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Photosynthesis drives carbon into terrestrial ecosystems via gross primary production (GPP), rising
~3% decade−1 globally, paralleled by green leaf area expansion. Both trends stem from CO2

fertilization (CFE), climate change, and landcover change, yet spatial mismatches exist between GPP
and leaf area changes. Canopy scale GPP changes are separated into those resulting from leaf area
changes and those from changing photosynthetic rates per unit leaf area. The latter, by normalizing for
leaf area, isolate production dependency on CO2, light and water availability, and the kinetics of the
process itself. Arid/semi-arid shrublands and grasslands show substantial CO2 assimilation gains,
dominated by CFE and beneficial climate effects. Conversely, croplands and forests exhibit declining
leaf assimilation rate due to increased shading from excessive greening and adverse climate shifts
(e.g., reduced precipitation, higher VPD). The Sudano-Sahelian zone exemplifies assimilation
increases in sparse vegetation, while conspicuously greening regions like China and India face
assimilation declines. This pattern of canopy GPP increases from gains in both leaf scale assimilation
rates and leaf area in sparse vegetation of inhospitable climes, and only from leaf area gains in more
productive vegetation of favorable environments, whilst counter-intuitive, suggests an unforeseen
potential for carbon sequestration in sparsely vegetated lands.

Terrestrial gross primary production refers to photosynthetic carbon fixa-
tion by vegetation canopies (GPPC in g C m−2 ground area time−1)1. This
flux, marking the entry point for carbon into the terrestrial system, is cur-
rently increasing at ~3%decade−1 globally2,3. The green leaf area, over which
photosynthesis happens, defined as one-sided green leaf area per unit
ground area in broadleaf vegetation andone-half the total needle surface per
unit ground area in needleleaf vegetation4, is also increasing at the same
rate5–7. Several key factors contribute to these changes inGPPC and leaf area.
The CO2 fertilization effect (CFE), some aspects of climate change (e.g.,
warming in the North), nitrogen deposition, land use and land cover
changes are evidently the principal reasons for these GPPC and leaf area
index (LAI) changes2,3,8–14. The impact of elevated atmospheric CO2 on
vegetation manifests through two primary mechanisms: (1) a biochemical
effect: the CO2 fertilization effect (CFE), which enhances photosynthesis
and biomass accumulation, thereby altering canopy structure2; (2) a
radiative effect: increased CO2 concentration leads to warming and climate
change,while alsomodifying the light condition andnitrogen availability, all
of which affect the vegetation photosynthesis15. However, not all climate

change impacts are positive, particularly in arid and semi-arid regions,
climate change negatively affects plant growth due to increased water
stress16,17. Furthermore, intensive human land-use practices have amplified
GPPC and LAI changes, particularly in China and India5.

However, spatially there is a mis-match in where and by how much
GPPC and leaf area are changing. In Amazonian rainforests, it was found
that leaf area decreased but vegetation canopy productivity remained con-
stant in the 2010 drought year18,19, and that little change in leaf area was
measured in contrast to substantial decreases in canopy photosynthesis in
the 2015–2016 drought period20. Greening in herbaceous vegetation, for
example, is much less than in woody vegetation globally, GPPC gains
however are much larger in the former than the latter6. This decoupling is
especially noticeable in arid and semi-arid regions. Satellite observations in
these areas show minimal increases in leaf area due to persistent water
limitations, yet these ecosystems experience disproportionately large surges
in GPPC during occasional wet periods17.

Mounting evidence suggests that light availability limits carbon fixa-
tion in twoways: directly through incident light levels and the ratio of direct
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solar to diffuse sky radiation, and indirectly through changes in canopy
structure, primarily via increased self-shading of leaves as leaf area
expands21,22. This constraint on light availability may explain the dis-
crepancy between vegetation greening, i.e., adding extra leaves, and GPPC
changes.Consequently, this studyhypothesized that greening tends to lower
the average light reaching leaves in moderate to dense vegetation. This
reduction can counteract the positive effects of CO2 fertilization (CFE),
leading to smaller gains in GPPC. Conversely, in sparse vegetation with low
leaf areas, such as arid and semi-arid regions, greening does not significantly
affect light levels. In these areas, the increased leaf areawill reinforce theCFE
effect, resulting in substantial GPPC gains. This interaction between theCFE
and light levels in vegetation has not been identified before. To understand
this interaction and its implications to the carbon cycle, long-term obser-
vations and model estimates are analyzed here. Canopy scale GPP changes
are separated into those resulting from leaf area changes and those from
changing photosynthetic rates per unit leaf area. The latter, by normalizing
for leaf area, isolate production dependency on CO2, light and water
availability, and the kinetics of the process itself.

