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A B S T R A C T

Carbon allocation in vegetation, particularly to leaves and roots responsible for resource assimilation, plays a 
crucial role in regulating the global carbon cycle and is highly sensitive to environmental changes. However, due 
to the limited observational data, the response of carbon allocation—particularly between resource-acquiring 
organs—to rapid global environmental changes remains unclear for global vegetation. State-of-the-art 
ecosystem models provide valuable insights into the spatiotemporal patterns of carbon allocation across 
global vegetation. In this study, we developed a weighted model average (WMA) by optimally integrating 
ecosystem models based on their performance in simulating the spatiotemporal changes in root and leaf carbon. 
The WMA well captured the satellite-observed leaf carbon trend and the spatial variations in root carbon along 
climate gradients (R2 

= 0.82). The WMA suggested global vegetation has increasingly allocated more carbon to 
roots than leaves (the trend of allometric scaling relations between leaf and root: 0.0014 ± 0.0013 g g-1 yr-1, p <
0.05) during 1982–2018. Elevated atmospheric CO2 concentration was the dominant driver of changes in root/ 
leaf carbon allocation globally (0.0010 ± 0.0005 g g-1 yr-1, p < 0.05), particularly in tropical regions. Climate 
change influenced carbon allocation in vegetation differently across regions, contributing to increased root 
carbon allocation in the Northern Hemisphere and enhanced leaf carbon allocation in tropical areas. Land use 
change led to more carbon being allocated to leaves than roots (-0.0003 ± 0.0006 g g-1 yr-1, p < 0.05). Overall, 
we tentatively quantified the changes in the carbon allocation to the leaf and root across global terrestrial 
vegetation under the dramatic environmental change based on WMA, which helps further understanding of the 
changes in the functioning of the terrestrial ecosystem and reasonable projection of changes in the future global 
carbon cycle.

1. Introduction

Vegetation carbon allocation is vital for the development and func
tioning of the terrestrial ecosystems. Within the vegetation components, 
organs perform a range of functions (Mokany et al., 2006; Poorter et al., 
2012) and influence the physiological functions. Specifically, leaf car
bon could partially account for terrestrial photosynthetic uptake (Kala 
et al., 2014; Zhao and Zhu, 2022; Zhu et al., 2016), stem carbon con
stitutes the hydraulic pathway (Poorter et al., 2012), and the root carbon 
as well as its coordination with soil microbial are associated with soil 

organic carbon through soil respiration (Borden et al., 2021; Dijkstra 
et al., 2021; Tian et al., 2010). Vegetation sustains optimal growth 
through carbon allocation to adapt to external stress. For example, it can 
increase belowground carbon allocation to maintain stable productivity 
under climate warming (Liu et al., 2018) or to sustain resilience after 
drought events (Hagedorn et al., 2016). From the perspective of carbon 
storage, carbon allocation influences the subsequent fate of carbon, as 
the vegetation tissues have different turnover rates, such as the 
long-lived organs (stem and coarse roots) and short-lived organs (leaf 
and fine roots). As a consequence, carbon residence time further 
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determines the terrestrial carbon budget (Luo et al., 2003). Recent 
studies emphasized the importance of carbon allocation in accurately 
estimating terrestrial carbon stocks and fluxes (Bloom et al., 2016; 
Friedlingstein et al., 1999; Friend et al., 2014; Ruehr et al., 2023; Vicca 
et al., 2012).

Vegetation carbon allocation reflects the priority of resource acqui
sition (Bloom et al., 1985; Thornley, 1972), and is sensitive to envi
ronmental changes (Dolezal et al., 2021; Meng et al., 2023; Song et al., 
2019; Zhou et al., 2020). Since the Industrial Revolution (IPCC, 2021), 
the availability of resources for vegetation has been altered by global 
environmental changes, such as elevated atmospheric CO2 concentra
tion, climate change, nitrogen deposition, and land use change. Leaves 
and roots, being resource-acquiring organs responsible for photosyn
thesis and the uptake of soil-based resources, respectively, are more 
sensitive to changes in resource availability compared to stems, which 
primarily provide structural support and biomass storage (Mokany et al., 
2006; Poorter et al., 2012). The changes in resource availability and the 
subsequent responses of leaves and roots affect the structure and func
tioning of vegetation (Pearcy et al., 2005; Poorter et al., 2012).

The lack of spatiotemporally consistent datasets on vegetation car
bon pools at the global scale (Bloom et al., 2016; Fatichi et al., 2019), 
especially the global root carbon measurements (Song et al., 2017), 
prevents further study about the changes and mechanisms of carbon 
allocation. Various methods, such as meta-analysis (Eziz et al., 2017; 
Yue et al., 2021; Zhou et al., 2020), formula derivation (Palmroth et al., 
2006), and manipulation experiments (Liu et al., 2018) have been used 
to study carbon allocation among different tissues. Existing studies on 
carbon allocation strategy are widely focused on plant scale (Aarssen 
and Taylor, 1992; Shipley and Meziane, 2002) due to the data avail
ability (Mahmud et al., 2018). There is a long-running debate on 
whether carbon allocation strategies are fixed or varied along environ
mental gradients (McCarthy and Enquist, 2007).

