
RESEARCH ARTICLE

Carbon system state determines warming

potential of emissions

Alexander J. WinklerID
1,2*, Ranga Myneni3, Christian Reimers1, Markus Reichstein1,

Victor Brovkin4,5

1 Max-Planck-Institute for Biogeochemistry, Jena, Germany, 2 Guest at Max-Planck-Institute for

Meteorology, Hamburg, Germany, 3 Department of Earth and Environment, Boston University, Boston, MA,

United States of America, 4 Max-Planck-Institute for Meteorology, Hamburg, Germany, 5 Center for Earth

System Research and Sustainability, University of Hamburg, Hamburg, Germany

* awinkler@bgc-jena.mpg.de

Abstract

Current strategies to hold surface warming below a certain level, e. g., 1.5 or 2˚C, advocate

limiting total anthropogenic cumulative carbon emissions to*0.9 or*1.25 Eg C (1018

grams carbon), respectively. These allowable emission budgets are based on a near-linear

relationship between cumulative emissions and warming identified in various modeling

efforts. The IPCC assesses this near-linear relationship with high confidence in its Summary

for Policymakers (§D1.1 and Figure SPM.10). Here we test this proportionality in specially

designed simulations with a latest-generation Earth system model (ESM) that includes an

interactive carbon cycle with updated terrestrial ecosystem processes, and a suite of CMIP

simulations (ZecMIP, ScenarioMIP). We find that atmospheric CO2 concentrations can dif-

fer by*100 ppmv and surface warming by*0.31˚C (0.46˚C over land) for the same cumu-

lated emissions (�1.2 Eg C, approximate carbon budget for 2˚C target). CO2 concentration

and warming per 1 Eg of emitted carbon (Transient Climate Response to Cumulative Car-

bon Emissions; TCRE) depend not just on total emissions, but also on the timing of emis-

sions, which heretofore have been mainly overlooked. A decomposition of TCRE reveals

that oceanic heat uptake is compensating for some, but not all, of the pathway dependence

induced by the carbon cycle response. The time dependency clearly arises due to lagged

carbon sequestration processes in the oceans and specifically on land, viz., ecological suc-

cession, land-cover, and demographic changes, etc., which are still poorly represented in

most ESMs. This implies a temporally evolving state of the carbon system, but one which

surprisingly apportions carbon into land and ocean sinks in a manner that is independent of

the emission pathway. Therefore, even though TCRE differs for different pathways with the

same total emissions, it is roughly constant when related to the state of the carbon system,

i. e., the amount of carbon stored in surface sinks. While this study does not fundamentally

invalidate the established TCRE concept, it does uncover additional uncertainties tied to the

carbon system state. Thus, efforts to better understand this state dependency with observa-

tions and refined models are needed to accurately project the impact of future emissions.
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Introduction

The near-linear translation of cumulative emissions to surface warming implies TCRE as being

independent of the timing of emissions and that the response of the carbon-climate system

does not depend on the temporal trajectory of previous emissions [1–7]. However, this could

likely be an artifact of quasi-exponential forcing of models lacking a realistic representation of

terrestrial biospheric processes and full coupling in translation of carbon emissions to CO2 con-

centration [8, 9] (emission- versus concentration-driven). In particular, accounting for a land

carbon sink modulated by processes that respond to emitted carbon on different time scales

and resultant changes in atmospheric residence time can imbue TCRE with pathway depen-

dence. These shortcomings may introduce previously unconsidered uncertainties into TCRE

and the resulting remaining carbon budgett [2, 10–14], potentially affecting efforts to achieve

surface warming targets outlined in the Paris Agreement [15]. In the following, we detail these

shortcomings and outline the ESM simulations designed to address them in this study.

Shortcomings in the prevailing modeling paradigm

CO2 emissions translate into a change in global temperature, i. e., TCRE, primarily via three

key processes: terrestrial and oceanic CO2 uptake, the radiative forcing due to atmospheric

CO2, and ocean heat uptake [7, 16]. These processes are governed by complex nonlinear mech-

anisms, but they appear to balance each other, so that TCRE emerges to be a constant in the

coupled climate-carbon cycle system as shown by many modeling exercises [7, 10, 16]. How-

ever, the TCRE proportionality and its underlying properties may only hold for the prevailing

modeling paradigm and because of the simplifications made in most modeling exercises, as an

analysis of simulations of CMIP5 generation Earth system models has already shown [9].

Firstly, the prevailing modeling paradigm, e. g., in the Coupled Climate Carbon Cycle

Model Intercomparison Project community (C4MIP) [17, 18], is to force the system with a

prescribed atmospheric CO2 timeline (concentration-driven runs) which suppresses the car-

bon cycle feedback to atmospheric CO2 as opposed to emission-driven runs. This paradigm

tenaciously persists as it is assumed that the feedback is linear and thus can be reconstructed

from concentration-driven runs [13, 19, 20]. However, Boer et al. [21] already demonstrated

that the complexity and nonlinearity of the system in fully-coupled emission-driven runs can-

not be simplified to a linear behavior. Accordingly, a recent paper reasserts the need for emis-

sions-driven climate projections in the upcoming CMIP7 [22].

Secondly, the ESM modeling community focuses on studying TCRE in forcing trajectories

that follow a (quasi-)exponentially increasing CO2 concentration (e. g., 1pctCO2 and RCP8.5

forcing) [13, 18–20]. Many key features of TCRE, e. g., the assumption of the linear carbon-

cycle feedback, might only hold for this specific scenario. Raupach [8] has analyzed in detail

the special case of exponential forcing of the climate carbon cycle and has shown that many

aspects of TCRE are scenario specific.

Thirdly, another key shortcoming of TCRE research until today is the focus on atmo-

sphere-ocean coupling and the use of simplified modelling approaches therein, such as analyti-

cal models [2] or so-called ESMs of intermediate complexity [EMICs; e. g., in] [3, 5, 23–25].

While these methods have advanced our understanding by revealing potential non-linearities

and state dependency in TCRE, e.g., [26–28], the latest studies employing comprehensive

ESMs in investigating pathway dependence in fully-coupled emission-driven simulations date

back already a decade [12, 29, 30]. These ESM used only a rudimentary representation of the

terrestrial biosphere, overlooking vegetation dynamics. Winkler et al. [9], however, suggested

that those models from the last generation of ESMs (CMIP5 models) with a more comprehen-

sive representation of the terrestrial biosphere reflect strong pathway and state dependency in

PLOS ONE Carbon system state determines warming potential of emissions

PLOS ONE | https://doi.org/10.1371/journal.pone.0306128 August 1, 2024 2 / 24

amount of data is too large, raw model output from

the individual emission pathway simulations using

MPI-ESM1-2-LR is only available upon request

from the corresponding author. Code and

documentation for MPI-ESM version 1.2.01

(mpiesm-1.2.01-release, revision number 9234)

for scientific users can be obtained at https://code.

mpimet.mpg.de/projects/mpi-esm-license.