Estimates of GPPC from observations and models during the
2001–2021 period and projections for the rest of this century are discussed
here. The observation-based estimates are derived from a combination of
solar-induced chlorophyll fluorescence measurements of the Orbiting
Carbon Observatory-2 and CO2 exchange data of flux towers (GOSIF23).
The modeled GPPC estimates are – (i) an ensemble average of three Pro-
duction EfficiencyModels (PEMs) forced with two climate data sets, (ii) an
ensemble average of 18 Dynamic Global Vegetation Models (DGVMs) of
the TRENDY project24 and (iii) an ensemble average of seven Earth System
Models (ESMs) of theCMIP6project25 for thehistorical period (2001–2014)
and projections to year 2100 based on three emission scenarios. Sections in
Methodsdetail the threePEMs (§1), the forcing climate data (§2), parameter
optimisation (§3), validation and intercomparisonwithpeerGPPCproducts
(§§4-6), the TRENDY DGVMs (§7) and CMIP6 ESMs (§8). Results in
Supplementary Figs. 1 to 5, and also those presented here, show that
modelled GPPC from simple PEMs compare well to those from process-
based dynamicmodels (TRENDY and ESMs), peer GPPC data sets

26–28, and
observations (GOSIF and AmeriFlux). Only statistically significant (Mann-
Kendall test, P ≤ 0.1) results are discussed below.

Results and Discussion
§1 Global Mis-match Between Leaf Area Expansion and Canopy
Productivity Gains
Annual means of GPPC from PEMs and DGVMs are comparable to the
GOSIF estimate (128 vs. 131 Pg C yr−1). They reflect an upward trend of 3.9
to 5.2 Pg C yr−1 decade−1 during the 2001–2021 period (Fig. 1a). The same
from ESMs are 123 Pg C yr−1 and 3.8 Pg C yr−1 decade−1. About 44% of the
106 × 106 km2 of total vegetated area displays a positive trend, most con-
spicuously inChina, Europe, India,NorthAmerica, Sahel and abutting area,
and northern Siberia. Declines are observed in only 5% of the vegetated
lands, prominentonly in theBrazilianAmazon.The~10 PgCof totalGPPC
gain is mostly from herbaceous vegetation (64%). Of note, croplands
account for nearly a quarter of this gain while occupying only 11% of the
total vegetated area. Themore productivewoody vegetation (~55%ofGPPC
share) contributes a third of the increase in GPPC. Overall, the modelled
patternsmatchwellwith observations (Supplementary Fig. 6a) andprevious
studies29,30.

At the same time, there have been increases in green leaf area of
vegetation2,6,15,31–34. Globally, gains in leaf area and GPPC seem comparable
inmagnitude (3.3 vs. 3.1 to 4.6% decade−1) and extent; 44% of the vegetated
lands exhibit greening, 7% browning and the rest no changes (Supple-
mentary Fig. 7). Indeed, the same causal markers have been invoked to
explain the greening and browning of lands in the satellite era2,6,15. Regions
exhibitingprominent greeningvisually correspond to thosewith largeGPPC
increases. Numerically however, greening in herbaceous vegetation is less
than that of woody vegetation (44% for herbaceous vs. 56% for woody),
opposite of shares in GPPC gains (64% for herbaceous vs. 36% for woody).

Croplands illustrate this disparity starkly, 23% share ofGPPC gainwith only
15% of greening. This mis-match in rates of change between GPPC and leaf
area is delved into below.

Conceptually, the amount of photosynthate producedunder prevailing
conditions depends on light and dark reactions within the leaf, the avail-
ability of raw resources of light, water, nutrients and CO2, and the extent of
photosynthesizing leaf area35–38. GPPC changes can be therefore separated
into those resulting from leaf area changes and those from changing
assimilation rates per unit leaf area. The latter, by normalising for leaf area,
isolate production dependency to resource availability and kinetics of the
process itself. This leaf scale photosynthetic rate can be calculated as
GPPC ÷ LAI; reliable LAI data are widely available4,7,39–42 (Methods §§9 and
10). It will be denoted from hereon as GPPL (g C m−2 leaf area day−1). The
accuracy and independence of GPPC (Supplementary Figs. 1, 2, and 3) and
LAI7,39,42 data used to estimate GPPL imbue confidence in capturing the
aggregate leaf scale dynamics, i.e., kinetics of reactions within the leaf and
utilization of light, water andCO2 resources, in spite of the representation of
vegetation canopy as one big leaf in PEMs.

The pattern of GPPL changes (Fig. 1b) is remarkably different than the
individual patterns of changes in GPPC (Fig. 1a) and LAI (Supplementary
Fig. 7b). The patterns agree well with those based on observations (Sup-
plementary Fig. 6). At the global scale, there is little to no change in GPPL
(inset Fig. 1b) contrary to a previous report based on shorter records43.
However, the global numbers belie important GPPL variations
regionally16,43. Leaf assimilation rates trend upward in sparsely vegetated
lands in Argentina, Australia, Kazakhstan, Sahel and adjoining areas, and
USA, Negative GPPL trends are seen in the more densely vegetated areas of
Brazil, sub-Arctic Canada, China, northern Europe and India. Especially
China and India, which exhibit large positive trends in both GPPC and LAI
due to intensive land management practices5, show significant GPPL
declines. The Sahel and adjoining lands, being the only exception globally,
show consistent positive trends in GPPC, LAI

44,45 and GPPL, in a prominent
west to east swath. The reasons for this surprising pattern of GPPL gains in
inhospitable climes and losses in favourable environments are
explored below.

