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Photosynthesis drives carbon into terrestrial ecosystems via gross primary production (GPP), rising
~3% decade ' globally, paralleled by green leaf area expansion. Both trends stem from CO,
fertilization (CFE), climate change, and landcover change, yet spatial mismatches exist between GPP
and leaf area changes. Canopy scale GPP changes are separated into those resulting from leaf area
changes and those from changing photosynthetic rates per unit leaf area. The latter, by normalizing for
leaf area, isolate production dependency on CO,, light and water availability, and the kinetics of the
process itself. Arid/semi-arid shrublands and grasslands show substantial CO, assimilation gains,
dominated by CFE and beneficial climate effects. Conversely, croplands and forests exhibit declining
leaf assimilation rate due to increased shading from excessive greening and adverse climate shifts
(e.g., reduced precipitation, higher VPD). The Sudano-Sahelian zone exemplifies assimilation
increases in sparse vegetation, while conspicuously greening regions like China and India face
assimilation declines. This pattern of canopy GPP increases from gains in both leaf scale assimilation
rates and leaf area in sparse vegetation of inhospitable climes, and only from leaf area gains in more

productive vegetation of favorable environments, whilst counter-intuitive, suggests an unforeseen
potential for carbon sequestration in sparsely vegetated lands.

Terrestrial gross primary production refers to photosynthetic carbon fixa-
tion by vegetation canopies (GPP in g C m™* ground area time')". This
flux, marking the entry point for carbon into the terrestrial system, is cur-
rently increasing at ~3% decade™" globally”’. The green leaf area, over which
photosynthesis happens, defined as one-sided green leaf area per unit
ground area in broadleaf vegetation and one-half the total needle surface per
unit ground area in needleleaf vegetation®, is also increasing at the same
rate’”. Several key factors contribute to these changes in GPP¢ and leaf area.
The CO, fertilization effect (CFE), some aspects of climate change (e.g.,
warming in the North), nitrogen deposition, land use and land cover
changes are evidently the principal reasons for these GPP¢ and leaf area
index (LAI) changes® . The impact of elevated atmospheric CO, on
vegetation manifests through two primary mechanisms: (1) a biochemical
effect: the CO, fertilization effect (CFE), which enhances photosynthesis
and biomass accumulation, thereby altering canopy structure’; (2) a
radiative effect: increased CO, concentration leads to warming and climate
change, while also modifying the light condition and nitrogen availability, all
of which affect the vegetation photosynthesis". However, not all climate

change impacts are positive, particularly in arid and semi-arid regions,
climate change negatively affects plant growth due to increased water
stress'®"”. Furthermore, intensive human land-use practices have amplified
GPP and LAI changes, particularly in China and India’.

However, spatially there is a mis-match in where and by how much
GPP and leaf area are changing. In Amazonian rainforests, it was found
that leaf area decreased but vegetation canopy productivity remained con-
stant in the 2010 drought year'*", and that little change in leaf area was
measured in contrast to substantial decreases in canopy photosynthesis in
the 2015-2016 drought period”. Greening in herbaceous vegetation, for
example, is much less than in woody vegetation globally, GPP¢ gains
however are much larger in the former than the latter®. This decoupling is
especially noticeable in arid and semi-arid regions. Satellite observations in
these areas show minimal increases in leaf area due to persistent water
limitations, yet these ecosystems experience disproportionately large surges
in GPP(. during occasional wet periods'”.

Mounting evidence suggests that light availability limits carbon fixa-
tion in two ways: directly through incident light levels and the ratio of direct
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solar to diffuse sky radiation, and indirectly through changes in canopy
structure, primarily via increased self-shading of leaves as leaf area
expands’”. This constraint on light availability may explain the dis-
crepancy between vegetation greening, i.e., adding extra leaves, and GPP¢
changes. Consequently, this study hypothesized that greening tends to lower
the average light reaching leaves in moderate to dense vegetation. This
reduction can counteract the positive effects of CO, fertilization (CFE),
leading to smaller gains in GPP. Conversely, in sparse vegetation with low
leaf areas, such as arid and semi-arid regions, greening does not significantly
affect light levels. In these areas, the increased leaf area will reinforce the CFE
effect, resulting in substantial GPP¢ gains. This interaction between the CFE
and light levels in vegetation has not been identified before. To understand
this interaction and its implications to the carbon cycle, long-term obser-
vations and model estimates are analyzed here. Canopy scale GPP changes
are separated into those resulting from leaf area changes and those from
changing photosynthetic rates per unit leaf area. The latter, by normalizing
for leaf area, isolate production dependency on CO,, light and water
availability, and the kinetics of the process itself.