Analysis and plotting scripts are available at public

repositories (upon publication).

Funding: The study was funded by the Deutsche

Forschungsgemeinschaft (DFG, German Research

Foundation) under Germany‘s Excellence Strategy

– EXC 2037 ’CLICCS - Climate, Climatic Change,

and Society’ – Project Number: 390683824”. MR,

CR and AJW acknowledge support by the

European Research Council (ERC) Synergy Grant

”Understanding and Modelling the Earth System

with Machine Learning (USMILE)” under the

Horizon 2020 research and innovation 415

programme (Grant agreement No. 855187). RBM

and AJW acknowledge funding by the Alexander

von Humboldt Foundation. RBM also

acknowledges funding from NASA Earth Science

Divison. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0306128
https://code.mpimet.mpg.de/projects/mpi-esm-license
https://code.mpimet.mpg.de/projects/mpi-esm-license


carbon uptake processes. The C4MIP community also explicitly acknowledges that the lack of

accounting for dynamic vegetation in these ESMs could lead to overly conservative estimates

of the climate-carbon cycle feedbacks [18].

All three shortcomings outlined above, taken together, may be the reason why the climate-

carbon cycle feedback connected to vegetation dynamics, and the resulting state dependency

of the climate-carbon cycle system has been overlooked to date.

Earth system simulation of idealized pathways from emission to relaxation

It is illustrative to look at the buildup of atmospheric CO2 concentration during the emission

phase and its drawdown during the relaxation phase for different pathways of identical total

emissions to understand the evolution of the state of the carbon system and associated tran-

sient warming. Therefore, we conduct multiple emission-driven experiments with a state-of-

the-art Earth system model (CMIP6 version of MPI-ESM1–2-LR; Materials and methods) that

has updated terrestrial processes [31] (land nitrogen cycle, soil hydrology, vegetation carbon

dynamics, fires, etc.) and thus address all major shortcomings in previous modeling studies

mentioned above. We use four emission pathways (Fig 1a): constant (labelled “C”), exponen-

tial (“E”), negative parabolic (“P”) and linear decay to zero from a high initial value (“L”). The

total emitted carbon in all cases is fixed (Fig 1b), 1,200 Pg (1015 grams) C, which is approxi-

mately the total allowable carbon budget to hold surface warming to 2˚C above the pre-indus-

trial value [14] (details in Section Materials and methods). The duration of the emission phase

is either 100 or 200 years starting from the pre-industrial equilibrium of the system. These two

distinct time horizons facilitate separate examination of the temporal influence alongside the

diverse emission trajectories. The 200-year duration is similar to the 2˚C scenario

(Figure SPM.10 in IPCC [14]). For the 200-year experiments, we also simulate how the system

evolves for 300 years after emissions have ceased, the so-called relaxation phase. Although

these pathways are idealized, designed deliberately for the purposes of this study, both the

timescale and magnitude of forcing are comparable to historical emission rates [32] and

directly relevant to current climate change. Importantly, atmospheric CO2 is treated here as a

time- and space-variant tracer with its value determined by the residual of the various sinks

and sources in the Earth system.

Results

Pathway-dependent atmospheric CO2 accumulation and surface warming

during emission phase

The accumulation of CO2 in the atmosphere during the emission phase differs across the four

pathways even though the same amount of carbon is emitted in all cases (Fig 1c). Only those

pathways with declining emissions (“P” & “L”) show decreasing atmospheric CO2 concentra-

tion during the emission phase. Changing the duration from 200 years to 100 results in a 40–

60 ppmv difference (Fig 1c and S1 Fig). The concentration upon full emission is 100 ppmv

lower if most of the forcing is applied in the first half of the emission phase (75% in “L” vs. 20%

in “E” pathway; Fig 1c). This suggests a delayed response of processes responsible for atmo-

spheric carbon removal. These differences in CO2 concentration are consequential—they lead

to *0.31˚C difference in surface warming (0.46˚C over land and 0.25˚C over the oceans;

Fig 2). The inter-pathway differential is bigger in the longer 200-yr runs (*0.2˚C) compared

to the 100-yr runs (*0.1˚C), because processes operating on long timescales come into play in

the longer simulations (Table 1). Thus, the TCRE differs between pathways and duration

(Fig 1d) by as much as *0.26˚C/(Eg C)—almost twice this for land (S2 Fig). Here TCRE is
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estimated using a expanding-window regression approach (Materials and methods, [13])

based on the relationship of change in temperature versus cumulative emissions depicted in

Fig 2. Notably, peak warming can occur before even reaching net-zero CO2 emissions, as

observed in the “L” experiment (Fig 2b). The intransigence of TCRE with respect to duration

in the case of exponential forcing could be a specific anomaly, as discussed in [8], and not a

general property of the system (Fig 1d), as previously suggested [20, 33–35]. These differences

in atmospheric CO2 concentration and TCRE illustrate a dependency of the carbon-climate

system on the forcing sequence and pathway duration—note that cumulative emissions in all

cases are identical, viz. 1,200 Pg C.

Decomposition of TCRE in its individual responses within the coupled

carbon-cycle climate system

To elucidate the TCRE, we dissect it into its key components: physical climate feedbacks, plan-

etary heat uptake, radiative forcing, and carbon cycling (Materials and methods, [13]). First,

Fig 1. Change in atmospheric CO2 concentration, and thus surface warming, differs significantly across the different pathways for the same amount

of emitted carbon. a The colored lines depict the four different pathways with constant (blue), negative parabolic (green), linearly decreasing (yellow), and

exponentially increasing carbon emissions (red). The pathways are either realized over a time period of 100 or 200 years (x-axis). The annual emission rates

are given for the 200 year period as marked by the * (y-axis). b The colored lines depict the time integrals of the four pathways shown in a, where all

accumulate to 1.2 Eg emitted carbon in the final year. c Relationship between cumulative carbon emissions (x-axis) and the change in atmospheric CO2

concentration (Δ[CO2]) is shown for 200 years, where the colors refer to the four different pathways analogous to a. Each circle refers to one year and the

arrows annotate the final Δ[CO2] in each model experiment. See S1 Fig for a comparison of 100 vs 200 year runs. d Transient Climate Response to

Cumulative Emissions (TCRE) for different pathways (x-axis) and simulation periods (colors). TCRE is estimated using the conventionally used linear

regression method [13]. Shaded dots exhibit the spread in the estimates of the final five years when 1.2 Eg C have been emitted as well as among different

realizations. Pointplot with whiskers show the mean and standard deviation of the spread. Companion S2 Fig shows Land TCRE.

