixel percentages for LAI CV and TSS trends across 
different change types in MOD15A2H and MYD15A2H products from 2003 to 2022. Figure 7(a) 
shows that there are fewer pixels with significant trends in LAI CV. In all vegetation types, the 
area with no significant trends in MYD LAI CV, ranging from 68% to 89%, exceeded that of 
MOD, which ranged from 60% to 84%. The area of significant decline in LAI CV was relatively 
large in most vegetation types, while broadleaf croplands had both the largest area of significant 
trend and a higher area of significant increase than decline. This may be related to human agricul
tural activities and cropland greening. In Figure 7(b), the area of TSS with no significant trend is 
above 90% for all vegetation types, indicating good stability of the data in the time series. The pro
portion of area with significant changes in the MYD TSS is slightly smaller than the MOD TSS, 
suggesting lower systematic uncertainty in the quality of MYD products.

Figure 8 shows the annual mean LAI CV and TSS of MOD15A2H (2001-2022) and MYD15A2H 
(2003-2022). The overall trend of LAI CV was similar for both products, with MYD LAI CV higher 

Figure 6. Panels (a) and (b) respectively represent the trends of LAI CV and TSS for MOD15A2H and MYD15A2H from 2003-2022, 
based on Sen’s slope estimator. No significant trend pixels (p > .0.05 according to Mann-Kendall test) are set to white.
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than MOD LAI CV in most vegetation types, except grasslands and broadleaf croplands. Only in 
broadleaf croplands did both products’ annual mean LAI CV show a significant increase, while 
other vegetation types showed significant decreases or no clear trend, consistent with Figure 7
(a). For TSS, most vegetation types show no significant trend but fluctuating changes, indicating 
the sustainable usability availability of both products in the time series. The area with significant 
trends in MYD TSS is slightly smaller than in MOD TSS, suggesting lower systematic uncertainty 
in MYD products. Both TSS and LAI CV between the two products differed the most in EBF. Figure 
9 shows that the overall consistency of intra-annual variation between the two products is good. The 
LAI CV decreases and then increases seasonally in most vegetation types, reaching a low value in 
June-August. Conversely, this pattern is reversed for grasslands. The intra-annual variation between 
the two products is larger in EBF, with MYD LAI CV being greater than MOD LAI CV in all 
months except June-July.

Figure 7. The percentage of three different change types (not significant change, significant decrease, and significant increase) of 
LAI CV and TSS for MOD15A2H and MYD15A2H from 2003-2022. MOD15A2H is shown in the left column, and MYD15A2H is 
shown in the right column for each vegetation type.
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Figure 8. Interannual variations of LAI CV and TSS for different biomes from MOD15A2H (2001-2022), and MYD15A2H (2003- 
2022). Fitted lines are made for statistically significant trends (Mann-Kendall test, p ≤ 0.05).

Figure 9. Intra-annual variations of MOD15A2H and MYD15A2H LAI CV for different vegetation types from 2003 to 2022.
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4. Discussion

4.1. Drivers for LAI spatiotemporal variability

The spatiotemporal variability of LAI is influenced by various factors, which can be categorized 
into remotely sensed and non-remotely sensed factors. Remote sensing factors primarily include 
orbital drift, sensor degradation, the Bidirectional Reflectance Distribution Function (BRDF) 
effect, atmospheric correction, among others. Apart from the inherent technical differences 
among satellites and their sensors, they are often impacted by the harsh external environment, 
resulting in phenomena like orbital drift and sensor degradation, thereby affecting product qual
ity. For example, the orbital drift has led to an increase in the annual average solar zenith angle, 
particularly causing systematic errors in high albedo regions. Changes in the ground track have 
reduced the observation frequency within specific time windows, while changes in observation 
geometry (including sensor zenith and azimuth angles) directly affect the reflectance character
istics of surfaces, leading to significant variations in the BRDF effect and introducing systematic 
biases (De Beurs and Henebry 2004). Since both Terra and Aqua MODIS have exceeded their 6- 
year design lifetimes and have experienced significant degradation (Skakun et al. 2018), compre
hensive evaluations of the algorithmically improved MODIS products are essential. Due to the 
continuous movement of the Earth, Sun, and satellites, changes in the relative positions of 
solar illumination and sensor viewpoints have a noticeable impact on remote sensing obser
vations (Fensholt et al. 2010), known as the BRDF effect. Uncertainty in atmospheric corrections 
also contributes to the uncertainty in remote sensing observations. Figure 4 illustrates that 
MOD15A2H LAI and MYD15A2H LAI show the greatest difference in time series stability in 
broadleaf evergreen forests, which aligns with the findings of previous studies (Yang et al. 
2006), due to the limited accuracy of atmospheric corrections. Remote sensing factors contribute 
to the lack of consistency and stability across products, introducing uncertainties into the analysis 
of remote sensing time series.