§2 Large Gains in Leaf Scale Photosynthetic Rates of Sparsely
Vegetated Arid and Semi-Arid Lands
Studying the distributions ofGPPC, LAI andGPPL trends reveals large gains
in sparse vegetation, and these decrease with increase in growing season
mean LAI (Table 1 and Fig. 2a). Sparse vegetation (~ LAI < 1), most of
which is shrublands and grasslands in arid and semi-arid regions (Supple-
mentary Fig. 7c), constitutes 41% of global vegetated area and contributes
17% of GPPC. Only in these land covers is the net change in GPPL statis-
tically significant, reflecting a gain of 2.4% decade−1. The rest of the land
covers show no changes in GPPL, although the individual trends of GPPC
and LAI are statistically positive. There are, of course, significant local GPPL
changes at all vegetation densities (Fig. 2a), but the only net change is a gain
in sparse vegetation. The results thus inform on larger increases in GPPC
relative to LAI in sparse vegetation and matching changes for the rest
(Table 1), i.e., GPPC gains in vegetationwith LAI < 1 are due to gains in both
GPPL and LAI, while in denser canopies only due to LAI. This hints at
additive impacts of causal agents in sparse vegetation and opposing impacts
elsewhere, as elucidated below.

The trends in GPPL (Figs. 1b and 2a) can be unpacked into the indi-
vidual effects of ambient CO2 concentration, climate and light on leaf
photosynthate production. The fertilisation effect of increasing atmospheric
CO2 concentration (CFE) on GPPL is well known

2,3,12,13. The climate effect
includes GPPL dependency on temperature9, vapour pressure deficit46 and
soil moisture47 via precipitation. The effect of light on GPPL results from
altered light distribution on leaves within the canopy due to changes in
vegetation structure, including leaf area21,48. The three effects can be quan-
tified through specialized simulations with simple PEMs forced with cor-
responding observations (Methods §11).

https://doi.org/10.1038/s43247-025-03121-3 Article

Communications Earth & Environment |            (2026) 7:97 2

www.nature.com/commsenv


The fertilisation and climate effects represent direct and indirect effects
of CO2 buildup in the atmosphere24. Changes in GPPL due only to the CFE
are positive (Fig. 2b). These are large in grasses and crops (3.7% decade−1)
andmodest in tropical forests (2.2%decade−1). The bi-modality at LAI < 2 is
due to land cover specific CFE. For example, the CFE is 2.3% decade−1 in

arid shrublandswhere the growing season average LAI is 0.7, while it is 3.7%
decade−1 in semi-arid and dry sub-humid grasslands and croplands which
have a LAI of 0.9. This general pattern of higher fertilisation effect in sparse
vegetation has been observed in situ49 and attributed to increased water use
efficiency47. Local climate effects are both positive and negative (Fig. 2c),

Fig. 1 | Trends in annual gross primary production at the canopy (GPPC) and leaf
(GPPL) scales. a Ensemble mean GPPC (g C m−2 ground area year−1) of three
Production EfficiencyModels (PEMs) forcedwith two climate data sets (§5). bGPPL
is GPPC ÷ LAI (g C m−2 leaf area year−1), where LAI is the ensemble mean of two
observational data sets (§9). Only statistically significant trends are colour-coded
(Mann-Kendall test,P ≤ 0.1). The insets showglobal-scale trends fromobservations-

based GOSIF data2 (red line is a linear fit to yearly data shown as red dots), PEMs
(black line and dots), 18 TRENDY models (mean as blue line and range as blue
shading; §7) and seven CMIP6 ESMs (in green; §8). The calculation of GPPL is
described in §10. The ‘*’ in the inserts means that the correlation of the fitted line is
significant. Analogous patterns from observations are shown in Supplementary
Fig. 6. Section numbers refer to sections in Methods.
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which closelymirrors that of total bimodal distribution, but thenet change is
a GPPL gain in vegetation with LAI < 3, and loss in more dense vegetation.
As a result, the combined effect of atmospheric CO2 increase is a higher gain
in leaf assimilation rates in sparse to moderately dense vegetation (4%
decade−1) and none in tropical forests, where GPPL gains due to CFE are
offset by losses due to changes in climate.