https://doi.org/10.1371/journal.pone.0306128.g001
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TCRE is broken down into the Transient Climate Response (TCR), representing surface tem-

perature change relative to atmospheric carbon change, and the airborne fraction (AF),

expressed in cumulative terms, quantifying atmospheric carbon change against cumulative

emissions (Eq 6). In accordance with Fig 1c, the AF reflects a strong pathway dependence

induced by the carbon cycle response (Fig 3b). For instance, in the “L” experiment, only 30%

Fig 2. Change in global mean surface air temperature across the different pathways and different periods for the same amount of emitted carbon. a–

d Relationship between cumulative carbon emissions (x-axis) and the change in global mean air temperature (ΔTair) is shown, where the colors refer to the

four different pathways analogous to Fig 1 and the markers refer to the different time periods. To reduce inter-annual variability, five-year averages across

the three realizations are displayed. The arrows annotate the final ΔTair in each model experiment. The dotted black line facilitates comparison between the

pathways.

https://doi.org/10.1371/journal.pone.0306128.g002
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of emissions remain airborne compared to 47% in the “E” experiment. The TCR buffers for

some pathway dependence induced by the carbon cycle response; hence, the “E” experiment

exhibits the least warming and “L” the most for the same atmospheric carbon burden (Fig 3c).

Next, TCR is decomposed into the constituents radiative forcing for given atmospheric carbon

change and the subsequent thermal response (Eq 7). The logarithmic relationship of the radia-

tive forcing to atmospheric CO2 explains only some of the pathway dependence (Eq 9; Fig 3d),

because the thermal response retains most of the TCR signal (compare Fig 3c & 3e). Finally,

the thermal response is factorized into the radiative forcing that heats the surface, i.e., the frac-

tion not absorbed by oceans, and the inverse physical feedback parameter λ−1, representing the

system’s radiative response to surface warming (Eq 8). The λ parameter encompasses the radi-

ative response components such as the Planck feedback, lapse rate, relative humidity, surface

albedo, and cloud feedback [13]. Only small deviations in λ−1 across pathways confirms the

expectation that underlying atmospheric processes respond to forcing on short time-scales

([36], Fig 3g). However, an analysis of the apportionment of radiative forcing into ocean

warming and surface warming points out notable differences among the pathways (Fig 3f).

While the oceans in the “E” experiment continue to absorb the majority of the trapped energy

in the final decades of the simulation, the ocean heat absorption in the “L” experiment already

ranges at a higher saturation level, thereby allocating more energy for surface warming.

The above follows the rationale of several studies, including [3, 10, 13, 37], which demon-

strated that the balance of oceanic heat and carbon uptake moderates pathway dependence in

TCRE. Our experiments, however, reveal a nuanced understanding of this relationship. We

find that considering an improved representation of the terrestrial biosphere, reflecting various

time-scales, introduces non-negligible pathway dependence into TCRE. In other words, ccea-

nic heat uptake compensates for some, but not all, of the pathway dependence induced by the

carbon cycle response (Fig 3b and 3g). Only small contributions to this compensating effect

can be attributed to the saturation of radiative forcing with increasing atmospheric CO2 levels

(Fig 3f). Now, we focus on a closer examination of the response and impact of the terrestrial

biosphere and its diverse timescales within the coupled system.

The lagged response of the terrestrial biosphere in anthropogenic carbon

sequestration

The sequestration of anthropogenic carbon in the atmosphere into the sinks involves several

inter-connected processes operating at different timescales [7, 38]. The timescales of oceanic

Table 1. Change in annual mean surface air temperature at the end of the emission phase compared to pre-industrial conditions, aggregated globally and separated

for land and ocean.

Pathways Period Constant Linear # Parabolic " # Exponential "

Unit yr K K K K

Global ΔTAir 100 1.85 ± 0.07 1.89 ± 0.03 1.94 ± 0.15 1.86 ± 0.11

200 1.78 ± 0.03 1.63 ± 0.05 1.72 ± 0.072 1.82 ± 0.08

Ocean ΔTAir 100 1.53 ± 0.05 1.59 ± 0.02 1.62 ± 0.11 1.56 ± 0.10

200 1.49 ± 0.02 1.37 ± 0.06 1.45 ± 0.05 1.52 ± 0.08

Land ΔTAir 100 2.64 ± 0.13 2.62 ± 0.05 2.74 ± 0.26 2.61 ± 0.15

200 2.49 ± 0.06 2.28 ± 0.08 2.39 ± 0.11 2.56 ± 0.09

Displayed values reflect the average over the last five years and three realizations for the four different pathways over 100 and 200 years. Uncertainty is indicated by one

standard deviation. See Fig 2 for temperature change evolution with increasing emissions in 100 and 200 year runs.

https://doi.org/10.1371/journal.pone.0306128.t001
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Fig 3. Decomposition of TCRE into planetary heat uptake, carbon cycling, and physical feedback parameter. a The evolution of

TCRE in the four different emission pathways over the last five decades in the 200-year simulations. Each thick line represents the

ensemble average of three realizations per experiment smoothed by a low-pass filter (Savitzky-Golay filter). Following the black

arrows, TCRE is first decomposed into the airborne fraction of emissions (expressed in cumulative terms, i. e., atmospheric carbon

change over cumulative emissions; b) and the Transient Climate Response (TCR, c). TCR is further decomposed into the radiative
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uptake are determined by processes that generally saturate with cumulative emissions, and

have been well studied [3, 39, 40]. Carbon is first absorbed into the mixed layer of the surface

ocean within years to decades. The carbon is then mixed through ventilation of the upper

ocean over decades to centuries. Transport to abyss by circulation occurs on slower timescales

of centuries, or even millennia.

The timescales of carbon sequestration are less clear in the case of terrestrial biosphere

where lagged processes tied to ecological succession, land-cover, and demographic vegetation

dynamics come into play [41, 42]. Our simulations with the CMIP6 version of the

MPI-ESM1–2-LR, one of the few models that resolves these processes [18], show pathway

dependent increases in tree cover and associated carbon pool (Fig 4a and 4b and S3a and S3b

Fig) commensurate with the forcing timeline. Slow processes of ecological succession and

land-cover change in response to shifting bioclimatic boundaries are mainly realized during

the emission phase when the forcing is applied earlier (“L” scenario) versus the relaxation

phase (“E” scenario), i. e., 300 years following cessation of emissions. The difference in forest

expansion is most pronounced at high latitudes and in semi-arid regions—climatic zones

where ecosystems respond strongly to climatic changes, which is in line with patterns of vege-

tation change seen in satellite observations [43]. Globally, this difference can be as large as

*4 × 106 km2 in tree cover (*100 Pg C of carbon pool) at the end of the emission phase

(Fig 4a and 4b). The maximal change in tree cover, however, tends to an asymptote in all sce-

narios given sufficient time in the relaxation phase (Fig 4c and S3c Fig). This asymptotic

change is equivalent to about 20% increase of the pre-industrial cover.