Estimates of GPPc from observations and models during the
2001-2021 period and projections for the rest of this century are discussed
here. The observation-based estimates are derived from a combination of
solar-induced chlorophyll fluorescence measurements of the Orbiting
Carbon Observatory-2 and CO, exchange data of flux towers (GOSIF).
The modeled GPP estimates are — (i) an ensemble average of three Pro-
duction Efficiency Models (PEMs) forced with two climate data sets, (ii) an
ensemble average of 18 Dynamic Global Vegetation Models (DGVMs) of
the TRENDY project™ and (iii) an ensemble average of seven Earth System
Models (ESMs) of the CMIP6 project™ for the historical period (2001-2014)
and projections to year 2100 based on three emission scenarios. Sections in
Methods detail the three PEMs (§1), the forcing climate data (§2), parameter
optimisation (§3), validation and intercomparison with peer GPP¢ products
(§§4-6), the TRENDY DGVMs (§7) and CMIP6 ESMs (§8). Results in
Supplementary Figs. 1 to 5, and also those presented here, show that
modelled GPP( from simple PEMs compare well to those from process-
based dynamic models (TRENDY and ESMs), peer GPP- data sets™ ", and
observations (GOSIF and AmeriFlux). Only statistically significant (Mann-
Kendall test, P < 0.1) results are discussed below.

Results and Discussion

§1 Global Mis-match Between Leaf Area Expansion and Canopy
Productivity Gains

Annual means of GPP¢ from PEMs and DGVMs are comparable to the
GOSIF estimate (128 vs. 131 Pg C yr ). They reflect an upward trend of 3.9
to 5.2 Pg C yr™' decade™" during the 2001-2021 period (Fig. 1a). The same
from ESMs are 123 Pg Cyr ' and 3.8 Pg C yr ' decade ™. About 44% of the
106 x 10°km’ of total vegetated area displays a positive trend, most con-
spicuously in China, Europe, India, North America, Sahel and abutting area,
and northern Siberia. Declines are observed in only 5% of the vegetated
lands, prominent only in the Brazilian Amazon. The ~ 10 Pg C of total GPP¢
gain is mostly from herbaceous vegetation (64%). Of note, croplands
account for nearly a quarter of this gain while occupying only 11% of the
total vegetated area. The more productive woody vegetation (~55% of GPPc
share) contributes a third of the increase in GPP.. Overall, the modelled
patterns match well with observations (Supplementary Fig. 6a) and previous
studies™”.

At the same time, there have been increases in green leaf area of
vegetation”*'>”'~*, Globally, gains in leaf area and GPP. seem comparable
in magnitude (3.3 vs. 3.1 to 4.6% decade™') and extent; 44% of the vegetated
lands exhibit greening, 7% browning and the rest no changes (Supple-
mentary Fig. 7). Indeed, the same causal markers have been invoked to
explain the greening and browning of lands in the satellite era**"". Regions
exhibiting prominent greening visually correspond to those with large GPP¢
increases. Numerically however, greening in herbaceous vegetation is less
than that of woody vegetation (44% for herbaceous vs. 56% for woody),
opposite of shares in GPP gains (64% for herbaceous vs. 36% for woody).

Croplands illustrate this disparity starkly, 23% share of GPP gain with only
15% of greening. This mis-match in rates of change between GPP and leaf
area is delved into below.

Conceptually, the amount of photosynthate produced under prevailing
conditions depends on light and dark reactions within the leaf, the avail-
ability of raw resources of light, water, nutrients and CO,, and the extent of
photosynthesizing leaf area”*. GPP( changes can be therefore separated
into those resulting from leaf area changes and those from changing
assimilation rates per unit leaf area. The latter, by normalising for leaf area,
isolate production dependency to resource availability and kinetics of the
process itself. This leaf scale photosynthetic rate can be calculated as
GPPc + LA reliable LAI data are widely available"”*** (Methods §§9 and
10). It will be denoted from hereon as GPP| (g C m > leaf area day ™). The
accuracy and independence of GPP (Supplementary Figs. 1, 2, and 3) and
LAI"* data used to estimate GPP;, imbue confidence in capturing the
aggregate leaf scale dynamics, i.e., kinetics of reactions within the leaf and
utilization of light, water and CO, resources, in spite of the representation of
vegetation canopy as one big leaf in PEMs.