Two main carbon allocation theories are optimal partitioning theory 
(Bloom et al., 1985; Thornley, 1972) and allometric partitioning theory 
(Müller et al., 2000). The premise of optimal partitioning theory is that 
under conditions of resource limitation (e.g., of water, nutrients, or 
light), plants will allocate more biomass to the organs most stressed by 
the lack of the limiting resource (Bloom et al., 1985). The allometric 
biomass partitioning theory is based on allometric theory, which posits 
that the allometric relationships between different tissues remain stable 
throughout the life cycle (Müller et al., 2000). Currently, all carbon 
allocation strategies integrated into ecosystem models follow funda
mentally empirical descriptions (Franklin et al., 2012) with either of the 
above two theories or their combination (see Table 1).

Considering the uncertainties and large discrepancies that existed in 
the ensemble of state-of-the-art models (Eyring et al., 2019; Knutti et al., 
2017), the conventional method is to calculate the multi-model 
ensemble mean (MMEM). This approach treats each model equally 
and is able to eliminate uncertainties in model intercomparison (Knutti, 
2010; Knutti et al., 2017; Zhu et al., 2016). However, MMEM fails to take 
the models’ performance into account (Flato et al., 2013) and neglects 
the interdependence among models (Flato et al., 2013; Knutti et al., 
2017). As previously mentioned, ecosystem models share formulations 
on the basis of two theories to describe carbon allocation (Table 1). 
Consequently, these models are not truly random or independent in the 
carbon allocation module (Fisher et al., 2014). Alternatively, the "reli
ability ensemble average" approach employs a weighting scheme based 
on model performance (Giorgi and Mearns, 2002). As better-performed 
models have larger weights, the weighting average scheme can boost the 
confidence of projections over MMEM and individual models (Exbrayat 
et al., 2018; Eyring et al., 2019; Knutti et al., 2017), and has been used to 
investigate the historical changes and future projection of vegetation 
growth under global change (Zhao et al., 2020; Zhu et al., 2017).

This study aims to investigate the changes and driving mechanisms 
of carbon allocation between leaf and root of global vegetation from 
1982 to 2018. Firstly, we evaluated the spatial and temporal changes in 
leaf carbon and root carbon of seven ecosystem models. Then, we 
optimally integrated seven state-of-the-art ecosystem models through a 
weighted average scheme based on the model performance. Further, we 
investigated the carbon allocation between leaf and root through the 
weighted model average. Finally, we disentangled the contributions of 
increasing CO2 concentration, climate change, land cover and land use 
change on carbon allocation between leaf and root.

2. Data and methods

2.1. Ecosystem models

We obtained ecosystem model outputs from the "Trends and drivers 
of the regional scale sources and sinks of carbon dioxide" project phase 8 
(TRENDY v8) from 1982 to 2018. Seven ecosystem models including 
CABLE-POP, CLASS-CTEM, CLM5.0, ISAM, LPX-Bern, ORCHIDEE, and 
ORCHIDEE-CNP were selected and two target variables, i.e., root carbon 
density and leaf carbon density, were extracted. Three types of alloca
tion strategies were used in the models (Table 1). In optimal models, 
carbon was allocated to the resource-limited organs. In allometric 
models, a fixed fraction of NPP was imposed on each organ. In optimal- 
allometric models, the allocation fractions of leaf and root were deter
mined with external stress, combined with an extra constraint among 
leaf area and sapwood area. The root carbon density and leaf carbon 
density in the models were represented by annual maximum values. 
Root carbon has accounted for both fine and coarse roots.

A series of factorial simulations were conducted by TRENDY v8 
including simulation S0 to S3. In simulation S0, models were run 
without forcing change, aside from recycling climate means and vari
ability from the 1920s. In simulation S1, models were forced with his
torical CO2 concentrations and recycling of climate means and 
variability from the 1920s. Both atmospheric CO2 concentrations and 
climate were variable in simulation S2. In simulation S3, models were 
forced with CO2 concentrations, climate change, and changes in land use 
and land cover. The multi-model ensemble estimates for root and leaf 
carbon were derived from S3, and we regarded S3 as the situation closest 
to the historical record. The effects of elevated CO2 concentrations, 
climate change, and land use and land cover changes on carbon allo
cation between root and leaf were derived from S1 – (minus) S0, S2 – S1, 
and S3 – S2, respectively.

2.2. Leaf and root carbon data

Leaf carbon was calculated based on the relationship between the 

Table 1 
TRENDY models used in this study.

Model Carbon allocation strategy Reference

CABLE-POP Allometric, fixed allocation based on 
phenology and functional type.

(Wang et al., 2009)

CLASS- 
CTEM

Optimal, according to water availability 
and light, allocation is a constant based on 
leaf onset or limiting conditions.

(Asaadi et al., 2018; 
Krinner et al., 2005)

CLM5.0 Allometric, allocation is a constant for 
woody plants based on functional types.

(Lawrence et al., 
2019)

ISAM Optimal, according to water, light, and 
nitrogen availability, allocation is a 
constant based on leaf onset or limiting 
conditions.

(Arora and Boer, 
2005; El-Masri et al., 
2013)

LPX-Bern Optimal–allometric, leaf area-to-sapwood 
area ratio is fixed, leaf and root biomass 
are controlled by the functional type- 
dependent leaf-to-root mass ratio, and N 
and water availability.

(Sitch et al., 2003)

ORCHIDEE Optimal, determined by water, light, and 
nitrogen availability

(Krinner et al., 2005)

ORCHIDEE- 
CNP

Optimal, determined by water, light, and 
nitrogen availability

(Krinner et al., 2005; 
Sun et al., 2021)
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leaf area index (LAI) and specific leaf area (SLA) (1). We used the 
average of three satellite-observed LAI products of global vegetation for 
the period 1982–2016, including the Global Inventory Modelling and 
Mapping Studies third-generation LAI product (GIMMS LAI3g) (Zhu 
et al., 2013), the Global Mapping LAI product (GLOBMAP LAI) (Liu 
et al., 2012), and the Global Land Surface Satellites LAI product (GLASS 
LAI) (Xiao et al., 2014). The global SLA dataset was created by extrap
olating site-based observations to the global scale using a Bayesian 
spatial model (Butler et al., 2017). We compared model-derived esti
mates of leaf carbon to observed leaf carbon data. 