Changes in vegetation structure and leaf area alter light environment in
canopies21,48. This effect is represented in PEMs through data of fraction of

vegetation-absorbed photosynthetically active radiation (FPAR; Methods
§1). The observations capture contemporaneous and the integral of legacy
effects on structure and leaf area fromCO2 concentration, climate, nutrient
availability and human management13. The absolute magnitudes of FPAR
effects are larger than theCO2 effects (Fig. 2d vs. b). They are negative nearly
everywhere (Fig. 2d), preventing the positive influence of the CFE from
entirely offsetting the overall negativeGPPL distribution, with the exception
of shrublands where they are net-positive. The LAI gains from greening6

Fig. 2 | Distribution of leaf scale gross primary production (GPPL) trends in
different intervals of growing season average leaf area index (LAI). aGPPL trends
in simulations with time-varying CO2 concentration, climate and fraction of
vegetation-absorbed photosynthetically active radiation (FPAR) during 2001–2021
period. b GPPL trends due only to the CO2 fertilization effect (CFE). c GPPL trends

due only to time-varying climate.dGPPL trends due only to time-varying FPAR.The
simulations with production efficiency models (PEMs) are described in Methods
§11. The growing season is defined as the period when daily GPPC > 0 and
daily LAI > 0.1.

Table 1 | Distribution of trends in GPPC, LAI and GPPL in broad LAI intervals

Vegetated Area (%) Global GPPC (%) Trend in LAI (% decade−1) Trend in GPPC (% decade−1) Trend in GPPL (% decade−1)

0.1 < LAI < = 1.0 40.90 17.15 5.33* 7.24* 2.40*

1.0 < LAI < = 2.0 31.20 30.60 4.37* 4.43* 0.30

2.0 < LAI < = 3.0 13.10 18.44 4.57* 4.26* 0.13

3.0 < LAI < = 4.0 2.92 5.62 3.31* 2.75* −0.49

LAI > 4.0 11.88 28.19 1.10* 1.62* 0.59

LAI refers to growing season average leaf area index, where the growing season is defined as the periodwhen canopy scale gross primary production (GPPC) > 0 and LAI > 0.1. The leaf scale gross primary
production is denoted by GPPL. The proportions of vegetated area and GPPC in each LAI class interval is also shown. Asterisks indicate statistically significant trends (Mann-Kendall test, P ≤ 0.1).
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(Supplementary Fig. 7b) translate to smaller FPAR gains because of the
nonlinear LAI-FPAR relationship arising from increased self-shading in
denser leaf canopies (Supplementary Fig. 8).Consequently,GPPC trends are
smaller than leaf area trends, and hence, losses in GPPL. In sparsely vege-
tated shrublands, increases in LAI translate linearly to FPAR to result in
GPPL gains. Thus, the effect of light on leaf assimilation rates is to offset the
gains from the fertilisation effect, and climate if any, in nearly all vegetation
with the exception of those with LAI < 1, i.e., the arid and semi-arid land
covers of shrublands and grasslands (Fig. 2a and Table 1).

§3 Regional Divergence in Leaf Scale Photosynthetic Rates
Of particular interest are two large regions, the Sudano-Sahelian zone and
adjoining savanna in Africa (7 × 106km2; “Sahel+ ” from hereon) and,
China and India combined (9.5 × 106km2).Much of the population of over
3 × 109 people in these regions depends on the land for livelihood. Both
display significant increases in leaf area (Supplementary Fig. 7b) and GPPC
(Fig. 1a). However, GPPL gains are conspicuous only in the Sahel+ region
(Fig. 1b). GPPL losses in China and India similarly stand out. This striking
contrast can be understood by the effects of CO2, climate and light onGPPL.

The Sahel+ region consists of herbaceous vegetation of shrublands,
grasslands andcroplands to thenorth and savannas to the south (LAI ~ 1.2).
It experienced a rebound in precipitation after severe droughts in the 1970s
and early 1980s. The area has greatly greened since then44,45, settling a debate
in favor of climate and against land degradation from human activities50,51.
This positive climate effect on photosynthate production is further
enhanced by the CO2 fertilisation effect (CFE). The resulting GPPC gain is
greater than the LAI trend (10.4 vs. 6.9%decade−1 in Fig. 3a), which suggests
that the negative FPAR effect is outmatched by the positive effects of fer-
tilisation and climate (Fig. 3c). Thus, the region exhibits prominent gains in
leaf assimilation rates (7.4% decade−1). Similar arguments explain the
positive GPPL trends in semi-arid parts of USA, Argentina, etc. (Supple-
mentary Fig. 9a, c).