The pattern of GPP; changes (Fig. 1b) is remarkably different than the
individual patterns of changes in GPP (Fig. 1a) and LAI (Supplementary
Fig. 7b). The patterns agree well with those based on observations (Sup-
plementary Fig. 6). At the global scale, there is little to no change in GPPy,
(inset Fig. 1b) contrary to a previous report based on shorter records".
However, the global numbers belie important GPPp variations
regionally'**’. Leaf assimilation rates trend upward in sparsely vegetated
lands in Argentina, Australia, Kazakhstan, Sahel and adjoining areas, and
USA, Negative GPP; trends are seen in the more densely vegetated areas of
Brazil, sub-Arctic Canada, China, northern Europe and India. Especially
China and India, which exhibit large positive trends in both GPP and LAI
due to intensive land management practices’, show significant GPPy,
declines. The Sahel and adjoining lands, being the only exception globally,
show consistent positive trends in GPP, LAI*** and GPPy, in a prominent
west to east swath. The reasons for this surprising pattern of GPPy, gains in
inhospitable climes and losses in favourable environments are
explored below.

§2 Large Gains in Leaf Scale Photosynthetic Rates of Sparsely
Vegetated Arid and Semi-Arid Lands

Studying the distributions of GPP¢, LAl and GPP; trends reveals large gains
in sparse vegetation, and these decrease with increase in growing season
mean LAI (Table 1 and Fig. 2a). Sparse vegetation (~ LAI < 1), most of
which is shrublands and grasslands in arid and semi-arid regions (Supple-
mentary Fig. 7c), constitutes 41% of global vegetated area and contributes
17% of GPPc. Only in these land covers is the net change in GPPy, statis-
tically significant, reflecting a gain of 2.4% decade™. The rest of the land
covers show no changes in GPPy, although the individual trends of GPP¢
and LA are statistically positive. There are, of course, significant local GPPy,
changes at all vegetation densities (Fig. 2a), but the only net change is a gain
in sparse vegetation. The results thus inform on larger increases in GPPc
relative to LAI in sparse vegetation and matching changes for the rest
(Table 1),i.e., GPP¢ gains in vegetation with LAI < 1 are due to gains in both
GPP;, and LAIL while in denser canopies only due to LAL This hints at
additive impacts of causal agents in sparse vegetation and opposing impacts
elsewhere, as elucidated below.

The trends in GPPy, (Figs. 1b and 2a) can be unpacked into the indi-
vidual effects of ambient CO, concentration, climate and light on leaf
photosynthate production. The fertilisation effect of increasing atmospheric
CO, concentration (CFE) on GPP; is well known®*'*"*. The climate effect
includes GPP; dependency on temperature’, vapour pressure deficit* and
soil moisture' via precipitation. The effect of light on GPPy results from
altered light distribution on leaves within the canopy due to changes in
vegetation structure, including leaf area®"*. The three effects can be quan-
tified through specialized simulations with simple PEMs forced with cor-
responding observations (Methods §11).
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Fig. 1| Trends in annual gross primary production at the canopy (GPP) and leaf
(GPP,) scales. a Ensemble mean GPP. (g C m™* ground area year ) of three
Production Efficiency Models (PEM:s) forced with two climate data sets (§5). b GPPy,
is GPP: + LAI (g C m ” leaf area year '), where LAI is the ensemble mean of two
observational data sets (§9). Only statistically significant trends are colour-coded
(Mann-Kendall test, P < 0.1). The insets show global-scale trends from observations-

-5 -3 0 2 4 5 7 8
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based GOSIF data’ (red line is a linear fit to yearly data shown as red dots), PEMs
(black line and dots), 18 TRENDY models (mean as blue line and range as blue
shading; §7) and seven CMIP6 ESMs (in green; §8). The calculation of GPP; is
described in §10. The *’ in the inserts means that the correlation of the fitted line is
significant. Analogous patterns from observations are shown in Supplementary
Fig. 6. Section numbers refer to sections in Methods.

The fertilisation and climate effects represent direct and indirect effects
of CO, buildup in the atmosphere™. Changes in GPP; due only to the CFE
are positive (Fig. 2b). These are large in grasses and crops (3.7% decade™)
and modest in tropical forests (2.2% decade™"). The bi-modality at LAI < 2 is
due to land cover specific CFE. For example, the CFE is 2.3% decade ' in

arid shrublands where the growing season average LAT is 0.7, while it is 3.7%
decade™ in semi-arid and dry sub-humid grasslands and croplands which
have a LAI of 0.9. This general pattern of higher fertilisation effect in sparse
vegetation has been observed in situ* and attributed to increased water use
efficiency”’. Local climate effects are both positive and negative (Fig. 2c),