Leaf carbon = LAI/SLA (1) 

Where LAI refers to the maximum annual values (m2 m-2), and SLA is 
in m2 g–1. Root carbon was calculated from the root mass fraction (RMF) 
and aboveground biomass (AGB) (2). RMF was estimated using Random 
Forest models, based on the relationship between site-level RMF mea
surements and multiple environmental layers (Ma et al., 2021). AGB 
data was provided by the Intergovernmental Panel on Climate Change 
(IPCC) Tier 1 (Ruesch and Gibbs, 2008). Then the root carbon was 
calculated as half of the root biomass based on an empirical relationship 
(Buffam et al., 2011). 

Root biomass = AGB ×
RMF

1 − RMF
(2) 

2.3. Meteorological data sets

To analyze the spatial pattern of root carbon and root/leaf carbon 
allocation along the climate zones, the meteorological datasets were 
acquired from Climate Research Unit (CRU) TS4.03 (https://crudata. 
uea.ac.uk/cru/data/hrg/cru_ts_4.03/). CRU TS4.03 provided long-term 
global coverage meteorology data variables with 0.5◦ × 0.5◦ spatial 
resolution (Harris et al., 2020). They were used in the historical forcing 
data in TRENDY v8 from 1901 to 2018. Given the climate condition was 
fixed at ’pre-industrial’ under simulations S0 and S1 with the recycling 
climate mean and variability from 1901 to 1920, we used the mean 
temperature, the mean precipitation, and actual vapor pressure in the 
growing season in the analysis of CO2 contribution to allocation. The 
growing season was defined as the collection of months that were above 
0 ◦C. The vapor pressure deficit was derived from the difference between 
saturation vapor pressure and actual vapor pressure.

2.4. Metric of carbon allocation between leaf and root

To better investigate the response of allocation under global change, 
it is vital to control for the potential influencing factors such as site age 
and plant size (Poorter and Nagel, 2000). The scaling relationships of 
log-transformed biomass in different tissues (leaf, stem, and root) are 
robust among different orders of magnitude in diverse communities 
(Enquist and Niklas, 2002), and have been shown to be an index inde
pendent of plant ontogeny compared with ratio (such as leaf: root) 
(McCarthy and Enquist, 2007). Thus, it can be a valid proxy of allocation 
between leaf and root carbon at the global scale. In this article, the 
relationship of root and leaf carbon (in grams) derived from the models 
was log 10-transformed. The regression of log 10-transformed root and 
leaf carbon was considered to represent the carbon allocation results 
between leaf and root (Enquist and Niklas, 2002) (3). 

logroot carbon
10 = α × logleaf carbon

10 + β (3) 

The scaling exponent α represents the quantitative carbon allocation 
relationship between leaf and root carbon (hereafter, root/leaf carbon 
allocation). A positive value indicates a tendency whereby more carbon 
is allocated to the roots than to leaves and vice versa. β is an allometric 
constant that may vary among species. We excluded root/leaf carbon 
allocation greater than 3 g g-1 and smaller than − 3 g g-1 to minimize the 
outliers. Trends in root/leaf carbon allocation were calculated in 10- 

year moving windows, the schematic diagram of root/leaf carbon allo
cation is displayed in Fig. S1.

2.5. Optimally integrated models

We employed the optimally integrated models through a weighted 
model average (WMA) based on the historical performance of leaf and 
root carbon simulation. In this study, the WMA root/leaf carbon allo
cation was calculated through the weighted average of root/leaf carbon 
allocation by each model, that is, 

α̃ =

∑N
i=1wi × αi
∑N

i=1wi
(4) 

Where αi is the root/leaf carbon allocation (and the corresponding 
contribution of elevated atmospheric CO2, climate change, and land 
cover change, respectively) simulated by model i, α̃ is the root/leaf 
carbon allocation (and the above three effects) estimated by the WMA, N 
is the total number of ecosystem models, and wi is the weight of model i 
(5): 

wi =
[(

Rleaf spatial, i
)a

×
(
Rroot spatial, i

)b
×
(
Rleaf temporal, i

)c](1/a×b×c) (5) 

Where wi is the weight factor that reflects the performance of leaf 
carbon and root carbon from model i. rleaf spatial, i, rroot spatial,i, and 
rleaf temporal, i were calculated. rleaf spatial, i measures the spatial correlation 
coefficient of leaf carbon according to seven vegetation types (Fig. S2). 
rroot spatial,i was calculated as the correlation coefficient between obser
vation and model outputs for the average root biomass in all the growing 
season climate intervals. The interval of growing season climate space is 
2 ◦C for temperature and 200 mm month-1 for precipitation. rleaf temporal, i 

reflects the temporal correlation coefficient of leaf carbon averaged at a 
3 × 3 grid window. We further normalized rleaf spatial, i, rroot spatial,i, and 
rleaf temporal, i to 0–1 and derived Rleaf spatial, i, Rroot spatial, i and Rleaf temporal, i 

in Eq. (5). a, b, and c are the power of each weighting factor. We tested 
the robustness of the simulated results with a set of combinations of 
three powers (a, b and c) (Fig. S3, S4) and selected the best one (a = 1, b 
= 1, c = 2).