Pathway-dependent spillover effects into relaxation of atmospheric carbon

burden

To better understand the delayed response of the global carbon cycle and, in particular, the

role of the terrestrial ecosystems in it, we analyze a series of simulations of multiple ESMs, in

addition to those described above. To this end, we first examine the effects of different emis-

sion pathways on atmospheric CO2 drawdown during the relaxation phase, relying on simula-

tions from the ZecMIP ensemble (Zero Emissions Commitment Model Intercomparison

Project [44]; Materials and methods). The drawdown profiles are model- and pathway-specific

(Fig 5a and 5b). The variation in atmospheric carbon at the end of the emission phase is larger

across pathways than models (200 vs. 100 Pg C), which is contrary to expectation. All ZecMIP

models, which are forced exponentially, show a higher atmospheric burden for a lower total

amount of emitted carbon (1,000 Pg C) than the “C”, “P” and “L” scenarios (1,200 Pg C). The

drawdown in the exponential case is steepest due to relatively late forcing (80% during the sec-

ond half of the emission phase) suggesting spillover effects into the relaxation phase of lagged

processes responsible for carbon removal. The opposite is the case for the “L” pathway where

much of the forcing is applied earlier in the timeline (75% during the first half of the emission

phase). Notably, global cooling closely follows the trajectory of falling atmospheric CO2 in

each pathway (S4a and S4b Fig). Even a century after emission cessation, global mean surface

temperatures remain divergent by up to 0.2 K, gradually converging as atmospheric CO2 levels

continue to fall.

forcing of atmospheric carbon (d) and the thermal response (e), which is again decomposed into the fraction of radiative forcing

warming the surface (f) and the inverse climate feedback parameter (g). The equations displayed at the top of a, c and e describe the

three steps of the TCRE factorization and are explained in more detail in the Eqs 5 to 9 in Materials and Methods.

https://doi.org/10.1371/journal.pone.0306128.g003
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Fig 4. Vegetation dynamics explain the pathway dependence in the terrestrial carbon cycle. a Global map of the difference in the fraction of forested

area between the L and E pathways (yellow and red in b and c, respectively) at the end of the emission phase, calculated with MPI-ESM1–2-LR in the

200-year runs. b Change in vegetated area for forest, grass- and shrublands, and total vegetation for the different emission pathways. The whiskers represent

the uncertainty between the different realizations. c Change of forested area across the four pathways as a function of time for both the emission and

relaxation phases. Companion S3 Fig shows changes in associated carbon pools.

https://doi.org/10.1371/journal.pone.0306128.g004
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This spillover effect is demonstrated by fitting an impulse-response function to the decay of

atmospheric carbon [45, 46] (Materials and methods) S1 Table). A fit using two exponentials,

conceptually corresponding to two sink compartments, describes quite well the drawdown

process across the four pathways and all ZecMIP models (Fig 5a and 5b). The two decay rates,

τslow and τfast, reflect the respective e-folding times—the timescale over which the carbon con-

tent of the compartment decreases to 1/e of its initial value (*0.37). All ZecMIP models,

which are forced with the same pathway, agree on the timescales and cluster around 750 ± 250

yr for τslow and around 25 ± 4 yr for τfast. The decay rates, however, vary across the pathways

for the same model MPI-ESM1–2-LR (S2 Table, Fig 5b). For example, the slow (fast) timescale

is around 3500 yr (100 yr) in the “L” pathway (most forcing early in the emission phase) and is

Fig 5. Evolution of atmospheric excess carbon after emission stop and land carbon sensitivity to different CO2 growth rates in CMIP ensembles. a

Different colored dots depict different CMIP6 models in ZecMIP, where the lines refer to the best fit using a double exponential decay function (see

Materials and methods). b as in a but the colors refer to the different emission pathways and the ZecMIP run of the MPI-ESM1–2-LR model. c Change in

the land carbon pool at latitudes above 60˚N per a 100 ppm change in atmospheric CO2 across three different future scenarios in CMIP6 reflecting different

CO2 growth rates (x-axis; see Materials and methods). The black dot refers to the multi-model mean value for each growth rate, where the whiskers

represent the standard deviation. d as in c but for CMIP5. Companion S5 Fig shows changes in green leaf area index in CMIP6 and CMIP5 simulations.

https://doi.org/10.1371/journal.pone.0306128.g005
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only around 750 yr (50 yr) in the “E” pathway (most forcing later in the emission phase). We

employ a sampling of various parameter combinations to assess uncertainty when fitting

timescales of millennia to decay time series that only span centuries (S2 Table, Materials and

methods). It is important to note that the reported decay timescales do not claim correctness

but rather underscore the variation in atmospheric carbon decay among pathways, surpassing

the bounds of uncertainty. Thus, the emergent decay rates are not a model-specific property

but are contingent upon the forcing-induced state of the system, contrary to earlier reporting

[45], yet consistent with efforts to account for state dependency [26].

Carbon-climate system dependency on the forcing timeline as indicated in

other Earth system models

The profiles of atmospheric CO2 concentration during the emission and relaxation phases

depict a carbon-climate system dependency on the forcing timeline and pathway duration that

is largely tied to delayed processes in the terrestrial biosphere (Fig 4). This dependency can

also be gleaned from earlier CMIP5 and recent CMIP6 simulations. But first, a couple of cave-

ats are in order. These model intercomparison exercises lack dynamics arising from an interac-

tive carbon cycle as these are CO2 concentration driven simulations only [47, 48]. And, only a

few models in these ensembles include vegetation dynamics explicitly, e. g., inter-species com-

petition from changing bioclimatic constraints and nutrient resources. Nevertheless, it is pos-

sible to distill the response of natural vegetation, i. e., vegetation north of 60˚N, for a fixed

increase in CO2 concentration (Materials and methods, [9]). Most models show a stronger

increase in green leaf area and higher land carbon storage for scenarios (RCPs or SSPs) with

lower atmospheric CO2 growth rate, viz. cases where the same forcing (e. g., 100 ppmv) is

applied over a longer period (Fig 5c and 5d and S5a and S5b Fig)—approximately 50–75%

more carbon is stored in land sinks in low-growth rate scenarios than in high-growth rate sce-

narios. This time dependency in the terrestrial carbon cycle, hitherto overlooked, serves to

highlight the dependency of the system on forcing timeline.