Non-remote sensing factors primarily influence the spatial heterogeneity of LAI, including bio
tic, abiotic, and anthropogenic factors. Biological factors, such as forest stand density, tree height, 
and canopy cover, significantly impact the spatial heterogeneity of LAI in forest communities 
(Bequet et al. 2012; Schleppi, Thimonier, and Walthert 2011; Zhu, Xiang, et al. 2016). Biodiversity 
is also an important biological factor that influences the spatial heterogeneity of LAI. Variations in 
vegetation structure, resource utilization, and environmental adaptations among species lead to 
higher LAI heterogeneity in high biodiversity areas (de Almeida et al. 2021; Oktavia et al. 2022; 
Peng et al. 2017). In addition to biotic factors, abiotic factors such as topography, climate, and 
soil characteristics are also important drivers (Prudnikova et al. 2019; Zhang et al. 2015). Anthro
pogenic factors affect LAI heterogeneity in various ways, including land use, land cover change, and 
built-up land expansion. Among these, the expansion of built-up land mainly occurs through the 
occupation of agricultural land (Zhou, Li, and Liu 2020), which corresponds to the highest signifi
cant change area in broadleaf croplands shown in Figure 8.

4.2. Causes of product inconsistency

The results of this study provide valuable insights to revisit the consistency of MOD15A2H and 
MYD15A2H LAI from the perspectives of temporal variability and local spatial heterogeneity. 
We found that the two products show good consistency in the spatial distribution and overall 
trend of spatiotemporal variability. However, there are some differences in the degree of correlation 
and dispersion of spatiotemporal variability, trend magnitude, and area of trend change between 
the different products. In terms of spatial heterogeneity, the two products showed less correlation 
in forest biomes compared to nonforest biomes. Compared to MYD, MOD LAI CV is more discrete 
in long time series, especially in the Amazon, Central Africa, and other broad-leaved evergreen 
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forests. Time series stability analysis shows MOD TSS is 11.2% higher than MYD TSS in EBF, over 
three times the difference seen in other vegetation types.

To better understand the spatiotemporal variability differences between MOD and MYD, it is 
worth exploring their underlying causes further. Three key factors affect the accuracy of LAI retrie
val: (1) the uncertainty of the input land cover data, (2) the uncertainty of the models used to con
struct the lookup tables for the algorithm, and (3) the uncertainty of the input surface reflectance 
(Yang et al. 2006). For MOD and MYD, which use the same algorithms and land cover data, the 
third factor is clearly more critical. The MODIS algorithm uses an inversion method based on 
the Radiative Transfer Equation (RTE). However, inversion calculations can be unstable compared 
to forward calculations. Small changes in surface reflectance can cause significant variations in LAI 
values and retrieval instability in the retrieval process. EBF regions have the highest vegetation den
sity, making tropical areas, where EBF is prevalent, a classic challenge in optical remote sensing due 
to high aerosol conditions and cloud contamination (Shabanov et al. 2005). MOD and MYD 
observe at different times of day, morning and afternoon respectively, resulting in differences in 
solar angles and atmospheric conditions. This leads to variations in surface reflectance input 
data and shadow effects, causing differences in the BRDF effect. This impact is more pronounced 
in the EBF regions. The MODIS also has limitations in atmospheric correction, and persistent cloud 
contamination and aerosols in tropical forest regions exacerbate this issue, reducing the accuracy of 
the input data. The retrieval path of the algorithm is crucial for accuracy. The main algorithm 
achieves higher precision by matching observed BRFs with simulated BRFs stored in lookup tables 
and selecting solutions within an acceptable uncertainty range. The average LAI/FPAR values of all 
solutions are reported as the algorithm output. However, the main algorithm requires high-quality 
input data for execution. If the uncertainty of the input reflectance data exceeds a preset threshold, a 
backup algorithm is activated. This backup algorithm is based on the empirical relationship 
between LAI and NDVI, which cannot guarantee accuracy. In EBF regions, the high vegetation den
sity of forests leads to the NDVI saturation effect, making NDVI ineffective in representing surface 
vegetation. Poor input data quality typically causes failures in reliable algorithms, but the backup 
algorithm never fails and its products are almost always generated under poor reference data quality 
conditions. Fig. S3 shows the correlation density distribution of MOD and MYD LAI CV under 
different algorithm paths. The R² value based on the main algorithm (a) is 0.86, with an RMSE 
of 0.05 and an RRMSE of 21.85%. The fitted line is almost coincident with the 1:1 line, and the 
data density is concentrated near the fitted line, indicating a high correlation. In contrast, the R² 
value based on the backup algorithm (b) is 0.55, with significantly higher RMSE and RRMSE com
pared to those of the main algorithm, at 0.53 and 56.58%, respectively. The data density is also more 
dispersed, demonstrating noticeably lower consistency and correlation. Therefore, initiating the 
backup algorithm does not necessarily have similar effects on both products. Specifically, the 
main algorithm generates results using high-precision input data and a reliable lookup table algor
ithm, whereas the backup algorithm uses unreliable input data and a limited LAI-NDVI empirical 
algorithm in inappropriate areas (such as EBF regions prone to NDVI saturation). These results 
may not accurately reflect the actual surface conditions and are more prone to random errors, lead
ing to differences in the spatiotemporal variability between the two products. Even though Fig. S3c 
shows that the proportion of the MYD backup algorithm in EBF regions is only slightly lower than 
that of MOD, it still significantly impacts consistency. Therefore, we primarily attribute the differ
ences in spatiotemporal variability between the two products to the accuracy of the reflectance data.