Communications Earth & Environment| (2026)7:97


www.nature.com/commsenv

https://doi.org/10.1038/s43247-025-03121-3

Article

Table 1 | Distribution of trends in GPP¢, LAl and GPP, in broad LAl intervals

Vegetated Area (%) Global GPP¢ (%) Trend in LAl (% decade ")  Trend in GPP¢ (% decade ')  Trend in GPP,_ (% decade ')
0.1<LAI<=1.0 40.90 17.15 5.33* 7.24% 2.40*
1.0<LAI<=2.0 31.20 30.60 4.37* 4.43* 0.30
2.0<LAI<=3.0 13.10 18.44 4.57* 4.26* 0.13
3.0<LAI<=4.0 2.92 5.62 3.31% 2.75*% —0.49
LAI>4.0 11.88 28.19 1.10* 1.62* 0.59

LAl refers to growing season average leaf area index, where the growing season is defined as the period when canopy scale gross primary production (GPP¢) > 0 and LAl > 0.1. The leaf scale gross primary
production is denoted by GPP,.. The proportions of vegetated area and GPP¢ in each LAl class interval is also shown. Asterisks indicate statistically significant trends (Mann-Kendall test, P < 0.1).
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Fig. 2 | Distribution of leaf scale gross primary production (GPPy) trends in
different intervals of growing season average leaf area index (LAI). a GPP; trends
in simulations with time-varying CO, concentration, climate and fraction of
vegetation-absorbed photosynthetically active radiation (FPAR) during 2001-2021
period. b GPP}, trends due only to the CO, fertilization effect (CFE). ¢ GPP}, trends
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due only to time-varying climate. d GPPy trends due only to time-varying FPAR. The
simulations with production efficiency models (PEMs) are described in Methods
§11. The growing season is defined as the period when daily GPP¢ > 0 and

daily LAI>0.1.

which closely mirrors that of total bimodal distribution, but the net change is
a GPPy, gain in vegetation with LAI < 3, and loss in more dense vegetation.
As aresult, the combined effect of atmospheric CO, increase is a higher gain
in leaf assimilation rates in sparse to moderately dense vegetation (4%
decade™") and none in tropical forests, where GPPy, gains due to CFE are
offset by losses due to changes in climate.

Changes in vegetation structure and leaf area alter light environment in
canopies’*. This effect is represented in PEMs through data of fraction of

vegetation-absorbed photosynthetically active radiation (FPAR; Methods
§1). The observations capture contemporaneous and the integral of legacy
effects on structure and leaf area from CO, concentration, climate, nutrient
availability and human management". The absolute magnitudes of FPAR
effects are larger than the CO, effects (Fig. 2d vs. b). They are negative nearly
everywhere (Fig. 2d), preventing the positive influence of the CFE from
entirely offsetting the overall negative GPPy distribution, with the exception
of shrublands where they are net-positive. The LAI gains from greening’
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(Supplementary Fig. 7b) translate to smaller FPAR gains because of the
nonlinear LAI-FPAR relationship arising from increased self-shading in
denser leaf canopies (Supplementary Fig. 8). Consequently, GPPc trends are
smaller than leaf area trends, and hence, losses in GPP;.. In sparsely vege-
tated shrublands, increases in LAI translate linearly to FPAR to result in
GPPy, gains. Thus, the effect of light on leaf assimilation rates is to offset the
gains from the fertilisation effect, and climate if any, in nearly all vegetation
with the exception of those with LAI < 1, i.e., the arid and semi-arid land
covers of shrublands and grasslands (Fig. 2a and Table 1).

§3 Regional Divergence in Leaf Scale Photosynthetic Rates

Of particular interest are two large regions, the Sudano-Sahelian zone and
adjoining savanna in Africa (7 x 10°km2; “Sahel +” from hereon) and,
China and India combined (9.5 x 10°km2). Much of the population of over
3 x 10° people in these regions depends on the land for livelihood. Both
display significant increases in leaf area (Supplementary Fig. 7b) and GPP¢
(Fig. 1a). However, GPPy, gains are conspicuous only in the Sahel+ region
(Fig. 1b). GPP; losses in China and India similarly stand out. This striking
contrast can be understood by the effects of CO,, climate and light on GPPy.

The Sahel+ region consists of herbaceous vegetation of shrublands,
grasslands and croplands to the north and savannas to the south (LAI ~ 1.2).
It experienced a rebound in precipitation after severe droughts in the 1970s
and early 1980s. The area has greatly greened since then**’, settling a debate
in favor of climate and against land degradation from human activities™".
This positive climate effect on photosynthate production is further
enhanced by the CO, fertilisation effect (CFE). The resulting GPP¢ gain is
greater than the LAI trend (10.4 vs. 6.9% decade " in Fig. 3a), which suggests
that the negative FPAR effect is outmatched by the positive effects of fer-
tilisation and climate (Fig. 3¢). Thus, the region exhibits prominent gains in
leaf assimilation rates (7.4% decade '). Similar arguments explain the
positive GPPy, trends in semi-arid parts of USA, Argentina, etc. (Supple-
mentary Fig. 9a, ¢).