2.6. Evaluation metrics for ecosystem models

We evaluated the performance of each ecosystem model in spatial 
and temporal aspects, including the spatial correlation of root carbon 
and leaf carbon, the temporal correlation of leaf carbon, the bias of leaf 
carbon time series, and the trend bias of leaf carbon. The spatial cor
relation of leaf carbon (rleaf spatial, global) and root carbon 
(rroot spatial, global) and the temporal correlation of global leaf carbon 

time series (rleaf temporal, global) was calculated for all the vegetated grids. 
The bias of the leaf carbon and its trend were quantified as the absolute 
difference between the model and observation. 

bias =
∑n

i=1

⃒
⃒γsim

i − γobs
i

⃒
⃒ (6) 

Where γsim
i is the predicted value of leaf carbon time series in the ith 

year, γobs
i represents the ith leaf carbon time series from observation, and 

n is from 1982 to 2016. We summed the absolute model error during the 
study period using Eq. (6), and then normalized it as the bias index (7), 
by dividing the maximum bias of all ecosystem models. 

bias index = 1 −
biasm

max(biasm)
(7) 

Where the biasm is leaf carbon bias for model m. The bias index 
ranges from 0 to 1, where 1 corresponds to the best-performing model 
and 0 to the worst. The trend bias of leaf carbon was calculated as the 
absolute error between the model and observation (8). It was then 
normalized as trend bias index according to (7) for consistency. 
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Fig. 1. Evaluation of leaf carbon and root carbon of seven ecosystem models and their ensemble means. (a) The model performance under five evaluation indices. (b) 
The model performance for leaf, root, and the overall integration. A score of zero represents the worst performance among all the models, and a score of one indicates 
the best. All the ecosystem models were evaluated under ’S3’ scenarios.

Fig. 2. Temporal changes of global cLeaf from 1982 to 2016. (a) Changes of global cLeaf from 1982 to 2016 for observation (black line) and for simulation integrated 
with MMEM in the blue line and WMA in the pink line between 1982 and 2018. The dashed gray lines represent the range of 3 observed cLeaf references. (b-e) The 
spatial pattern of the annual mean of cLeaf and the trend of cLeaf for observation and WMA. All the ecosystem models are evaluated under ’S3’ scenarios.
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trend bias =
⃒
⃒tsim − tobs

⃒
⃒ (8) 

Finally, we normalized all the above five indices as Rroot spatial, global, 
Rleaf spatial, global, Rleaf temporal, global, Bias index, and Trend bias index to 
0–1 before combining them into root dimension, leaf dimension and a 
single score (9) to evaluate the performance of each model. 

score =
Rroot spatial, global

number of root index
+

Rleaf spatial,global + Rleaf temporal,global + Bias index + Trend bias index
number of leaf indexes

(9) 

Where the number of root index is 1, and the number of leaf indices is 
4. Scores range from 0 to 1. Scores close to 1 indicate that the model 
predictions are close to observed values.

3. Results

3.1. Evaluation of ecosystem models

We evaluated the ecosystem models in representing the spatiotem
poral pattern of leaf carbon and root carbon (Fig. 1a). The performance 

of the model simulation was quantified in five aspects: the spatial cor
relation coefficient of leaf carbon and root carbon (Rleaf sp and Rroot sp), 
the bias and the trend bias of leaf carbon time series (Biasleaf and 
Biasleaf trend), and the temporal correlation coefficient of leaf carbon time 
series (Rleaf tp). The Rroot sp ranged from 0.390 (ORCHIDEE-CNP) to 
0.790 (ISAM), the Rleaf sp ranged from 0.380 (LPX-Bern) to 0.786 
(CLM5.0), and the Rleaf tp varied from 0.803 (LPX-Bern) to 0.899 
(CABLE-POP). LPX-Bern and CLM5.0 represented the closest to obser
vation in Biasleaf trend (8.25 × 10–5 kg m-2 year-1) and Biasleaf (0.068 kg 
m-2), respectively. All models performed well for at least two indices. 
CABLE-POP, ORCHIDEE, and CLM5.0 provided relatively good esti
mates of all indices, whereas ORCHIDEE-CNP produced the worst esti
mates of interannual variations and trends in leaf carbon and spatial 
patterns in root carbon, respectively. Multi-model ensemble enhanced 
the performance of leaf carbon and root carbon. In particular, the 
Rleaf tp, Biasleaf trend, and Biasleaf based on WMA performed the best 
among all the ecosystem models.

We then integrated the five indices for the leaf and root dimensions, 
before combining the scores into a final score (Fig. 1b). In general, all 
models performed well except ORCHIDEE-CNP. The overall model score 
of WMA showed the highest performance, with a final score of 0.921, 

Fig. 3. Root carbon distribution along gradients of the growing season mean temperature and total precipitation in (a) the global root carbon dataset (OBS), and (b) 
WMA (’S3’ scenarios). (c) The relationship of root carbon estimated between WMA and OBS, and (d) the difference between WMA and OBS in environmental space.
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followed by MMEM with a final score of 0.818. The integrated model 
performance of WMA was significantly better than MMEM with 12.6 % 
improvements (p < 0.01), through the t-test of seven parameter com
binations (Fig. S3). CLM5.0 attained the highest final score (0.710) 
among individual models. CABLE-POP (0.704) and ORCHIDEE (0.661) 
also performed well relative to ISAM, CLASS-CTEM, ORCHIDEE-CNP 
and LPX-Bern. ORCHIDEE-CNP and LPX-Bern failed to capture the 
spatial distribution of global root carbon and the temporal changes in 
leaf carbon. The models had different strengths and weaknesses. For 
example, CLM5.0 performed relatively well for leaves but not roots, 
whereas ISAM was among the best models for roots but performed 
poorly for leaves.