We also examined the interannual trends and magnitude of change in the spatial and temporal 
variability of LAI for both products. In terms of spatial heterogeneity, the annual mean MOD LAI 
CV was smaller in most cases compared to the MYD LAI CV, which had a larger area of significant 
change. Comparison of TSS trends characterizing temporal stability revealed that over 90% of the 
vegetated area of both products was free of significant trends, indicating the stability and continu
ous availability of the products over the time series. These differences are mainly attributed to the 
difference in transit times between MOD and MYD. Notably, compared to other vegetation types, 

14 R. PENG ET AL.



broadleaf croplands showed the largest area of significantly trending LAI CV, as well as being the 
only vegetation type with an increasing trend in annual mean LAI CV. This reflects prior research 
showing the main driver of the global net leaf area increase since 2000 was cropland greening (33%) 
(Chen et al. 2019). Analysis of vegetation spatial heterogeneity presents novel insights into the 
‘Greening Earth’ phenomenon and its underlying causes.

4.3. LAI CV trends affected by window size

While using a preset fixed-size window is sufficient for a comprehensive analysis when assessing 
product consistency, it is also necessary to explore the experimental results using different window 
sizes. This will allow for a deeper understanding of the spatiotemporal variability of LAI and its 
trends. Therefore, in this section, MOD15A2H LAI product is used as an example to comparatively 
analyze the trend of LAI spatial heterogeneity and its proportion under different window sizes (5 ×  
5, 11 × 11, 21 × 21). Additionally, the results from VIIRS LAI under different window sizes and 
MODIS LAI based on different resolutions (500 m, 1, 2 km) are also included.

Fig. S4a shows the distribution of trend types for MODIS LAI from 2001 to 2022 under different 
window sizes. When the window size was increased from 5 × 5–11 × 11, the proportion of LAI CV 
non-significantly trending areas increased in most vegetation types. This was because the expansion 
of the window range introduced more weakly correlated LAI pixels, resulting in less significant LAI 
CV trending. However, this proportion decreased in grasslands and broadleaf croplands (BC), 
where there was a significant increase in the proportion of significantly trending areas. This suggests 
that the variation in local heterogeneity of LAI from range to size is higher in agricultural fields. 
Furthermore, when the window size was further increased from 11 × 11–21 × 21, the proportion 
of non-significant trends in most vegetation types increased further. However, the rate of increase 
slowed down, indicating that the effect of further expansion of the window range on LAI CV was 
decreasing. Fig. S4b presents the distribution of trend types for VIIRS LAI CV from 2012 to 2022 
under different window sizes. Different time intervals were chosen for MODIS and VIIRS due to 
two main reasons: first, the operational time ranges of the two products are different (2001-2022 
and 2012-2022), and analyzing trends based on around 10 years of data has some statistical limit
ations. Hence, the main operational periods of each product were selected. Secondly, this section 
focuses on comparing the results under different window sizes. From 5 × 5–11 × 11, like MODIS, 
the proportion of non-significant trends increased in most vegetation types, while it decreased in 
grasslands and BC. The main difference lies in EBF, where the proportion remained almost 
unchanged for MODIS but gradually decreased for VIIRS. From 11 × 11–21 × 21, the proportion 
of non-significant trends slightly increased or remained nearly unchanged. Fig. S4c shows the dis
tribution of trend types for MODIS LAI based on different window resolutions (i.e. the resolution of 
individual pixels in the window). When the resolution increased from 500 m to 1 km, the pro
portion of significant trends dropped significantly, to half or less of the original proportion. This 
is primarily because, at finer spatial scales, local heterogeneity is more apparent, and even minor 
changes can be captured, making the heterogeneity trend more evident. As the resolution increases, 
the information within a single pixel becomes more mixed, and details of local heterogeneity are 
smoothed out or lost. When the resolution increased from 1 km to 2 km, the proportion of signifi
cant trends remained almost unchanged or changed very little. The main reason is the saturation of 
spatial scale effects; the details of heterogeneity are fully smoothed out, and the characteristics of 
heterogeneity trends become stable.

