Climate and Vegetation Interactions

The Greening Earth

  1. Zhang et al., 2023. Autumn canopy senescence has slowed down with global warming since the 1980s in the Northern Hemisphere. Comm. Earth and Environ., doi: 10.1038/s43247-023-00835-0
  2. Pan et al., 2023. Climate-driven land surface phenology advance is overestimated due to ignoring land cover changes, Env. Res. Lett., 18 044045,
  3. Zhao et al., 2022. Seasonal peak photosynthesis is hindered by late canopy development in northern ecosystems. Nature Plants,doi: 10.1038/s41477-022-01278-9
  4. Jiang et al., 2022. Warming does not delay the start of autumnal leaf coloration but slows its progress rate. Global Ecol. Biogeography, doi: 10.1111/geb.13581
  5. Li et al., 2022. Regional asymmetry in the response of global vegetation growth to springtime compound climate events. Communications Earth & Environment, doi: 10.1038/s43247-022-00455-0
  6. Sun et al., 2022. Seasonal and long-term variations in leaf area of Congolese rainforest. Remote Sens. Environ., doi: 10.1016/j.rse.2021.112762
  7. Zhu et al., 2021. Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science, doi: 10.1126/science.abg5673
  8. Winkler et al., 2021. Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2. Biogeosciences, 18, 4985–5010, Publisher Site
  9. Xu et al., 2021. Seasonal biological carryover dominates northern vegetation growth. Nature Communications,
  10. Cortes et al., 2021. Where are Global Vegetation Greening and Browning Trends Significant? Geophys. Res. Lett., doi: 10.1029/2020GL091496
  11. Chi et al., 2020. Biophysical impacts of Earth greening largely controlled by aerodynamic resistance. Sci. Adv., 6 : eabb1981
  12. Chen et al., 2020. Attribution of Land‐Use/Land‐Cover Change Induced Surface Temperature Anomaly: How Accurate Is the First‐Order Taylor Series Expansion? JGR Biogeosciences doi: 10.1029/2020JG005787
  13. Zhao et al., 2020. SFuture greening of the Earth may not be as large as previously predicted. Agric. For. Meteorol., doi: 10.1016/j.agrformet.2020.108111
  14. Piao et al., 2019. Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth and Environment, doi: 10.1038/s43017-019-0001-x
  15. Lian et al., 2020. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Science Advances, 6, eaax0255
  16. Chen et al., 2019. China and India lead in greening of the world through land-use management. Nature Sustainability, doi:10.1038/s41893-019-0220-7
  17. Winkler et al., 2019. Earth system models underestimate carbon fixation by plants in the high latitudes. Nature Communications, doi:10.1038/s41467-019-08633-z
  18. Huang et al., 2019. Air temperature optima of vegetation productivity across global biomes. Nature Ecol. Evolution, doi:10.1038/s41559-019-0838-x
  19. Fan et al., 2019. Satellite-observed pantropical carbon dynamics. Nature Plants, doi:10.1038/s41477-019-0478-9
  20. Winkler et al., 2019. Investigating the applicability of emergent constraints. Earth System Dynamics, doi:10.5194/esd-10-501-2019
  21. Park et al., 2019. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Global Change Biology, doi:10.1111/gcb.14638
  22. Tømmervik et al., 2019. Legacies of Historical Exploitation of Natural Resources Are More Important Than Summer Warming for Recent Biomass Increases in a Boreal–Arctic Transition Region. Ecosystems, doi:10.1007/s10021-019-00352-2
  23. Hashimoto et al., 2019. Constraints to Vegetation Growth Reduced by Region-Specific Changes in Seasonal Climate. Climate, doi:10.3390/cli7020027
  24. Wu et al., 2018. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nature Climate Change,
  25. Liu et al., 2018. Extension of the growing season increases vegetation exposure to frost. Nature Communications, doi:10.1038/s41467-017-02690-y
  26. Tong et al., 2018. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nature Sustainability,
  27. Bastos et al., 2018. Impact of the 2015/2016 El Nino on the terrestrial carbon cycle constrained by bottom-up and top-down approaches, Phil. Trans. R. Soc. B 373: 20170304.