3.2. Spatiotemporal changes in global root and leaf carbon based on 
WMA

We used leaf carbon (cLeaf) reference to evaluate the performance of 
WMA (Fig. 2a) and individual ecosystem models (Fig. S5). Both 
observed and modeled cLeaf displayed an increasing trend 
(cLeafOBS trend=3.88×10–4 kg m-2 yr-1, cLeafMMEM trend=2.84× 10–4 

kg m-2 yr-1, and cLeafWMA trend=3.98×10–4 kg m-2 yr-1). Compared to 
the cLeaf trend of observed data, however, the spread of WMA 

(0.10×10–4 kg m–2 yr–1) was smaller than that of MMEM (1.04×10–4 kg 
m–2 yr–1). WMA corrected the underestimation of the cLeaf trend in 
MMEM. WMA provided a trend of cLeaf that was closer to the obser
vation and had a higher temporal correlation coefficient (r = 0.924) 
than that of MMEM (0.917).

Fig. 2b-c illustrate the spatial pattern of the cLeaf annual mean and 
trend during the period from 1982 to 2016. The largest annual mean 
cLeaf values were observed in the needleleaf forests in northern high 
latitudes and the broadleaf forests in tropical regions, such as the 
Amazon basin, central Africa, Indonesia, and Malaysia, with cLeaf 
values close to 0.50 kg m-2. Conversely, the small cLeaf values were 
primarily distributed in global drylands, notably in shrublands and 
grasslands with cLeaf values < 0.10 kg m-2 (Fig. 2b). The cLeaf estimates 
derived from WMA accurately captured the spatial pattern in most areas 
with a similar magnitude (Fig. 2c), except for in needleleaf forests with 
an underestimation of around 0.20–0.30 kg m-2. The MMEM failed to 
accurately represent the high cLeaf not only in broadleaf forests within 
tropical regions and needleleaf forests in northern ecosystems but also in 
savannas (Fig. S6). This discrepancy might be attributed to the fact that 
only two out of seven ecosystem models (CLM5.0 and CABLE-POP) 
captured the spatial pattern of annual mean cLeaf (Fig. S6). Fig. 2d il
lustrates the spatial distribution of the cLeaf trend derived from the 

Fig. 4. The global vegetation root/leaf carbon allocation and its drivers from the weighted model average (WMA) between 1982 and 2018. (a) The root/leaf carbon 
allocation and its drivers during the period from 1982 to 2018. (b) Trend in root/leaf carbon allocation and its drivers in the same period. The error bar indicates the 
standard deviation from 7 ecosystem models, and the asterisks illustrate statistically significant contributions (p < 0.05). Time series in (c) represent the root/leaf 
carbon allocation with contributions from (d) CO2, (e) climate change (CLI), and (f) land cover and land use change (LCC).
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observation data. A majority of regions exhibited an increasing cLeaf 
over the past 35 years, with exceptions in scattered areas within the 
middle and southern regions of Canada and the northern area of 
Mongolia. Notably, cLeaf trends exceeding 0.80 × 10–3 kg m-2 yr-1 were 
evident in the central regions of China, India, western Eurasia, the 
southeastern portion of central South America, and the eastern sector of 
North America. WMA effectively captured trends in cLeaf (Fig. 2e), 
although with certain levels of underestimation persisted within India 
and the middle of China, where none of the ecosystem models captured 
the increasing trends in cLeaf (Fig. S7).

Estimates of WMA root carbon (cRoot) were consistent with the 
global cRoot dataset along the climate gradients (Fig. 3a-b), with a 
higher correlation relationship (R2 = 0.82) (Fig. 3c) than that of MMEM 
(Fig. S8), though discrepancy existed among individual models (Fig. S9). 

Specifically, cRoot was highest in warm (e.g., temperature > 20 ◦C) and 
humid (precipitation > 4000 mm month–1) regions. As precipitation 
decreased in colder regions (e.g., temperature < 25 ◦C), root carbon 
declined. WMA captured the high root carbon in warm and humid areas, 
a phenomenon shared by most ecosystem models (Fig. S9), but over
estimated root carbon for tropical regions (temperature = 17–27 ◦C) 
(Fig. 3d). In addition, WMA underestimated root carbon in arid regions 
(precipitation < 500 mm month–1) and regions where mean tempera
tures < 0 ◦C. Overall, model-based estimates of root carbon provided 
valid representations of reality under different forcing scenarios.

Fig. 5. Spatial patterns and drivers of global root/leaf carbon allocation between 1982 and 2018 from weighted model average (WMA). (a− d) show spatial patterns 
of (a) root/leaf carbon allocation (S3), (b) the effects of CO2 concentrations, (c) the effects of climate change (CLI), and (d) the effects of changes in land use and land 
cover (LCC). The spatial patterns aggregated by latitude are in the left panel (black line), and the gray shades show the standard deviation.
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3.3. Changes in global vegetation root/leaf carbon allocation and its 
drivers

We estimated root/leaf carbon allocation of global vegetation using 
WMA. The root/leaf carbon allocation was 0.582 ± 0.140 g g–1 (p <
0.05) (Fig. 4a), and there was a significant trend of preferential carbon 
allocation to roots between 1982 and 2018 (0.0014 ± 0.0013 g g–1 yr–1, 
p < 0.05) (Fig. 4b, 4c). WMA suggested that the increased allocation to 
roots was mainly due to increased CO2 (0.218 ± 0.087 g g–1) and that 
the effects of CO2 have been continuous since 1982 (0.0010 ± 0.0005 g 
g–1 yr–1, p < 0.05) (Fig. 4d). The contribution of climate change on root/ 
leaf carbon allocation was insignificant (0.031 ± 0.055 g g–1), as well as 

on the temporal changes (0.0002 ± 0.0009 g g–1 yr–1, p = 0.50) (Fig. 4e). 
We also found a significant negative effect of land use and land cover 
change on the trend in global root/leaf carbon allocation (–0.0003 ±
0.0006 g g–1 yr–1, p < 0.05) (Fig. 4f).