Concomitant land and ocean CO2 uptake is independent of the emission

pathway

The time dependency in the carbon system arises principally due to lagged carbon sequestra-

tion processes in the oceans and on land. This dependency imbues a state to the carbon system,

and because of bidirectional linkages, to the climate system as well. The temporally evolving

state of the carbon system can be characterized by the cumulative carbon sink. This definition

embodies the requisite memory property of the system by integrating historical sink fluxes to a

pool of anthropogenic carbon, and thus responses to current and future emissions depend on

the trajectory of past emissions. The definition is also unambiguous because the sink shares of

land versus ocean emerge to be pathway independent, i. e., the ratio of land to ocean sink

shares follows the same nonlinear relationship irrespective of pathway properties, i. e., emis-

sions timeline, duration, and cumulative amount (Fig 6a and 6b). The land-ocean relationship

based on historical sink amounts derived from the Global Carbon Project, which synthesizes

observation-based and multi-model estimates, closely tracks the relationship identified by

MPI-ESM1.2-LR. In general, the land sink dominates the transient response and thus the time

dependency of the system during the emission phase (Fig 6a), in line with most CMIP models

[18]. Oceanic uptake begins to dominate in the relaxation phase as the land sink saturates

(Fig 6b). The pathway invariance breaks down when the land becomes a source suggesting a

fundamental change in the carbon system, centuries after cessation of emissions. Additional

simulations with an Earth System Model of Intermediate Complexity (EMIC) CLIMBER-2
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[49] corroborates the described behavior and the emergent pathway invariance during the

emission phase (S7a and S7b Fig). These lines of evidence support the robustness of the path-

way-invariance of land-to-ocean apportionment of sequestered anthropogenic carbon. How-

ever, this behavior of the carbon system must be further tested to better understand the

underlying dynamics and implications.

Carbon system state determines sink efficiency and warming potential of

emissions

The state of the carbon system is uniquely related to sink efficiency and TCRE (Fig 6c and 6d)

in a manner none of the aforementioned properties of emission pathway are. Here, sink

Fig 6. State of the carbon system, sink efficiency, and TCRE across the pathways. a Cumulative land and ocean sinks are juxtaposed across all

pathways and both simulation periods. The markers denote the final state at the end of the emission phase of 1.2 Eg C. The dashed line indicates equal

magnitude of cumulative land and ocean sinks. The black line refers to the average relationship inferred from GCP estimates, where the gray dots follow

plus/minus the joint uncertainty for both cumulative land and ocean sink. b As in a, but for the relaxation phase. c Sink efficiency is plotted as function

of the cumulative carbon sink for both emission and relaxation phase. The lines represent a nonparametric LOWESS fit, with the solid (dashed) line

referring to the 200-(100-)year simulations in the different pathways indicated by different colors. The black lines indicate the relationship when all

pathways are fitted at once. d TCRE is plotted as function of the cumulative carbon sink, i. e., the state of the carbon system. The colored lines represent

a linear fit for the four different pathways. The black lines indicate the relationship when all pathways and both periods are fitted linearly at once. The

grey shading reflects uncertainty based on an 95% confidence interval estimated using bootstrapping. Companion S7 Fig shows the land-ocean sink

relationship during the emission and relaxation phase for the EMIC CLIMBER-2.

https://doi.org/10.1371/journal.pone.0306128.g006
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efficiency kS is defined as the combined flux into the land (fL) and ocean (fO) for a given level

of atmospheric carbon (CA) loading [kS ¼
� fL � fO

CA
[8]; (Pg C yr−1) (Pg C)−1]. The uptake rate

into sinks, normalized for atmospheric carbon load, depends on how much of anthropogenic

carbon has already been sequestered, i. e., the state, and not on any particular property of the

emission pathway. For example, cumulative emissions of 1,200 Pg C via the four pathways

(“C”, “P”, “L” and “E” in Fig 1a) over a certain duration (100 or 200 years) result in very differ-

ent sink efficiencies (S6 Fig). That is because the cumulative sink amount, the state, varies sub-

stantially. However, at the same state of the system, the sink efficiencies converge among the

pathways (Fig 6c).

Transient surface warming in response to CO2 emissions also exhibits a similar relationship

to the state (Fig 6d), not surprisingly, given the latter’s relation to sink efficiency. Accordingly,

1,000 Pg of carbon emitted can result in different TCRE depending on the timing of emissions

(Fig 1d), however, TCRE will be approximately constant for the same amount of carbon stored

in sinks. For example, emissions of 1,200 Pg C in the “E” pathway over 200 years or in the “C”

pathway over 100 years result in approximately the same state of the carbon system and hence

similar TCRE. Other states in the physical climate system also evolve differently depending on

the emission pathway, such as processes controlling ocean heat uptake as also evidenced by the

TCRE decomposition analysis presented earlier (Fig 3; [3]). The variability in these processes

may explain the smaller deviations in the relationship in Fig 6d; however, the carbon cycle

state appears to dominate the TCRE pathway dependence.

Conclusions

We conclude that the state of the carbon system is central to understanding and solving prob-

lems associated with anthropogenic injection of carbon into the atmosphere. It is the state, not

any particular property of the emission pathway, that determines how much surface warming

can be expected for given emissions. In simpler words, it is not the amount emitted, but the

emitted-amount stored in sinks that determines the warming potential of emissions. Our

model experiments suggest that the effect of the state becomes apparent when considering

both a more comprehensive representation of the terrestrial and oceanic carbon cycle in a fully

coupled carbon-climate system. In this setting, the processes that translate CO2 emissions into

a change in global temperature no longer balance out, so that TCRE emerges as a constant.

Peak warming can even occur before reaching net-zero CO2 emissions, prompting new con-

siderations in the IPCC’s discourse on when to expect surface warming to stabilize [50, 51].

While these non-linearities do not invalidate TCRE, they do introduce additional uncer-

tainty. If the model-specific range of 0.25˚C for TCRE, as quantified in this study, were to

apply in all models in this fully-coupled setting, it could substantially widen the uncertainty

range of TCRE. For example, it might increase the IPCC’s “likely” range of uncertainty from

1.3˚C [14] to 1.55˚C, representing a 20% increase in uncertainty that linearly propagates into

carbon budget calculations. Given this heightened uncertainty and TCRE’s sole focus on sur-

face warming, questions arise regarding its practical utility in shaping climate policy. Carbon

emissions not only trigger surface warming but also affect various other aspects of the Earth

system with varying impacts across different emission pathways. For example, earlier emis-

sions might result in less surface warming, reduced ocean acidification, and sea-ice loss but

could lead to higher thermosteric sea-level rise compared to a later timing of emissions (S8

Fig). Thus, future research must explore this multi-faceted pathway dependence in the Earth

system and inform carbon budgets and emission trajectories to minimize the overall impact of

emissions.
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This study has shown that efforts must prioritize characterizing the current state of the car-

bon system using observations and refined models, such that the impact of future emissions

can be more accurately projected. Critical to this endeavor must be a focus on vegetation

dynamics and lagged responses in the terrestrial carbon cycle, as the number of models explic-

itly accounting for these processes has decreased in CMIP6, although the total number of par-

ticipating models has increased [18].