China and India lead in greening (Supplementary Fig. 7b) due to
expanding natural forests and afforestation in the case of China and agri-
cultural intensification in both®. China has implemented programmes to
conserve and expand forests with the goal of mitigating climate change,
while enhancing carbon sequestration®”. Agricultural intensification®** in
both countries is facilitated by heavy fertilizer use and irrigation combined
with multiple cropping. Consequently, forests and croplands account for 50

and 19% of the net increase in leaf area of China, whereas croplands alone
contribute 80% in the case of India. The large greening trends (Fig. 3b),
however, did not enhance leaf assimilation rates because of diminished
absorbed lights on per unit of leaf surfaces. In fact, the FPAR effect on GPPy,
is sufficiently negative that it more than offsets the positive effects of CO,
fertilisation and climate change (Fig. 3d), with resulting losses in leaf
assimilation rates (—5% decade™"; Fig. 3b). This is also true in the case of
Brazil and northern Europe (Supplementary Fig. 9b, d).

Conclusions

To summarize, observations and models show a consistent picture of
dynamics in canopy- and leaf-scale assimilation rates and leaf area. Nearly
half the vegetated lands display changes, mostly an increase, in canopy scale
gross primary production (GPP) during the 2001-2021 period. This can be
traced to variations in the extent of photosynthesizing leaf area (LAI) only,
assimilation rates per unit leaf area (GPPy) only, or both. Increasing trends
in GPP; and LAl are seen only in the sparse vegetation of arid and semi-arid
climes, the Sahel and adjoining zone being a prime example. Here, the
positive trends are sustained through the CFE, higher efficiency of water use
and conducive light regime. Nearly everywhere else, the negative impacts of
climate and/or FPAR effects attributable to greening dominate, as in the case
of China and India. Here, the residual GPP gains are attributable to large
LAI increases from intensive human land management. This largely
explains the mis-match between greening and GPP changes. It also argues
against conventional thinking the global greening will lead to more carbon
sequestration. Earth system models project a saturation of GPPy in all
scenarios (Supplementary Fig. 10), but surprisingly no declines even in an
atmosphere of over 1000 ppm of CO, concentration. Nevertheless, the
current positive GPP trends and the potential for carbon sequestration'’
highlight the need for conservation and sustainable use of arid and semi-
arid lands.

Methods

§1 Production Efficiency Models (PEMs)

This study included two of the most widely-used PEMs (PEMs 1 and 2
below) in addition to a more recently developed generalized PEM for-
mulation (PEM3) to estimate the Gross Primary Production of vegetation
canopies (GPP(), globally at daily time scale for the period 2001 to 2021.
These models represent the current state-of-the-art for modeling GPP¢
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adjoining area and in China and India combined. ~ - -~
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based on light use efficiency while accounting for the effects of temperature,
vapour pressure deficit (VPD) and atmospheric CO,. The models have the
advantage of being simple while capturing tendencies seen in observations.
They suffer from some well-known limitations, viz., idealizing the canopy as
one big leaf, highly parameterised representation of processes, etc.

PEM1. The model used for generating GPP¢ product by the MODIS
program is modified to include the CO, fertilization effect'””. GPP¢ (g
Cm™ day™") is calculated as

GPPY' = LUE}} x PARX FPARX fiyn X fypp X f(CO2) (1)

where LUET! is the optimal light use efficiency (g C MJ "), PAR is the
incident photosynthetically active radiation (MJ m~* day™"'), FPAR is the
fraction of vegetation absorbed PAR, f\l\fPlD is the water stress scalar (VPD)
and Y} is the temperature (daily minimum) stress scalar. The CO, fer-
tilization effect [f(CO,)] is modelled by a relative value of C, (current year,
C!) compared to a baseline period” (year 2001, Cf“s“) as (C; is similar to

PEM2 below)

t

f ( COZ) Cbase

(2
PEM2. GPP is calculated using the EC-LUE model” as

GPPM? = LUEM? x PAR x FPAR x C, x min(f}, fe, (3)

opt
C,—I*

= 4

G4 2r @)