The spatial and latitudinal patterns in global root/leaf carbon allo
cation and the driving factors are shown in Fig. 5 (Fig. S11). The largest 
root/leaf carbon allocation was primarily observed in the northern high 
latitudes, followed by the tropics, including the rainforests of South 
America, Southeast Asia and the Congo basin (Fig. 5a), with similar 
latitudinal characteristics in the trend of root/leaf carbon allocation 
(Fig. S12, S13a). Over 54.6 % of global vegetation had an increased 
root/leaf carbon allocation trend except for regions in the middle of 

Fig. 6. Effects of CO2 concentrations on root/leaf carbon allocation along the climate space based on the weighted model average (WMA). (a–c) show contributions 
of elevated CO2 on root/leaf carbon allocation between 1982 and 2018. (d–f) show contributions of elevated CO2 on the trend of root/leaf carbon allocation. The 
effects of CO2 concentrations on root/leaf carbon allocation were plotted against binned values at mean growing season temperature of 0.3 ◦C intervals, mean 
growing season precipitation of 4-mm intervals and mean growing season VPD of 0.03 kPa intervals using climate conditions from 1901 to 1920.
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Australia, the East African plateau, Central South America, and south
west China.

The root/leaf carbon allocation was dominated by different factors 
on the global scale. WMA indicated that more carbon was allocated to 
roots under a scenario of increasing atmospheric CO2 concentrations 
throughout 82.4 % of the world, particularly in tropical regions 
(Fig. 5b). The effects of CO2 were most evident in equatorial regions, 
including eastern India, Southeast Asia, and southeast China, and pro
nounced in certain parts of the northern hemisphere, including Canada, 
eastern America, and central Eurasia. Along latitudinal gradients, the 
CO2 contribution on root/leaf carbon allocation trend was only 
remarkable around 10◦N–10◦S (Fig. S13b). Partial areas of decreased 
trend in leaf carbon were observed in eastern Africa, eastern South 
America, central North America, and northern Australia. Compared with 
the uniform spatial patterns of the effects of CO2, the effects of climate 
change varied by latitude (Fig. 5c). Climate change led to increased 
carbon allocation to roots in the northern high latitudes, whereas more 
carbon was allocated to leaves in tropical rainforest regions and 
Southeast Asia. Similar patterns were shown in its contribution to the 
trend of root/leaf carbon allocation (Fig. S13c). The effects of changes in 
land use and land cover were less pronounced than those of CO2 and 
climate change. Changes in land use and land cover led to increased 
carbon allocation to leaves throughout most of the world, but not in 
central South America, eastern America, Western Europe, Japan, 
Indonesia, or Eastern Australia (Fig. 5d, S13d).

3.4. Effects of CO2 on root/leaf carbon allocation

Vegetation allocated more carbon to their roots as atmospheric CO2 
concentrations increased compared with the other two effects. To 
further investigate the underlying mechanisms, we examined the effects 
of CO2 concentrations according to the climate space in the growing 
season (Fig. 6, Fig. S14–S15). As precipitation during the growing season 
increased, more carbon was allocated to the roots under elevated CO2 
concentrations, particularly when precipitation > 100 mm month–1 and 
VPD was below approximately 2 kPa (Fig. 6a); meanwhile, carbon 
tended to be allocated to the leaves under relatively arid conditions 
(Fig. 6b). As the mean growing season temperature increased above 5 ◦C 
between 1982 and 2018, more carbon was allocated to the roots 
(Fig. 6c). Such a trend in root allocation was consistent only when the 
temperature exceeds 15 ◦C (Fig. 6d). In warm and arid regions, plants 
allocated more carbon to leaves, whereas carbon was preferentially 
allocated to roots in relatively warm and humid areas (Fig. 6e, f).

4. Discussion

4.1. Mechanisms driving CO2-induced changes in leaf-root carbon 
allocation

Observationally constrained TRENDY model outputs indicated that 
elevated CO2 concentrations accounted for the increased root/leaf car
bon allocation over the past 37 years. Recent studies have supported this 
phenomenon not only at the site scale but also at the global scale. For 
example, root carbon increased more than leaf carbon in mature forests 
under CO2 enrichment at the ecosystem level (Jiang et al., 2020). 
Another evidence in the Duke FACE study related to broadleaved forests 
supported more carbon was allocated to roots than that of aboveground, 
particularly when light was a limiting factor (Maier et al., 2022). Global 
meta-analyses have found that rising CO2 leads to increased 
root-to-shoot ratios, and that root length might be the main driver of 
these increases (Nie et al., 2013; Song et al., 2019). The process-based 
models also predicted that root allocation increased with elevated CO2 
concentrations under conditions of nutrient limitation (DeKauwe et al., 
2014). Therefore, we suggested that nutrient limitation may mediate the 
effect of elevated CO2 on the preferential allocation of carbon to roots.