Materials and methods

Max-Planck-Institute Earth system model

MPI-ESM1.2 is the latest version of the state-of-the-art Max Planck Institute Earth System

Model, which participates in the sixth phase of the Coupled Model Intercomparison Project

(CMIP6) [52]. Mauritsen et al. [31] describe in detail the model developments and advance-

ments with respect to its predecessor, the CMIP5 version [53]. Here, we use the low resolution

(LR) fully coupled carbon/climate configuration (MPI-ESM1.2-LR), which consists of the

atmospheric component ECHAM6.3 with 47 vertical levels and a horizontal resolution of�

200 km grid spacing (spectral truncation at T63). The ocean dynamical model MPIOM is set

up on a bi-polar grid with an approximate grid-spacing of 150 km (GR1.5) and 40 vertical lev-

els. MPI- ESM1.2-LR includes the latest versions of the land and ocean carbon cycle modules,

comprising the ocean biogeochemistry model HAMOCC6 and the land surface scheme

JSBACH3.2 [54].

As opposed to the high-resolution configuration, the LR variant of the MPI-ESM includes

all the important processes relevant for longer time-scale changes of the land surface, such as a

thoroughly equilibrated global carbon cycle, dynamical vegetation changes, interactive nitro-

gen cycle, a process-based fire model (SPITFIRE), and an interactive coupling of all sub-mod-

els. Crucially for this study, only the LR variant allows us to simulate a full coupling of the

climate-carbon cycle system, i. e., to treat CO2 as a tracer in the system that is exchanged

between the atmosphere, ocean, and land. Specifically, we used the initial CMIP6 release of the

MPI-ESM version 1.2.01 (mpiesm-1.2.01-release, revision number 9234). The final CMIP6

release version includes further bug fixes, which only negligible influence long-term sensitivi-

ties of simulated land surface processes.

Idealized pathway experiments

We design four idealized pathways that all emit a total of 1.2 Eg C following very different

emission trajectories. We choose the amount of 1.2 Eg C as it approximates the reported

“allowable” total carbon budget to meet the 2 K warming target (�1233 Pg C; IPCC AR5 [14]).

In the four pathways, the budget is emitted at a constant emission rate (“C”), at an exponen-

tially increasing rate (“E”), at a negative parabolic rate (“P”), and at an initially high emission

rate that linearly decays to zero in the final year (“L”) starting from the pre-industrial steady

state (Fig 1a). The time integrals of all pathways, i. e., the cumulative emissions at the end of

the simulation, are identical (Fig 1b). We set the simulation time horizons to 100 as well as 200

years, where the latter is similar to the time horizon of the business-as-usual scenario for the 2

K carbon budget (compare Figure SPM.10 in the IPCC AR5 [14]). Although the pathways are

idealized, both the time scales and the magnitude of forcing (the maximum emission rate

approximates maximum observed emission rate) are within the range of the observed system

[32]. In detail, the four pathways are constructed as follows:
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Pathway I: Constant emissions. The first pathway assumes constant emissions over the

entire time period. The equations for emissions E1(t) for each year t can be represented as:

E1ðtÞ ¼
K
n

ð1Þ

where K is the total carbon budget, and n is the total number of years in the simulation period.

Pathway II: Linear decreasing emissions. In this pathway, emissions decrease linearly

over time. The equation for emissions E2(t) for each year t is given by:

E2ðtÞ ¼ a1t þ b ð2Þ

where a1 and b are coefficients determined such that the entire carbon budget K is emitted,

while the emission rate decreases linearly to zero at the end of the time period. These coeffi-

cients are calculated as follows:

b ¼
2K
n

and a1 ¼ �
b
n

Pathway III: Negative parabolic emissions. In this pathway, the emission rate follows a

negative parabolic trajectory over time. The equation for emissions E3(t) for each year t is

given by:

E3ðtÞ ¼ a2t2 þ bt ð3Þ

where a2 and b are coefficients determined such that emissions start at zero, increase in a para-

bolic fashion, and reach full emission of K at the end of the time period. These coefficients are

calculated as follows:

b ¼
6K
n2

and a2 ¼ �
b
n

Pathway IV: Exponentially increasing emissions. In this emission pathway, the emission

rate grows exponentially such that the entire carbon budget K is emitted by the end of the time

period. The emissions E4(t) for each year t can be expressed as:

E4ðtÞ ¼ a3 � ðert � 1Þ ð4Þ

where a3 is a coefficient determined to achieve the desired total emissions, r is the annual

growth rate (in this case, 1% or 0.01), and e is the base of the natural logarithm. The coefficient

a3 is calculated as:

a3 ¼
K

ðern � 1Þ=r � n

The CO2 emissions in each pathway are uniformly distributed across the global land surface.

However, high latitudes (> 65˚N/S) and high mountain ranges (> 2000m) must be excluded to

avoid numerical instabilities in the transport of carbon fluxes. These instabilities occur during

stable atmospheric conditions in the boundary layer at night and/or winter, preventing mixing

of emitted CO2 with higher layers of the atmosphere, resulting in strong vertical gradients in

the mixing ratio of CO2, causing the model to crash. Atmospheric CO2 is continuously derived

as the net result of prescribed emissions and land-atmosphere as well as ocean-atmosphere

fluxes as calculated by the respective submodel of MPI-ESM1.2-LR. To take the effect of climate
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variability into account, we conduct three realizations for each pathway and time period by

choosing different initial conditions from the CMIP6 pre-industrial control run.

Zero Emissions Commitment Model Intercomparison Project (ZecMIP) in

CMIP6

As a late addition to CMIP6 [52], the Zero Emissions Commitment Model Intercomparison

Project (ZecMIP) was designed to quantify the amount of unrealized warming after emission

cessation as a lagged response due to CO2 already emitted to the atmosphere [44]. The physical

and biogeochemical mechanisms underlying this delayed and therefore already “committed”

climate response, the so-called “zero emissions commitment,” are highly uncertain, but critical

for considering whether the remaining carbon budget needs to be adjusted for the unrealized

warming [6, 44].

Here we make use of the central and high-priority simulation in the ZecMIP ensemble

termed esm-1pct-brch-1000PgC. The esm-1pct-brch-1000PgC simulation is a zero-emissions

experiment with fully interactive CO2, branched from the exponential pathway of 1% CO2

annual increase (esm-1pctCO2) at the point of 1000 Pg C cumulative CO2 emissions [44].

Because the compatible carbon emissions are reconstructed from the concentration-driven

run 1pctCO2, the point at which 1000 Pg C of cumulative CO2 is reached in the esm-1pctCO2
run is model-specific and depends on the carbon sink strengths of the individual land and

ocean submodels. Assuming that about half of the emissions in the 1pctCO2 run remain in the

atmosphere in most models [13], the timing of branching-off is likely reached after 60 to 70

years. We only analyze the evolution of atmospheric CO2 in the output of fully coupled ESMs

and do not consider EMICs (Earth systems model of intermediate complexity) in the ZecMIP

ensemble, as they cannot represent certain pivotal processes. Please refer to [44] for detailed

descriptions of the experiments and participating models.