  28. Zeng et al., 2018. Impact of Earth Greening on the Terrestrial Water Cycle. J. Climate, doi: 10.1175/JCLI-D-17-0236.1
  29. Fauchald et al., 2017. Arctic greening from warming promotes declines in caribou populations. Science Advances, 3, e1601365 (2017)
  30. Zeng et al., 2017. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nature Climate Change, doi: 10.1038/NCLIMATE3299
  31. Piao et al., 2017. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nature Climate Change, doi: 10.1038/NCLIMATE3277
  32. Huang et al., 2017. Velocity of change in vegetation productivity over northern high latitudes. Nature Ecology and Evolution, doi: 10.1038/s41559-017-0328-y
  33. Zhu et al., 2017. Attribution of seasonal leaf area index trends in the northern latitudes with “optimally” integrated ecosystem models. Global Change Biol., doi: 10.1111/gcb.13723
  34. Bastos et al., 2017. Was the extreme Northern Hemisphere greening in 2015 predictable? Environ. Res. Lett.,
  35. Zhu et al., 2016. Greening of the Earth and its Drivers. Nature Climate Change, doi:10.1038/nclimate3004
  36. Mao et al., 2016. Human-induced Greening of the Northern Extratropical Land Surface. Nature Climate Change, doi: 10.1038/nclimate3056
  37. Park et al., 2016. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Env. Res. Lett., doi:10.1088/1748-9326/11/8/084001
  38. Yan et al., 2016. Assessing spatiotemporal variation of drought in China and its impact on agriculture during 1982-2011 by using PDSI indices and agriculture drought survey data. J. Geophys. Res., (Atmos.), (doi:doi: 10.1002/2015JD024285)
  39. Catalano et al., 2016. Observationally based analysis of land–atmosphere coupling. Earth Syst. Dynam. Discuss., Earth Syst. Dynam., 7, 251–266, 2016 (doi:10.5194/esd-7-251-2016)
  40. Ukkola et al., 2015. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nature Climate Change, 2015 (DOI: 10.1038/NCLIMATE2831)
  41. Piao et al., 2015. Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications, 2015 (doi: 10.1038/ncomms7911)
  42. Anderegg et al., 2015. Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proc. Natl. Acad. Sci. USA, 2015 (
  43. Catalano et al., 2015. Observationally based analysis of land–atmosphere coupling. Earth Syst. Dynam. Discuss., 6, 1939–1977, 2015 (doi:10.5194/esdd-6-1939-2015)
  44. Shen et al., 2015. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. USA, 2015 (
  45. Reid et al., 2015. Global impacts of the 1980s regime shift. Global Change Biology, 2015 (doi: 10.1111/gcb.13106)
  46. Shi et al., 2015. Mapping annual precipitation across mainland China in the period 2001-2010 from TRMMM3B43 product using spatial downscaling approach. Remote Sensing (doi: 10.3390/rs70505849)
  47. Tian et al., 2015. Response of vegetation activity to climatic change and ecological programs in Inner Mongolia from 2000 to 2012. Ecol. Eng. (
  48. Wang et al., 2015. Has the advancing onset of spring vegetation green-up slowed down or changed abruptly over the last three decades? Global Ecol. Biogeography, 2015 (doi: 10.1111/geb.12289)
  49. Piao et al., 2015. Detection and attribution of vegetation greening trend in China over the last 30 years, Global Change Biology, 2015 (doi: 10.1111/gcb.12795)
  50. Piao et al., 2014. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity, Nature Communications, 2014 (doi:10.1038/ncomms6018)
  51. Yan et al., 2014. Development of a remotely sensing seasonal vegetation-based Palmer Drought Severity Index and its application of global drought monitoring over 1982-2011, J. Geophys. Res. Atmos.,
    119, 9419–9440, doi:10.1002/2014JD021673
  52. Traore et al., 2014. 1982-2010 trends of light use efficiency and inherent water use efficiency in African vegetation: Sensitivity to climate and atmospheric CO2 concentrations, Remote Sensing, 6, 8923-8944; doi:10.3390/rs6098923
  53. Zhao et al., 2014. Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau, Landscape Ecol., 6, doi:10.1007/s10980-014-0095-y
  54. Traore et al., 2014. 1982-2010 trends of light use efficiency and inherent water use efficiency in African vegetation: Sensitivity to climate and atmospheric CO2 concentrations, Remote Sensing, 6, 8923-8944; doi:10.3390/rs6098923
  55. Zhao et al., 2014. Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau, Landscape Ecol., 6, doi:10.1007/s10980-014-0095-y
  56. Zhou et al., 2014. Widespread decline of Congo rainforest greenness in the past decade, Nature, 2014 (doi: 10.1038/nature13265)
  57. Xu et al., 2014. Changes in Vegetation Growth Dynamics and Relations with Climate over China’s Landmass from 1982 to 2011, Remote Sens. 2014 (doi: 10.3390/rs6043263)
  58. Peng et al., 2014. Afforestation in China cools local land surface temperature, PNAS (
  59. Chen et al., 2014. Changes in vegetation photosynthetic activity trends across the Asia-Pacific region over the last three decades, Remote Sens. Environ. 144: 28-41.