Ci = Ca XX (5)

where C; is the effect of atmospheric CO, concentration on GPP<™>”. T* is
the CO, compensation point in the absence of dark respiration (ppm) and
C,; is the CO, concentration in the intercellular air spaces of the leaf (ppm),
which is the product of the atmospheric CO, concentration (Ca) and the
ratio of internal to ambient COj in the leaf (x)***. x is calculated by

Y
A=Y /vep

356.51 x K
=/ @)
1.6 x77*

K=&x0+%) (8)

(6)

79.43 x (T'g —298.15)

KC — 39.97 x ¢ P8I5xRxT, (9)

36.38 x (T —298.15)

K, = 27480 x ¢ PI5RT, (10)

where K_ (Pa) and K (Pa) are the Michaelis-Menten coefficient of Rubisco
for carboxylation and oxygenation, respectively”. P, is the partial pressure of
O, (Pa). R is the molar gas constant (8.314]Jmol™" K™'), T, is air
temperature, and n* is the viscosity of water as a function of air temperature
relative to its value at 25°C”.

PEM3. The Max Planck Institute for Biogeochemistry (MPI-BGC)
model® includes the effects of temperature, VPD, atmospheric CO,
concentration, soil moisture (W), light intensity (L), and cloudiness

through an index (CI) on GPPc. It evaluates GPP as

GPPM® = LUEM? x PAR x FPARX f}7 x f}?

M3
opt VPD co2 Xf Xfer

11

M3 kx (—0) x VPD C - CuO
= e C 14—
VPD,CO2 ( ) ( C Ca() +c

Where k is the sensitivity to VPD changes, C,; is the minimum optimal
atmospheric CO, concentration, Ca is the atmospheric CO, concentration,
C, is the sensitivity to atmospheric CO, concentration changes, and ¢ is
the CO, fertilization intensity indicator®".

(12)

§2 input data for PEMs

Two climate data sets are used to force the PEMs - (1) GMAO MERRA-2
and (2) ECMWF ERA-5. Additional climate data required by PEM3 are
obtained from GLDAS NOAH-2.1 (2001-2021). The climate data together
with sensor-independent (SI) FPAR data’ are harmonised to daily and 0.05°
resolutions to calculate GPP¢ with the three PEMs. Daily CO, data from
NOAA were used to model the fertilisation effect. The variable LUE in
PEMs is land cover dependent, hence the MODIS landcover product® is
used to identify the landcover in each pixel. The rest of the variables are pixel
dependent. All data are publicly available (see “Data Availability”
statement).

§3 Estimation of Optimal LUE

Optimal values of light use efficiency (LUE,y,) for the 11 land covers are
estimated iteratively and separately for the three PEMs using annual GPPc
estimates based on the average of the night-time (GPP_REF_NT_VUT) and
day-time (GPP_REF_DT_VUT) partitioning approaches from the FLUX-
NET2015 data set”’. The number of GPP estimates for each land cover
varies depending on the number of sites belonging to that land cover and the
number of years for which estimates are available (Supplementary Table S1).
The optimisation is done iteratively as follows.

Step 1: Model GPP¢ values corresponding to half the randomly
selected GPP( estimates are calculated by assuming LUE =1 and using
GMAO climate and STFPAR data. Step 2: An estimate of LUE, is evaluated
by linearly regressing modelled GPP against measured GPPc. Step 3:
Model GPP values corresponding to the other half of GPPc estimates are
calculated using LUE,, estimated in Step 2. Step 4: The RMSE is calculated
by regressing the modelled GPP values in Step 3 against the corresponding
observed GPP( values. Steps 1 to 4 are repeated 10,000 times to obtain
10,000 values of LUE,, and corresponding RMSE. LUE,, values corre-
sponding to the lowest 9,500 RMSE values are averaged to obtain LUE,.
This process is repeated separately for each landcover and for the three
models - the resulting LUE,,; values are given in Supplementary Table S2.

A comparison of modelled and observations-based GPP values before
and after optimisation is shown in Supplementary Fig. 1. The optimisation
procedure improved performance of PEM1 and 2, but not PEM3 for the
following reason. The original PEM3 contained parameters that varied at
the 0.05° pixel-scale. This version agrees well with flux tower based GPP¢
estimates as the parameters were tuned to those estimates. It however results
in global GPP. values nearly twice the other models and those reported in
literature. When PEM3 is reformulated in terms of landcovers, the agree-
ment with tower estimates degrades (Supplementary Fig. 1) but the geo-
graphical patterns and global totals match those of PEM1 and 2 (not shown
for brevity).