Model simulations of CMIP5 and CMIP6

We analyze climate-carbon simulations of ESMs participating in the fifth and sixth phase of

the Coupled Model Intercomparison Project, i. e., CMIP5 [47] and CMIP6 [52]. The model

output is available from the Earth System Grid Federation, ESGF (https://esgf-data.dkrz.de/

projects/esgf-dkrz/). Seven (eight) ESMs provide output for the variables of interest, i. e., leaf

area index (LAI) and net biome production (NBP), for simulations titled RCP4.5, RCP8.5,

1pctCO2 (SSP2–4.5, SSP3–7.0, 1pctCO2) in CMIP5 (CMIP6). The models with the most com-

plete representation of vegetation dynamics analyzed here are MPI-ESM-LR, MIROC-ESM,

HadGEM2-ES in CMIP5 and MPI-ESM1.2-LR and UKESM1–0LL in CMIP6. The individual

model setups and components are described in more detail in the specific Coupled Carbon

Cycle Climate Model Intercomparison Project (C4MIP) for both model generations [17, 18].

In CMIP5, several Representative Concentration Pathways (RCPs) have been formulated

describing different trajectories of greenhouse gas emissions, air pollutant production and

land use changes for the 21st century. These scenarios have been designed based on projections

of human population growth, technological advancement and societal responses [47, 55]. In

CMIP6, these scenarios are updated with new estimates of emissions and land use projections

produced with integrated assessment models and conflated with new future pathways of socie-

tal development, termed the Shared Socioeconomic Pathways (SSPs) [48, 52].

These RCP and SSP scenarios are CO2 concentration-driven simulations, thus variations in

carbon uptake of land and ocean have no effect on atmospheric CO2 concentration. However,

analyzing these simulations with different CO2 growth rates across the different scenarios, but

overall the same CO2 forcing and initial conditions, allows us to determine if other ESMs also
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exhibit timeline dependency. For both ensembles, we choose scenarios that follow a slow

(RCP8.5 and SSP2–4.5) and a medium-fast CO2 growth rate (RCP8.5 and SSP3–7.0). These

simulations were initialized with the final state of the historical run in each ensemble and are

simulated until the end of the 21st century. To obtain estimates for a rapid CO2 growth rate,

we also analyze output of the 1pctCO2 runs, initialized from a steady state of the pre-industrial

control run and with atmospheric CO2 concentration increasing by 1% each year until it qua-

druples the pre-industrial level.

As these sets of simulations also contain other forcing agents such as anthropogenic land-

cover and land-use changes in mid-latitudes and tropical regions, we have to focus on the high-

latitudes (> 60˚N) to distill the response of natural vegetation [9, 56]. The selection of latitudes

exceeding 60˚N to exclude land-use changes is justified, given historical and projected extensive

agricultural activities are located below this latitude [57]. We derive the changes in land carbon

sink, calculated as the time integral of the NBP flux, and leaf area index (LAI), as proxy for vege-

tation changes, in simulations where CO2 increases at different rates, but the overall increase is

the same (for CMIP5:� 155 ppm; for CMIP6:� 200 ppm). To obtain comparability between

CMIP5 and CMIP6, we report the results in form of sensitivities to 100 ppmv CO2 change.

Calculation and decompostion of TCRE

We derive and decompose TCRE primarily following the methodology detailed in Williams

et al. [13]. Throughout this study, TCRE is computed using three methods: the expanding-

window regression, delta, and a low-pass filter method. In the expanding-window regression

method, TCRE is estimated using the slope in regressing the change in surface temperature

against cumulative carbon emissions. The regression is computed iteratively in a expanding-

window approach to monitor the temporal evolution and the stability of the TCRE estimate,

excluding the initial ten years due to high natural variability. We report the average and stan-

dard deviation for the last ten regression estimates, i.e., estimates close to full emission, and for

all three realizations (Fig 1). The delta method calculates the change in surface warming rela-

tive to pre-industrial equilibrium, reporting mean and standard deviation over all three reali-

zation and final five years. For TCRE calculation, these values can be divided by the total

carbon emissions of 1.2 Eg C, while plain temperature deltas are included in Table 1 for com-

parability with other estimates based on the 2 K carbon budget. In the low-pass filter method,

we smooth year-to-year variability using a Savitzky-Golay filter and average the results across

the three realizations for each experiment, as shown in Fig 3a.

Next, we describe the step-by-step decomposition of TCRE as detailed in Williams et al.
[13]. This decomposition involves several equations, which reads as follows,

TCRE ¼
DTðtÞ
IEðtÞ

ð5Þ

¼
DTðtÞ
DCAðtÞ

� �
DCAðtÞ
IEðtÞ

� �

ð6Þ

¼
DTðtÞ
DFðtÞ

� �
DFðtÞ
DCAðtÞ

� �
DCAðtÞ
IEðtÞ

� �

ð7Þ

¼
1

lðtÞ
1 �

NðtÞ
DFðtÞ

� �
DFðtÞ
DCAðtÞ

� �
DCAðtÞ
IEðtÞ

� �

: ð8Þ
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The resulting equation describes the product of four terms: the inverse climate feedback

parameter 1

lðtÞ, the radiative forcing fraction allocated to surface warming 1 �
NðtÞ
DFðtÞ

� �
, the radia-

tive forcing per unit atmospheric carbon
DFðtÞ
DCAðtÞ

, and the airborne fraction
DCAðtÞ
IEðtÞ

. The radiative

forcing is estimated using the logarithmic dependence on atmospheric CO2, i.e.,

DFðtÞ ¼ a ln ð½CO2�ðtÞ=½CO2�ðt0ÞÞ; ð9Þ

where the radiative effective forcing coefficient a is diagnosed from a simulation of atmo-

spheric CO2 quadrupling (abrupt-4xCO2). This coefficient is determined by utilizing the y-

intercept of a regression fit for planetary heat uptake N(t) versus surface warming ΔT(t) [13,

58]. To account for curvature in the relationship [13, 59], only the first twenty years of model

output are used to calculate the fit. The ratios in Eq 8 are calculated using a low-pass filter

(Savitzky-Golay filter) to mitigate interannual variability.

Impulse-Response functions to predict atmospheric CO2 in relaxation

phase

Impulse-response functions are typically determined to describe the decrease in a substance

(response, here atmospheric carbon) following a perturbation at time t = 0 (impulse, here car-

bon emission) [60]. Generally, an impulse-response function (R) describes a decay process

that can be fitted by a sum of n exponentials, i. e., the superposition of multiple exponential

functions, and reads

RðtÞ ¼
Xn

i¼1

ai � exp
� t
ti

� �

for t � 0: ð10Þ

The value of R at a given time t is the fraction of the initial amount of a substance, here the

emitted carbon, that is still airborne. Accordingly, the removed fraction (1 − R) corresponds to

the amount of emitted carbon absorbed in the ocean and on land. The parameter ai refers to

the fraction of the emitted carbon that follows the decay associated with the e-folding time τi,
where

Pn
i¼1

ai ¼ 1. The e-folding time refers to the time-scale in years for the value of ai to

decrease to
1

e
of its initial value. For example, if a1 is 0.5 and τ1 is 100 years, then it takes 100

years for a1 to decay to� 0.185 (
0:5

e
).