China and India lead in greening (Supplementary Fig. 7b) due to
expanding natural forests and afforestation in the case of China and agri-
cultural intensification in both5. China has implemented programmes to
conserve and expand forests with the goal of mitigating climate change,
while enhancing carbon sequestration52,53. Agricultural intensification54,55 in
both countries is facilitated by heavy fertilizer use and irrigation combined
withmultiple cropping. Consequently, forests and croplands account for 50

and 19% of the net increase in leaf area of China, whereas croplands alone
contribute 80% in the case of India. The large greening trends (Fig. 3b),
however, did not enhance leaf assimilation rates because of diminished
absorbed lights on per unit of leaf surfaces. In fact, the FPAR effect onGPPL
is sufficiently negative that it more than offsets the positive effects of CO2

fertilisation and climate change (Fig. 3d), with resulting losses in leaf
assimilation rates (−5% decade−1; Fig. 3b). This is also true in the case of
Brazil and northern Europe (Supplementary Fig. 9b, d).

Conclusions
To summarize, observations and models show a consistent picture of
dynamics in canopy- and leaf-scale assimilation rates and leaf area. Nearly
half the vegetated lands display changes, mostly an increase, in canopy scale
gross primaryproduction (GPPC) during the 2001–2021period. This can be
traced to variations in the extent of photosynthesizing leaf area (LAI) only,
assimilation rates per unit leaf area (GPPL) only, or both. Increasing trends
inGPPL and LAI are seen only in the sparse vegetation of arid and semi-arid
climes, the Sahel and adjoining zone being a prime example. Here, the
positive trends are sustained through the CFE, higher efficiency of water use
and conducive light regime.Nearly everywhere else, the negative impacts of
climate and/or FPAReffects attributable to greeningdominate, as in the case
of China and India. Here, the residual GPPC gains are attributable to large
LAI increases from intensive human land management. This largely
explains the mis-match between greening and GPP changes. It also argues
against conventional thinking the global greening will lead to more carbon
sequestration. Earth system models project a saturation of GPPL in all
scenarios (Supplementary Fig. 10), but surprisingly no declines even in an
atmosphere of over 1000 ppm of CO2 concentration. Nevertheless, the
current positive GPPL trends and the potential for carbon sequestration17

highlight the need for conservation and sustainable use of arid and semi-
arid lands.

Methods
§1 Production Efficiency Models (PEMs)
This study included two of the most widely-used PEMs (PEMs 1 and 2
below) in addition to a more recently developed generalized PEM for-
mulation (PEM3) to estimate the Gross Primary Production of vegetation
canopies (GPPC), globally at daily time scale for the period 2001 to 2021.
These models represent the current state-of-the-art for modeling GPPC

Fig. 3 | Comparison of trends in the Sahel and
adjoining area and in China and India combined.
The Sahelian region is a rectangular area spanning
4.35° N to 15° N and 17.5° W to 51.5° E showing
prominent gains inGPPL (see Fig. 1b). a, bTrends in
growing season average leaf area index (LAI), gross
primary production at canopy scale (GPPC) and leaf
scale (GPPL). c, d Trends in GPPL due only to CO2

(GPPL CFE), climate change (GPPL CC) and frac-
tion of vegetation-absorbed photosynthetically
active radiation (GPPL FPAR). The box plots show
the distribution of statically significant trends
(Mann-Kendall test, P ≤ 0.1). The maximum and
minimum values of the colored boxes represent the
25th and 75th percentiles, respectively, and the
whiskers represent the 5th and 95th percentiles. The
red line represents the median (M) trend. The
growing season is defined as the period when
GPPC > 0 and daily LAI > 0.1.
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based on light use efficiency while accounting for the effects of temperature,
vapour pressure deficit (VPD) and atmospheric CO2. The models have the
advantage of being simple while capturing tendencies seen in observations.
They suffer from somewell-known limitations, viz., idealizing the canopy as
one big leaf, highly parameterised representation of processes, etc.

PEM1. The model used for generating GPPC product by the MODIS
program56 is modified to include the CO2 fertilization effect13,57. GPPC (g
C m−2 day−1) is calculated as

GPPM1
C ¼ LUEM1

opt × PAR× FPAR× f M1
TMIN × f M1

VPD × f CO2ð Þ ð1Þ

where LUEM1
opt is the optimal light use efficiency (g C MJ−1), PAR is the

incident photosynthetically active radiation (MJ m−2 day−1), FPAR is the
fraction of vegetation absorbed PAR, fM1

VPD is the water stress scalar (VPD)
and fM1

TMIN is the temperature (daily minimum) stress scalar. The CO2 fer-
tilization effect [f(CO2)] is modelled by a relative value of Cs (current year,
Ct
s) compared to a baseline period57 (year 2001, Cbase

s ) as (Cs is similar to
PEM2 below)

f ðCO2Þ ¼
Ct
s

Cbase
s

ð2Þ

PEM2. GPPC is calculated using the EC-LUE model57 as

GPPM2
C ¼ LUEM2

opt × PAR × FPAR×Cs × minðf M2
T ; f M2

VPDÞ ð3Þ

Cs ¼
Ci � Γ�

Ci þ 2Γ�
ð4Þ

Ci ¼ Ca × χ ð5Þ

where Cs is the effect of atmospheric CO2 concentration on GPPC
35,37. Γ� is

the CO2 compensation point in the absence of dark respiration (ppm) and
Ci is the CO2 concentration in the intercellular air spaces of the leaf (ppm),
which is the product of the atmospheric CO2 concentration (Ca) and the
ratio of internal to ambient CO2 in the leaf (χ)8,58. χ is calculated by