§4 Evaluations of PEMs

The performance of PEMs is evaluated through comparisons with data from
the AmeriFlux estimates. These (Supplementary Table S3) are different than
the FLUXNET2015 estimates used to optimise the LUE variable of the three
PEMs ($3). GPPc values from the three PEMs compare satisfactorily
(R*>0.54 and RMSE<483.64gC m™ yr') with tower estimates
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(Supplementary Fig. 2). These results are similar to those in the literature
regarding the performance of PEMs in general® .

§5 Comparison of GPPC between PEMs

Modelled annual GPP- from the three PEMs forced with two climate data
sets varies between 120 and 135 Pg C yr ' (Supplementary Table S4). The
agreement between the three PEMs at 445 BELMANIP2.1 test sites* is good
(Supplementary Fig. 3; R>>0.90 and RMSE between 251 to 327 gC m >
yr ). Average annual GPPc. from this ensemble of three PEMs forced with
two climate data sets is used throughout this article.

§6 Comparison of GPPC from PEMs with Peer GPPC products
The modelled ensemble average GPP (three PEMs and two climate for-
cings) is compared to four other published global-scale GPP. data sets for
consistency. These GPP data sets are independent of one another. The
GOSIF GPP product is generated using relationships between satellite-
measured Solar-Induced chlorophyll Fluorescence (SIF) and observed
GPP(”. The Random Forest (RF) GPP¢ product is generated from a
combination of a nested machine learning model and a theoretical photo-
synthesis model®. The FLUXCOM and X-BASE FLUXCOM GPP¢. pro-
ducts are a result of upscaling approaches based on machine learning
methods that integrate flux tower estimates, satellite remote sensing, and
meteorological data™*. The modelled PEM ensemble average GPP com-
pares well to all four published data sets (Supplementary Fig. 4 and Sup-
plementary Table S5). The comparisons at BELMANIP2.1 test sites indicate
R*>091 and RMSE between 224 to 277gC m™ yr~' (Supplemen-
tary Fig. 5).

§7 Dynamic Global Vegetation Models (DGVMs)

A project comprising of an international ensemble of DGVMs known as the
“Trends and drivers of the regional scale terrestrial sources and sinks of
carbon dioxide” (TRENDY) quantifies land biophysical exchange processes
and biogeochemistry cycles”. Output at monthly resolution from
TRENDYvI12 simulations with varying land use change, climate, and CO,
(S3) of the following 18 models is used in this article: CABLE-POP,
CLASSIC, CLM5.0, DLEM, E3SM, EDv3, IBIS, ISBA-CTRIP, JSBACH,
JULES, LPJ-GUESS, LPJmL, LPX-Bern, OCN, ORCHIDEEv3, SDGVM,
VISIT, and YIBs.

§8 CMIP6 Earth System Models

The sixth Coupled Model Intercomparison Project (CMIP6) is the latest to
use a suite of Earth System Models (ESMs) to produce global simulations of
the past, current, and future climate*”. Monthly output from
CMIP6 simulations from the following seven ESMs are used in our analyses:
ACCESS-ESM1-5, CanESM5, CanESM5-CanOE, EC-Earth3-CC, GFDL-
ESM4, MPI-ESM1-2-LR, and NorESM2-LM. Four of these models that
included an interactive terrestrial Nitrogen cycle demonstrated improved
GPP¢ simulations (ACCESS-ESM1-5, EC-Earth3-CC, MPI-ESM1-2-LR,
and NorESM2-LM)*". All ESMs included dynamic vegetation models.
These DVGMs are a subset of the TRENDY DVGMs described in §7. The
representation and evaluation of the terrestrial carbon cycle in these models
is described in Gier et al.”’. Simulated GPP and LAI from historical (2001 to
2014) and projection (2015—2100) periods are analysed in this study. The
latter are for three emission scenarios — Shared Socio-economic Pathways
(SSPs) 2-4.5, 3-7.0 and 5-8.5.

§9 Leaf Area Index Data

Two publicly available LAI data sets are used in this study: a sensor inde-
pendent LAI data set’ and the GLASS LAI data set”*>. The data sets are
derived independently from MODIS and other satellite-based sensors with
algorithms that have been well tested over the past three decades’””. The
two LAI datasets exhibited similar spatial and trend distributions, showing
no significant discrepancies in most regions™***”, The LAI data are not
used in the calculation of GPPc reported in this article. LAI values from the
two data sets are averaged and interpolated from 8-day to daily resolution.

This mean LAI data set was used in this study to avoid large uncertainties
that would arise if SI LAI/FPAR were directly used as input for GPPy,
calculations.