Accordingly, the equation

CðtÞ ¼ C0
T � RðtÞ ¼ C0

T �
Xn

i¼1

C0
i

C0
T
� exp

� t
ti

� �

for t � 0 ð11Þ

describes the decay process of the total carbon that is airborne after emission cessation (C0
T),

where
C0

i

C0
T

divides the total pool into n sub-pools (C0
i ). For n = 2, the total airborne carbon is

divided into a fast (F) and a slow (S) time-scale compartment, and we can rewrite Eq 11 as

CðtÞ ¼ C0
F � exp

� t
tF

� �

þ C0
S � exp

� t
tS

� �

for t � 0 ð12Þ

where

C0
T ¼ C0

F þ C0
S ð13Þ
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and τF and τS are the e-folding times for respective compartments. Combining Eqs 12 and 13

we obtain

CðtÞ ¼ ZC0
T � exp

� t
tF

� �

þ ou 1 � Zð ÞC0
T � exp

� t
tS

� �

for t � 0 ð14Þ

where

Z ¼
C0

F

C0
T
: ð15Þ

Thus, the parameter η refers to the fraction of the total carbon pool (C0
T) that enters the fast

decay compartment (C0
F). We fit Eq 14 to the decay of atmospheric carbon as simulated in the

different pathways and ZecMIP runs (Methods Section Idealized Pathway Experiments and

Zero Emissions Commitment Model Intercomparison Project (ZecMIP) in CMIP6). Hence,

the approach has only three fitting parameters, namely a scalar η that divides the atmospheric

carbon excess into a fast and a slow pool, and the respective parameters τF and τS that deter-

mine the decay rates (e-folding times) of each pool. In a second fitting stage, we sample η from

the parameter space determined when η is also a fitting parameter, as listed in S1 Table, to

obtain more reliable uncertainty estimates for the parameters τF and τS (S2 Table). We use the

Python nonlinear curve fitting package LMFIT [61] to optimize the three parameters.

Supporting information

S1 Fig. Change in atmospheric CO2 concentration across the different pathways and dif-

ferent periods for the same amount of emitted carbon. a–d Relationship between cumulative

carbon emissions (x-axis) and the change in atmospheric CO2 concentration (Δ[CO2]) is

shown, where the colors refer to the four different pathways analogous to Fig 1 and the mark-

ers refer to the different time periods. The arrows annotate the final Δ[CO2] in each model

experiment. The dotted black line facilitates comparison between the pathways.

(TIF)

S2 Fig. Pathway dependence of the global carbon cycle response translates into different

warming potential of the land for a given emission. Transient Climate Response to Cumula-

tive Emissions (TCRE) for different pathways (x-axis) and simulation periods (colors), focus-

ing on the warming of the land surface. Land TCRE is estimated using the conventionally used

linear regression method [13]. Shaded dots exhibit the spread in the estimates of the final five

years when 1.2 Eg C have been emitted as well as among different realizations. Pointplot with

whiskers show the mean and standard deviation of the spread.

(TIF)

S3 Fig. Vegetation dynamics explain the pathway dependence in the terrestrial carbon

cycle. a Global map of the difference in the total forest carbon pool between the L and E path-

ways (yellow and red in b and c, respectively) at the end of the emission phase, calculated with

MPI-ESM1–2-LR in the 200-year runs. b Change in carbon pool for forest, grass- and shrub-

lands, and total vegetation for the different emission pathways. The whiskers represent the

uncertainty between the different realizations. c Change of forest carbon pool across the four

pathways as a function of time for both the emission and relaxation phases.

(TIF)

S4 Fig. Evolution of global mean surface air temperature across pathways after emission

stop. a Different colored dots depict the different emission pathways smoothed by a low-pass
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filter (Savitzky-Golay filter), where the lines represent a nonparametric LOWESS fit. b as in a,

but with atmospheric CO2 as x-axis.

(TIF)

S5 Fig. Leaf area sensitivity to different CO2 growth rates in CMIP ensembles. a Change in

leaf area index at latitudes above 60˚ N per a 100 ppm change in atmospheric CO2 across three

different future scenarios in CMIP6 reflecting different CO2 growth rates (x-axis). The black

dot refers to the multi-model mean value for each growth rate, where the whiskers represent

the standard deviation. b as in c but for CMIP5.

(TIF)

S6 Fig. Sink efficiency differs across pathways after emission cessation of the same amount

of carbon. Sink efficiency for different pathways (x-axis) and simulation periods (colors) at

the end of the emission phase. Shaded dots exhibit the spread in the estimates of the final five

years when 1.2 Eg C have been emitted as well as among different realizations. Pointplot with

whiskers show the mean and standard deviation of the spread.

(TIF)

S7 Fig. Partitioning of emissions into land and oceans sinks across the pathways in the

EMIC CLIMBER-2. a Cumulative land and ocean sinks are juxtaposed across all pathways.

The markers denote the final state at the end of the emission phase of 1.2 Eg C. The dashed

line indicates equal magnitude of cumulative land and ocean sinks. The gray and black lines

refer to the relationships inferred from MPI-ESM1.2-LR simulations and GCP estimates,

respectively. b As in a, but for relaxation phase. The Climate-Biosphere model (version 2)

CLIMBER-2 is an Earth System Model of Intermediate Complexity (EMIC) and consists of a

statistical-dynamical atmosphere component (51˚ × 10˚ spatial resolution), a 2D ocean com-

ponent with three zonally averaged basins, and a land component including dynamic vegeta-

tion [49]. The same model version of CLIMBER-2 is used, which was also used for the ZecMIP

runs [6].

(TIF)

S8 Fig. Pronounced pathway dependence in characteristic entities of the Earth system as

simulated by the MPI-ESM1–2-LR. a. Thermosteric sea-level change for given emission of 1

Eg C for different pathways estimated using a linear regression method analogous to TCRE in

Fig 1d; [13]. Shaded dots exhibit the spread in the estimates of the final five years when 1.2 Eg

C have been emitted as well as among different realizations. Pointplot with whiskers show the

mean and standard deviation of the spread. b as in a but for surface-ocean pH change. c as in a

but for sea-ice volume change.

(TIF)

S1 Table. Best-fit values for parameters of the double exponential decay function (see Eq

14).

(PDF)

S2 Table. Best-fit values for parameters of the double exponential decay function (Eq 14),

where η is sampled from the parameter space determined in S1 Table.

(PDF)
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