χ ¼ ϒ
ϒþ ffiffiffiffiffiffiffiffiffiffi

VPD
p ð6Þ

ϒ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

356:51 ×K
1:6 × η�

s

ð7Þ

K ¼ Kc × 1þ Po

Ko

� �

ð8Þ

Kc ¼ 39:97 × e
79:43 × ðTa�298:15Þ

298:15×R×Ta ð9Þ

Ko ¼ 27480 × e
36:38 × ðTa�298:15Þ

298:15×R×Ta ð10Þ

where Kc (Pa) and Ko (Pa) are theMichaelis-Menten coefficient of Rubisco
for carboxylation and oxygenation, respectively8. Po is the partial pressure of
O2 (Pa). R is the molar gas constant (8.314 J mol−1 K−1), Ta is air
temperature, and η� is the viscosity of water as a function of air temperature
relative to its value at 25�C59.

PEM3. The Max Planck Institute for Biogeochemistry (MPI-BGC)
model60 includes the effects of temperature, VPD, atmospheric CO2

concentration, soil moisture (W), light intensity (L), and cloudiness

through an index (CI) on GPPC. It evaluates GPPC as

GPPM3
C ¼ LUEM3

opt × PAR× FPAR× f M3
T × f M3

W × f M3
VPD;CO2 × f

M3
L × f M3

CI

ð11Þ

f M3
VPD;CO2 ¼ ek×

Ca0
Ca

� �Ck
×VPD

� �

× 1þ Ca � Ca0

Ca � Ca0 þ cm

� �

ð12Þ

Where k is the sensitivity to VPD changes, Ca0 is the minimum optimal
atmospheric CO2 concentration, Ca is the atmospheric CO2 concentration,
Ck is the sensitivity to atmospheric CO2 concentration changes, and cm is
the CO2 fertilization intensity indicator61.

§2 input data for PEMs
Two climate data sets are used to force the PEMs – (1) GMAOMERRA-2
and (2) ECMWF ERA-5. Additional climate data required by PEM3 are
obtained fromGLDAS NOAH-2.1 (2001–2021). The climate data together
with sensor-independent (SI) FPARdata7 are harmonised to daily and 0.05o

resolutions to calculate GPPC with the three PEMs. Daily CO2 data from
NOAA were used to model the fertilisation effect. The variable LUE in
PEMs is land cover dependent, hence the MODIS landcover product62 is
used to identify the landcover in each pixel. The rest of the variables are pixel
dependent. All data are publicly available (see “Data Availability”
statement).

§3 Estimation of Optimal LUE
Optimal values of light use efficiency (LUEopt) for the 11 land covers are
estimated iteratively and separately for the three PEMs using annual GPPC
estimates basedon the averageof thenight-time (GPP_REF_NT_VUT)and
day-time (GPP_REF_DT_VUT) partitioning approaches from the FLUX-
NET2015 data set63. The number of GPPC estimates for each land cover
varies depending on thenumber of sites belonging to that land cover and the
numberof years forwhich estimates are available (SupplementaryTable S1).
The optimisation is done iteratively as follows.

Step 1: Model GPPC values corresponding to half the randomly
selected GPPC estimates are calculated by assuming LUE = 1 and using
GMAOclimate andSI FPARdata. Step2:An estimateofLUEopt is evaluated
by linearly regressing modelled GPPC against measured GPPC. Step 3:
Model GPPC values corresponding to the other half of GPPC estimates are
calculated using LUEopt estimated in Step 2. Step 4: The RMSE is calculated
by regressing themodelledGPPC values in Step 3 against the corresponding
observed GPPC values. Steps 1 to 4 are repeated 10,000 times to obtain
10,000 values of LUEopt and corresponding RMSE. LUEopt values corre-
sponding to the lowest 9,500 RMSE values are averaged to obtain LUEopt.
This process is repeated separately for each landcover and for the three
models – the resulting LUEopt values are given in Supplementary Table S2.

A comparisonofmodelled andobservations-basedGPPCvaluesbefore
and after optimisation is shown in Supplementary Fig. 1. The optimisation
procedure improved performance of PEM1 and 2, but not PEM3 for the
following reason. The original PEM3 contained parameters that varied at
the 0.05o pixel-scale. This version agrees well with flux tower based GPPC
estimates as the parameterswere tuned to those estimates. It however results
in global GPPC values nearly twice the other models and those reported in
literature. When PEM3 is reformulated in terms of landcovers, the agree-
ment with tower estimates degrades (Supplementary Fig. 1) but the geo-
graphical patterns and global totals match those of PEM1 and 2 (not shown
for brevity).