  60. Barichivitch et al., 2014. Temperature and snow-mediated controls of summer photosynthetic activity in northern terrestrial ecosystems between 1982 and 2011, Remote Sens., 6: 1390-1431.
  61. Sitch et al., 2013 Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades, Biogeosciences Discuss., doi:10.5194/bgd-10-20113-2013, 10:20113–20177, 2013
  62. Xu et al., 2013. Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, doi: 10.1038/NCLIMATE1836 Supplementary Information
  63. Barichivich et al., 2013. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011, Global Change Biol., 2013, doi: 10.1111/gcb.12283
  64. Wang et al., 2013. Evaluation of CLM4 Solar Radiation Partitioning Scheme Using Remote Sensing and Site Level FPAR Datasets, Remote Sens. 2013, 5, 2857-2882; doi:10.3390/rs5062857
  65. Knyazikhin et al., 2013. Reply to Ollinger et al.: Remote Sensing of Leaf Nitrogen and Emergent Ecosystem Properties, Proc. Natl. Acad. Sci. USA (
  66. Knyazikhin et al., 2013. Reply to Townsend et al.: Decoupling contributions from canopy structure and leaf optics is critical for remote sensing leaf biochemistry. Proc. Natl. Acad. Sci. USA (
  67. Bi et al., 2013. Divergent Arctic-Boreal Vegetation Changes Between North America and Eurasia Over the Past 30 Years, Remote Sens., doi:10.3390/rs5052093
  68. Anav et al., 2013. Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models, J. Climate, doi:10.1175/JCLI-D-12-00417.1
  69. Fang et al., 2013. Characterization and Intercomparison of Global Moderate Resolution Leaf Area Index (LAI) Products: Analysis of Climatologies and Theoretical Uncertainties, J. Geophys. Res.Biogeosci., doi:10.1002/jgrg.20051
  70. Mohammat et al., 2013. Drought and Spring Cooling Induced Recent Decrease in Vegetation Growth in Inner Asia, Agric. For. Meteorol.,
  71. Poulter et al., 2013. Recent Trends in Inner Asian Forest Dynamics to Temperature and Precipitation Indicate High Sensitivity to Climate Change, Agric. For. Meteorol.,
  72. Mao et al., 2013. Global Latitudinal-Asymmetric Vegetation Growth Trends and Their Driving Mechanisms: 1982-2009, Remote Sens. 2013, 5, 1484-1497; doi:10.3390/rs5031484
  73. Zhu et al., 2013. Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011, Remote Sens. 2013, 5, 927-948; doi:10.3390/rs5020927 Supplementary Information
  74. Luo et al., 2013. Assessing Performance of NDVI and NDVI3g in Monitoring Leaf Unfolding Dates of the Deciduous Broadleaf Forest in Northern China, Remote Sens. 2013, 5, 845-861; doi:10.3390/rs5020845
  75. Fang et al., 2013. The Impact of Potential Land Cover Misclassification on MODIS Leaf Area Index (LAI) Estimation: A Statistical Perspective, Remote Sens. 2013, 5, 830-844; doi:10.3390/rs5020830
  76. Cong et al., 2012. Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multi-method analysis, Global Change Biol., doi: 10.1111/gcb.12077
  77. Samanta et al., 2012. Seasonal changes in leaf area of Amazon forests from leaf flushing and abscission, J. Geophys. Res. VOL. 117, G01015, doi:10.1029/2011JG001818, 2012
  78. Peng et al., 2011. Recent change of vegetation growth trend in China, Environ. Res. Lett., Vol. 6, (2011) 044027 (13pp), doi:10.1088/1748-9326/6/4/044027
  79. Samanta et al., 2011. Comment on “Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009”, Science, Vol. 333, p. 1093, DOI: 10.1126/science.1199048, 2011. Supplementary Online Material
  80. Ganguly et al., 2008. Generating vegetation leaf area index earth system data records from multiple sensors. Part 2: Implementation, Analysis and Validation. Remote Sens. Environ., 112(2008)4318–4332, doi:10.1016/j.rse.2008.07.013
  81. Kaufmann et al., 2008. Identifying climatic controls on ring width: The timing of correlations between tree rings and NDVI. Earth Interactions, Vol. 12, DOI: 10.1175/2008EI263.1. (2008).
  82. Kaufmann et al., 2008. The Power of Monitoring Stations and a CO2 Fertilization Effect: Evidence from Causal Relationships Between NDVI and Carbon Dioxide. Earth Interactions, Vol: 12, DOI: 10.1175/2007EI240.1 (2008).