§10 Calculation of GPPL

Leaf photosynthetic carbon assimilation rate, GPP; (g C m™* leaf area
day™), is calculated as the ratio of daily GPP to daily LAL In the case of
PEMs, GPP; is calculated with the ensemble average GPP¢ from the three
models (§1) forced with two climate data sets (§2) and satellite-based LAI
(59). Theoretically, the non-linear LAI-FPAR relationship has varying
effects on GPP; across sparse and dense canopies, primarily by altering light
distribution on leaves due to changes in vegetation structure’"””. Therefore,
this study will clarify the light-related effects on GPP; changes based on this
non-linear LAI-FPAR relationship. In the case of GOSIF, GPP; is calculated
with GPP. from observations-based GOSIF data set” and satellite-based
LAI (§9). In the case of TRENDY models (§7) and CMIP6 ESMs (§8), GPP;.
is calculated with each model simulated GPP: and LAI These SIF-based
and model-based GPP; estimates can be used to independently corroborate
the accuracy of GPPy, obtained from the PEMs.

§11 Sensitivity Analyses with PEMs

Sensitivity simulations are performed with PEMs following the TRENDY
protocol’ to quantify the contributions of the CO, fertilisation effect (CFE),
climate change and FPAR on gross primary production at canopy (GPPc)
and leaf scale (GPPy). The CFE is quantified through simulation S1 by using
constant climate (2001—2003 average), FPAR, and landcover from year
2001 and time-varying observed CO, concentration for the period
2001-2021. The climate effect is quantified as the difference between
simulations S2 and S1, where S2 is performed with FPAR and landcover
from year 2001 and time-varying observed CO, concentration and climate
for the period 2001-2021. Finally, the effect of FPAR is quantified as the
difference between simulations S3 and S2, where S3 is performed with time-
varying observed CO, concentration, climate, FPAR and landcover for the
period 2001-2021. All simulations are performed with the three PEMs (§1)
and two climate data sets (§2) and the ensemble average GPPc is used in
further analyses. GPPy, in simulations S1 and S2 is calculated as the ratio of
GPPc to LAI in year 2001 at the daily scale during the growing season
(GPPc >0 and LAI>0.1). It is calculated using time-varying LAI during
2001-2021 in simulation S3. Notably, land cover information in S3 changes
only in conjunction with LAI/FPAR, and the FPAR effect implicitly
incorporates land use/land cover changes. Thus, one limitation of this study
is that the influence of land use/land cover changes in the PEM model
cannot be directly calculated.

The coupled carbon-climate systems includes complicated linkages
between various components and processes via feedbacks and lags'*’*”>. The
more complex dynamic models, TRENDY DGVMs (§7) and CMIP6 ESMs
(88), include some but not all of the known linkages. Sensitivity simulations
similar to those described above are available from TRENDY*, however
these are not used because of differences, relative to observations, in mod-
elled LAI distribution across the entire vegetated area, both in magnitude
and seasonal course. The PEMs have the advantage of incorporating mea-
sured data (CO,, Climate and FPAR) while also being simple. These models
capture the direct effects of these variables on primary production. Thus, the
sensitivity simulations with PEMs serve the stated goal of understanding the
observed spatial patterns of GPPy to a first order.

Data availability

All data used to support the findings of this study are publicly available.
They can be obtained as follows: PEM GPP data - doi.org/10.5281/
zen0do.13989451; GMAO MERRA-2 data - gmao.gsfc.nasa.gov/reana-
lysiss MERRA-2; ECMWEF ERA-5 data - cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-single-levels; GLDAS NOAH 2.1 data -
disc.gsfc.nasa.gov/datasets?keywords=GLDAS; SI FPAR data - doi.org/
10.5281/zenodo.8076540; FLUXNET2015 data — fluxnet.org/data/flux-
net2015-dataset/; AmeriFlux data- ameriflux.lbl.gov/ data/download-
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data/; GOSIF GPP data - data.globalecology.unh.edu/data/GOSIF_v2/;
RF GPP data - zenodo.org/records/10018475; FLUXCOM GPP data -
fluxcom.org/; FLUXCOM-X GPP data - meta.icos-cp.eu/collections/
AYj7-lwcdCLnBXJDoscxQZou; TRENDY are available on request from
TRENDY coordinator S. Sitch (s.a.sitch@exeter.ac.uk; CMIP6 simula-
tions — aims2.lInl.gov/search; SI LAI data - https://doi.org/10.5281/
zen0do.8076540; GLASS LAI data - www.glass.umd.edu/index.html;
CO, concentration data —gml.noaa.gov/ccgg/trends/; Aridity index -
figshare.com/articles/dataset/Global_Aridity_Index_and_Potential
Evapotranspiration_ET0_Climate_Database_v2/7504448 MCD12Q1 -
ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/
MCD12Q1.
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