§4 Evaluations of PEMs
TheperformanceofPEMs is evaluated through comparisonswithdata from
theAmeriFlux estimates. These (SupplementaryTable S3) are different than
the FLUXNET2015 estimates used to optimise the LUE variable of the three
PEMs (§3). GPPC values from the three PEMs compare satisfactorily
(R2 > 0.54 and RMSE < 483.64 g C m−2 yr−1) with tower estimates
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(Supplementary Fig. 2). These results are similar to those in the literature
regarding the performance of PEMs in general64–67.

§5 Comparison of GPPC between PEMs
Modelled annual GPPC from the three PEMs forced with two climate data
sets varies between 120 and 135 Pg C yr−1 (Supplementary Table S4). The
agreement between the three PEMs at 445BELMANIP2.1 test sites68 is good
(Supplementary Fig. 3; R2 > 0.90 and RMSE between 251 to 327 gC m−2

yr−1). Average annual GPPC from this ensemble of three PEMs forced with
two climate data sets is used throughout this article.

§6 Comparison of GPPC from PEMs with Peer GPPC products
The modelled ensemble average GPPC (three PEMs and two climate for-
cings) is compared to four other published global-scale GPPC data sets for
consistency. These GPPC data sets are independent of one another. The
GOSIF GPPC product is generated using relationships between satellite-
measured Solar-Induced chlorophyll Fluorescence (SIF) and observed
GPPC

23. The Random Forest (RF) GPPC product is generated from a
combination of a nested machine learning model and a theoretical photo-
synthesis model26. The FLUXCOM and X-BASE FLUXCOM GPPC pro-
ducts are a result of upscaling approaches based on machine learning
methods that integrate flux tower estimates, satellite remote sensing, and
meteorological data27,28. The modelled PEM ensemble average GPPC com-
pares well to all four published data sets (Supplementary Fig. 4 and Sup-
plementaryTable S5). The comparisons at BELMANIP2.1 test sites indicate
R2 > 0.91 and RMSE between 224 to 277 g C m−2 yr−1 (Supplemen-
tary Fig. 5).

§7 Dynamic Global Vegetation Models (DGVMs)
Aproject comprising of an international ensemble ofDGVMsknown as the
“Trends and drivers of the regional scale terrestrial sources and sinks of
carbon dioxide” (TRENDY) quantifies land biophysical exchange processes
and biogeochemistry cycles24. Output at monthly resolution from
TRENDYv12 simulations with varying land use change, climate, and CO2

(S3) of the following 18 models is used in this article: CABLE-POP,
CLASSIC, CLM5.0, DLEM, E3SM, EDv3, IBIS, ISBA-CTRIP, JSBACH,
JULES, LPJ-GUESS, LPJmL, LPX-Bern, OCN, ORCHIDEEv3, SDGVM,
VISIT, and YIBs.

§8 CMIP6 Earth SystemModels
The sixth CoupledModel Intercomparison Project (CMIP6) is the latest to
use a suite of Earth SystemModels (ESMs) to produce global simulations of
the past, current, and future climate4,25. Monthly output from
CMIP6 simulations from the following sevenESMs are used in our analyses:
ACCESS-ESM1-5, CanESM5, CanESM5-CanOE, EC-Earth3-CC, GFDL-
ESM4, MPI-ESM1-2-LR, and NorESM2-LM. Four of these models that
included an interactive terrestrial Nitrogen cycle demonstrated improved
GPPC simulations (ACCESS-ESM1-5, EC-Earth3-CC, MPI-ESM1-2-LR,
and NorESM2-LM)61. All ESMs included dynamic vegetation models.
These DVGMs are a subset of the TRENDY DVGMs described in §7. The
representation and evaluation of the terrestrial carbon cycle in thesemodels
is described inGier et al.69. SimulatedGPPC andLAI fromhistorical (2001 to
2014) and projection (2015−2100) periods are analysed in this study. The
latter are for three emission scenarios – Shared Socio-economic Pathways
(SSPs) 2-4.5, 3-7.0 and 5-8.5.

§9 Leaf Area Index Data
Two publicly available LAI data sets are used in this study: a sensor inde-
pendent LAI data set7 and the GLASS LAI data set39,42. The data sets are
derived independently fromMODIS and other satellite-based sensors with
algorithms that have been well tested over the past three decades70–73. The
two LAI datasets exhibited similar spatial and trend distributions, showing
no significant discrepancies in most regions7,39,42,72. The LAI data are not
used in the calculation of GPPC reported in this article. LAI values from the
two data sets are averaged and interpolated from 8-day to daily resolution.

This mean LAI data set was used in this study to avoid large uncertainties
that would arise if SI LAI/FPAR were directly used as input for GPPL
calculations.