First, nitrogen and phosphorus limitation occurred in northern 

ecosystems and tropical regions, respectively (Du et al., 2020), consis
tent with the patterns of large root/leaf carbon allocation in this study 
(Fig. 5b, Fig. 6). Considering that nutrients constrained the CO2 effect on 
plant biomass (Cunha et al., 2022; Maier et al., 2022; Terrer et al., 
2019), and nitrogen and phosphorus addition can promote aboveground 
biomass allocation (Yan et al., 2019b), we infer that more carbon is 
allocated to the root than to leaves to facilitate belowground nutrient 
uptake and sustain the vegetation growth under elevated CO2. However, 
the models that we used, except for ORCHIDEE-CNP, neglect the phos
phorus cycle. Additional components of the nutrient cycle should be 
incorporated into ecosystem models.

Second, soil water is another mediator of CO2 contribution to root 
carbon allocation. A previous study suggested that more carbon was 
allocated to roots under rising CO2 concentrations when soil water was 
limited (Wang and Taub, 2010). Another study found that the effects of 
CO2 concentrations on pine were non-significant when soil resources 
were adequate (Maier et al., 2022). This means that the limitation of soil 
water leads to more carbon allocated to roots under elevated CO2, and if 
the limitation was relieved, the carbon might be allocated to leaves. Our 
research found that carbon tended to be allocated to leaves in hyper-arid 
regions under elevated CO2 concentrations (Fig. 6a, b). This phenome
non matches our expectations, as both rising CO2 concentrations and 
aridity can promote stomatal closure (Wullschleger et al., 2002), which 
in turn improves water use efficiency and reduces water stress on roots 
(Gonsamo et al., 2021). In this situation, more carbon will be allocated 
to leaves.

Third, ecosystem type is another factor of carbon allocation in 
elevated CO2. Ecosystems with mycorrhizal type that provides high ni
trogen availability, such as boreal and temperate forests, respond more 
strongly in total and belowground biomass under elevated CO2 (Terrer 
et al., 2016). In our results, temperate forests in northern high latitudes 
displayed the pattern of more root carbon allocation in response to 
elevated CO2 concentration. However, the mycorrhizal type has seldom 
been mentioned in previous studies about carbon allocation (Song et al., 
2019). Thus, to accurately estimate root/leaf carbon allocation, models 
need to incorporate factors such as nitrogen and phosphorus cycles.

4.2. Climate change effects on root/leaf carbon allocation

The contribution of climate change on carbon allocation varied with 
latitudes. Our results from WMA displayed that in the northern high 
latitudes climate change increased carbon allocation to roots, and this 
effect gradually disappeared with decreasing latitude (Fig. 5, S13c). 
Before attributing the potential contribution of climate change, we 
isolated the contribution of shifts in plant functional types (PFT) influ
enced by climate change (Diaz and Cabido, 1997). We found that the 
PFT schemes of global vegetation remained relatively stable in 
ecosystem models under climate change (Fig. S16). Therefore, the in
direct contribution on carbon allocation induced by the PFT shifts in 
ecosystem models can be almost neglected compared with the direct 
contribution of elevated CO2 and climate change. In tropical regions, 
carbon was preferentially allocated to leaves under a climate change 
scenario. Temperature is one of the main reasons for root/leaf carbon 
allocation patterns in northern high latitudes. In forest ecosystems, the 
temperature can predict biomass allocation patterns. Under increasingly 
cold climates, root carbon pools are larger than foliage pools (Reich 
et al., 2014a) due to low nutrient cycling rates (Gill and Jackson, 2000), 
which are constrained by temperature due to environmental adaptation. 
In addition, in warming conditions, vegetation displayed prolonged 
belowground growing season length (Liu et al., 2022), and woody plants 
have the advantage of resisting water stress with deeper root distribu
tions and higher water use efficiency, thereby providing more time for 
the allocation of carbon to roots and in turn providing more water and 
nutrients to sustain larger growth despite warming (Song et al., 2019).

Change in water availability under climate change is also a vital 
factor in root/leaf carbon allocation. Previous studies have reported a 

Z. Duanmu et al.                                                                                                                                                                                                                                Agricultural and Forest Meteorology 362 (2025) 110366 

9 



significant increase in the root biomass fraction and a decrease in the 
leaf biomass fraction under soil water stress (Eziz et al., 2017; Poorter 
and Nagel, 2000). In this study, we illustrated that more carbon was 
allocated to leaves than roots in tropical regions (Fig. 5c), where pre
cipitation is abundant. The increases in mean annual precipitation can 
lead to decreased carbon allocation to roots (Roa-Fuentes et al., 2012), 
and increased allocation to wood and leaves (Yang et al., 2021). How
ever, some studies found that carbon allocation among different organs 
appeared to be stable under drought stress (Cheng et al., 2009; Eziz 
et al., 2017), which might be related to their biomass allocation index 
being different from that in this study.

Light also accounts for the climate change effects on carbon alloca
tion. Increased carbon allocation to leaves is expected under conditions 
of light limitation, such as in tropical regions where clouds associated 
with abundant precipitation reduce light availability for vegetation. In 
these regions, more carbon is expected to be allocated to leaves for 
photosynthesis (Graham et al., 2003) and to stems to increase height for 
light competition (Yang et al., 2021). Previous research has reported 
that shade, which may be caused by clouds or atmospheric particles, can 
notably impact vegetation productivity (Roderick et al., 2001). Addi
tionally, the canopy itself creates shade, directly influencing gross pri
mary productivity in the understory (Butler et al., 2020). Under such 
light-limited conditions, particularly within dense canopies with over
lapping leaves, plants typically allocate more carbon to leaf production 
to enhance light capture. These light-driven shifts in carbon allocation 
are frequently intertwined with the effects of precipitation, which can 
also influence the allocation of carbon between leaves and roots. How
ever, state-of-the-art ecosystem models generally do not represent these 
allocation processes accurately, due to both limited availability of 
detailed global light environment data and incomplete understanding of 
the underlying mechanisms.