  83. Wang et al., 2006. Feedbacks of Vegetation on Summertime Climate Variability over the North American Grasslands: 2. A Coupled Stochastic Model, Earth Interactions, 10.
  84. Wang et al., 2006. Feedbacks of Vegetation on Summertime Climate Variability over the North American Grasslands: 1. Statistical Analysis, Earth Interactions, 10
  85. Fang et al., 2005. Precipitation patterns alter growth of temperate vegetation, Geophys. Res. Lett., 32, L21411, doi:10.1029/2005GL024231.
  86. D’Arrigo et al., 2004. Thresholds for warming induced growth decline at elevational treeline in Yukon territory, Canada. Global Biogeochemical Cycles, VOL. 18, GB3021, doi:10.1029/2004GB002249, 2004.
  87. Kaufmann et al., 2004. The effect of growing season and summer greenness on northern forests. Geophys. Res. Lett., Vol. 31, No. 9, L09205, 10.1029/2004GL019608.
  88. Kaufmann et al., 2003. The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data. Geophys. Res. Lett., VOL. 30, NO. 22, 2147, doi:10.1029/2003GL018251.
  89. Potter et al., 2003. Continental scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982-98. Global and Planetary Change, 39:201-213.
  90. Potter et al., 2003. Global teleconnections of climate to terrestrial carbon flux. J. Geophys. Res., Vol. 108, No. D17, 4556, 10.1029/2002JD002979
  91. Buermann et al., 2003. Circulation anomalies explain interannual covariability in northern hemisphere temperatures and greenness. J. Geophys. Res., 108(D13), 4396, doi:10.1029/2002JD002630, 2003.
  92. Potter et al., 2003. Major disturbance events in terrestrial ecosystems detected using global satellite data sets. Global Change Biology, 9(7): 1005-1021.
  93. Nemani et al., 2003. Climate driven increases in global net primary production from 1981 to 1991. Science, 300:1560-1563 (June-06-2003)
  94. Kaufmann et al., 2003. Reply to the comment by R. Lanfredi et al. to “Variations in Northern Vegetation Activity Inferred from Satellite Data of Vegetation Index During 1981 to 1999” by Zhou et al. J. Geophys. Res. Vol. 108 No. D12, 10.1029/2002JD003287.
  95. Zhuang et al., 2003. Carbon cycling in extratropical terrestrial ecosystems of the northern hemisphere during the 20th century: A modeling analysis of the influences of soil thermal dynamics. Tellus, 55B: 751-776.
  96. Zhou et al., 2003. Relation between interannual variations in satellite measures of vegetation greenness and climate between 1982 and 1999. J. Geophys. Res. 108(D1), doi:10.1029/2002JD002510.
  97. Stow et al., 2003. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s. Int. J. Remote Sens., 24, 1111-1117, 2003.
  98. Kaufmann et al., 2002. Reply to Comment on “Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981-1999” by J. R. Ahlbeck. J. Geophys. Res., Vol. 107(D11), 10.1029/2001JD001516.
  99. Bogaert and Zhou et al., 2002. Evidence for a persistent and extensive greening trend in Eurasia inferred from satellite vegetation index data. J. Geophys. Res., Vol. 107(D11), 10.1029/2001JD001075.
  100. Lucht et al., 2002. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science, 296:1687-1689 (May-31-2002).
  101. Shabanov et al., 2002. Analysis of interannual changes in northern vegetation activity observed in AVHRR data during 1981 to 1994. IEEE Trans. Geosci. Remote Sens., 40:115-130.
  102. Myneni and Dong et al., 2001. A large carbon sink in the woody biomass of northern forests. Proc. Natl. Acad. Sci. USA., 98(26): 14784-14789. supplemental information
  103. Tucker et al., 2001. Higher northern latitude NDVI and growing season trends from 1982 to 1999. Int. J. Biometeorol., 45:184-190.
  104. Zhou et al., 2001. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999, J. Geophys. Res., 106(D17): 20069-20083.
  105. Buermann et al., 2001. Evaluation of the utility of satellite-based vegetation leaf area index data for climate simulations. J. Climate, 14(17): 3536-3550.
  106. Kaufmann et al., 2000. Effect of orbital drift and sensor changes on the time series of AVHRR vegetation index data. IEEE Trans. Geosci. Remote Sens., 38: 2584-2597.
  107. Myneni, R. B. et al. 1998. Interannual variations in satellite-sensed vegetation index data from 1981 to 1991. J. Geophys. Res., 103 (D6): 6145-6160.
  108. Myneni, R. B. et al., 1997. Increased plant growth in the northern high latitudes from 1981-1991. Nature, 386:698-701.