§10 Calculation of GPPL
Leaf photosynthetic carbon assimilation rate, GPPL (g C m−2 leaf area
day−1), is calculated as the ratio of daily GPPC to daily LAI. In the case of
PEMs, GPPL is calculated with the ensemble average GPPC from the three
models (§1) forced with two climate data sets (§2) and satellite-based LAI
(§9). Theoretically, the non-linear LAI-FPAR relationship has varying
effects onGPPL across sparse and dense canopies, primarily by altering light
distribution on leaves due to changes in vegetation structure21,22. Therefore,
this studywill clarify the light-related effects onGPPL changes based on this
non-linear LAI-FPAR relationship. In the case ofGOSIF,GPPL is calculated
with GPPC from observations-based GOSIF data set23 and satellite-based
LAI (§9). In the case of TRENDYmodels (§7) andCMIP6ESMs (§8), GPPL
is calculated with each model simulated GPPC and LAI. These SIF-based
andmodel-basedGPPL estimates can be used to independently corroborate
the accuracy of GPPL obtained from the PEMs.

§11 Sensitivity Analyses with PEMs
Sensitivity simulations are performed with PEMs following the TRENDY
protocol3 to quantify the contributions of the CO2 fertilisation effect (CFE),
climate change and FPAR on gross primary production at canopy (GPPC)
and leaf scale (GPPL). TheCFE is quantified through simulation S1 by using
constant climate (2001−2003 average), FPAR, and landcover from year
2001 and time-varying observed CO2 concentration for the period
2001–2021. The climate effect is quantified as the difference between
simulations S2 and S1, where S2 is performed with FPAR and landcover
from year 2001 and time-varying observed CO2 concentration and climate
for the period 2001–2021. Finally, the effect of FPAR is quantified as the
difference between simulations S3 and S2, where S3 is performedwith time-
varying observed CO2 concentration, climate, FPAR and landcover for the
period 2001–2021. All simulations are performedwith the three PEMs (§1)
and two climate data sets (§2) and the ensemble average GPPC is used in
further analyses. GPPL in simulations S1 and S2 is calculated as the ratio of
GPPC to LAI in year 2001 at the daily scale during the growing season
(GPPC > 0 and LAI > 0.1). It is calculated using time-varying LAI during
2001–2021 in simulation S3. Notably, land cover information in S3 changes
only in conjunction with LAI/FPAR, and the FPAR effect implicitly
incorporates land use/land cover changes. Thus, one limitation of this study
is that the influence of land use/land cover changes in the PEM model
cannot be directly calculated.

The coupled carbon-climate systems includes complicated linkages
betweenvarious components andprocesses via feedbacks and lags14,74,75. The
more complex dynamicmodels, TRENDYDGVMs (§7) andCMIP6 ESMs
(§8), include some but not all of the known linkages. Sensitivity simulations
similar to those described above are available from TRENDY24, however
these are not used because of differences, relative to observations, in mod-
elled LAI distribution across the entire vegetated area, both in magnitude
and seasonal course. The PEMs have the advantage of incorporating mea-
sured data (CO2, Climate and FPAR)while also being simple. Thesemodels
capture the direct effects of these variables onprimary production. Thus, the
sensitivity simulationswith PEMs serve the stated goal of understanding the
observed spatial patterns of GPPL to a first order.

Data availability
All data used to support the findings of this study are publicly available.
They can be obtained as follows: PEM GPP data – doi.org/10.5281/
zenodo.13989451; GMAO MERRA-2 data – gmao.gsfc.nasa.gov/reana-
lysis/MERRA-2; ECMWF ERA-5 data – cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-single-levels; GLDAS NOAH 2.1 data –
disc.gsfc.nasa.gov/datasets?keywords=GLDAS; SI FPAR data – doi.org/
10.5281/zenodo.8076540; FLUXNET2015 data – fluxnet.org/data/flux-
net2015-dataset/; AmeriFlux data– ameriflux.lbl.gov/ data/download-
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data/; GOSIF GPP data – data.globalecology.unh.edu/data/GOSIF_v2/;
RF GPP data – zenodo.org/records/10018475; FLUXCOM GPP data –
fluxcom.org/; FLUXCOM-X GPP data – meta.icos-cp.eu/collections/
AYj7-lwcdCLnBXJDoscxQZou; TRENDY are available on request from
TRENDY coordinator S. Sitch (s.a.sitch@exeter.ac.uk; CMIP6 simula-
tions – aims2.llnl.gov/search; SI LAI data – https://doi.org/10.5281/
zenodo.8076540; GLASS LAI data – www.glass.umd.edu/index.html;
CO2 concentration data –gml.noaa.gov/ccgg/trends/; Aridity index –
figshare.com/articles/dataset/Global_Aridity_Index_and_Potential_
Evapotranspiration_ET0_Climate_Database_v2/7504448 MCD12Q1 –
ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/
MCD12Q1.
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