4.4. Limitations and future research

This study included a basic analysis of the differences in spatial heterogeneity of LAI between pro
ducts with different window sizes. However, future research should include a more comprehensive 
and in-depth analysis to better understand the effect of window size on inter-product consistency. 
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Additionally, while we conducted a preliminary analysis of the spatiotemporal variability between 
products under different algorithmic paths, future studies should comprehensively explore these 
differences. Future research can also focus on analyzing the effects of internal product consistency 
and external atmospheric conditions on the spatiotemporal variability of LAI. This can be achieved 
by selectively using the primary and alternate algorithms or by considering different cloud and aerosol 
concentrations. Moreover, our current analysis primarily focuses on MODIS products. In subsequent 
studies, it will be essential to conduct a thorough evaluation of VIIRS, HiQ, SI, and other MODIS- 
based successor or reanalysis LAI products, as well as LAI products with various spatial resolutions. 
In terms of indicator selection and research approaches, efforts should be made to further separate the 
impact of product quality from the real spatiotemporal variability changes on the results.

5. Conclusions

In this study, we revisited the consistency between MOD15A2H and MYD15A2H LAI, focusing on 
the spatial distribution, degree of dispersion, long-term trend, and interannual variation of LAI 
spatiotemporal variability. The results showed that MOD15A2H and MYD15A2H had similar 
spatial distributions of LAI CV in both July and February, with absolute differences within 4% 
in most areas. Compared to nonforest biomes, the correlation between the two products’ LAI 
CV was lower in the forest biomes, especially in ENF. Regarding temporal stability, the difference 
between the two products was larger in EBF, where MYD15A2H specifically showed better per
formance. MOD15A2H exhibited greater anomalous fluctuations in local spatial heterogeneity in 
areas near the equator, such as the Amazon Forest and Central Africa.

According to the trend analysis of spatiotemporal variability, the long-term trend of LAI CV 
remained consistent in most cases for both products, with small differences in the areas of different 
trends. The TSS trend area and interannual time-series trend were not significant in most cases. This 
suggests that the two products are consistent in capturing trends in spatial heterogeneity of vegetation 
as well as stable and persistent in time series. Despite the consistency in spatiotemporal variability 
trends between the two products, it’s noteworthy that the MOD15A2H LAI CV significant trend 
area is generally larger than that of the MYD15A2H (4%), and the MYD15A2H’s overall annual 
mean LAI CV is higher (0.2%). However, due to the systematic nature of this discrepancy and the 
relatively small difference, the impact on studies related to trend direction is weak. In conclusion, 
this study emphasizes the assessment of remote sensing products from the perspective of spatiotem
poral variability. The results indicate that both products have sustainable usability and overall consist
ency between them, and that product divergence does not reverse or significantly impact the 
conclusions of related research. However, it should be noted that there are inconsistencies in a few 
areas and vegetation types. Based on the higher spatial heterogeneity consistency of the two products 
using the main algorithm compared to the backup algorithm, as well as the distribution of algorithm 
retrieval rates, these inconsistencies are mainly due to the lack of precision in reflectance data. Similar 
phenomena may occur in other products. Therefore, this method can be applied to the assessment of 
other remote sensing products, and it is recommended that studies use spatiotemporally continuous 
and high-quality reanalyzed datasets to improve the reliability of the results.
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