4.3. Contribution of land cover and land use change to root/leaf carbon 
allocation

In this study, land cover and land use changes were associated with 
increased leaf carbon (decreased root/leaf carbon allocation) in most 
regions (Fig. 5d, S13d); however, in some places (e.g., western Europe), 
such changes contributed to increased root/leaf carbon allocation and 
its trend. One of the primary reasons for changes in carbon allocation 
patterns is the variation in vegetation types, driven by the inherent 
differences in plant traits across diverse vegetation types. For example, 
root-to-shoot ratios are highest in the tundra, grasslands, and cold de
serts, and relatively low in forests and croplands (Jackson et al., 1996); 
thus, land cover changes involving conversion to a different vegetation 
type may lead to changes in allocation. Increases in the proportion of 
vegetation with low root-shoot ratios or decreases in the proportion of 
vegetation with high root-shoot ratios will likely lead to increases in leaf 
carbon and vice versa. Increases in croplands and forests in southeastern 
China, India, and Southeast Asia (Chen et al., 2019; Liu et al., 2020; Zhu 
et al., 2016) resulted in a relatively high proportion of leaf carbon during 
land cover changes. A trend toward increased root carbon has been 
observed in western Europe, central Africa, and eastern Australia, mir
roring geographic patterns of cropland losses and grassland gains (Liu 
et al., 2020). These land cover changes converted low root-to-shoot ratio 
vegetation to a type with a higher ratio. Therefore, the inclusion of land 
cover and land use changes in models can lead to more accurate pre
dictions. Human management may also alter allocation patterns; for 
example, farming promotes carbon allocation to leaves (Fraterrigo et al., 
2006), and grazed grasslands in Tibet exhibited higher allocation to 
roots compared to exclosures (Hong et al., 2016). However, current 
models cannot accurately simulate the changes in land cover for com
plex human-managed systems, further influencing the contribution of 
land cover change on carbon allocation, and this problem is expected to 
be addressed in the future (Fisher et al., 2014).

4.4. N deposition contributes little to root/leaf carbon allocation

Although nitrogen is known to influence carbon allocation (Shipley 
and Meziane, 2002), only three ecosystem models (CLM5.0, 
ORCHIDEE-CNP, and LPX-Bern) incorporated nitrogen-related pro
cesses in our study. CLM5.0 and ORCHIDEE-CNP showed that nitrogen 
deposition promoted carbon allocation to leaves (–0.0009 g g–1 and 
–0.0466 g g–1, respectively), whereas LPX-Bern predicted increased 
allocation to roots (0.0022 g g–1). The result of ORCHIDEE-CNP may be 
attributable to its higher nitrogen sensitivity for leaves (Yan et al., 
2019a). We thus compared the probability density functions of two 
simulations, one that integrated nitrogen deposition and one that did 
not, for each of the above three models (Fig. S17a-c). Our analysis 
presented that only ORCHIDEE-CNP displayed a significant contribution 
of nitrogen deposition on carbon allocation. The results were consistent 
with a recent global-scale meta-analysis (Yue et al., 2021) that nitrogen 
had little impacts on root and leaf carbon allocation at the global scale. 
The carbon allocation formulas of the three models differed (Table 1): 
CLM5.0, ORCHIDEE-CNP, and LPX-Bern use allometric, optimal, and 
allometric-optimal carbon allocation strategies, respectively. Thus, at 
the global scale, we can infer that the effects of nitrogen deposition 
follow the allometric relationship between roots and leaves, and might 
be influenced little by nitrogen deposition. We further analyzed the ef
fects of nitrogen deposition on spatial patterns (Fig. S17d-f) and found 
that the responses to nitrogen deposition were consistent with their 
allocation strategies at the pixel scale. Models based on optimal theory 
(LPX-Bern and ORCHIDEE-CNP) predicted higher carbon allocation in 
magnitude.

4.5. Uncertainties and future directions

There were uncertainties from both observations and ecosystem 
models in our attempt to understand the changes in root/leaf carbon 
allocation. As for the observations, the first uncertainty source is the 
global carbon density references. The observational datasets of SLA and 
RMF were extrapolated through the Bayesian spatial model and machine 
learning model. These observational dataset from advanced extrapola
tion method can better explain the spatial variation compared with 
empirical upscaling. Particularly, the global RMF dataset was generated 
by over 63 information layers and illustrated an overestimation of root 
carbon in ecosystem models, therefore it provides a wealth of informa
tion on spatial variation in root carbon and is worth further investiga
tion. However, obvious uncertainties arise from the prediction 
uncertainty located in the middle Asia of needleleaf forests and North 
America of savannas from the RMF dataset, while the SLA values of 
needleleaf forests in Northern ecosystems show smaller uncertainties 
than those of grasslands and savannas. Besides, we supposed that the 
SLA and RMF are time-constant because of the limited data availability. 
Such a simplification fails to capture the interannual variation. For 
example, the SLA has temporal changes in response to precipitation as 
well as anthropogenic events (Asefa et al., 2021; Dwyer et al., 2014; 
Poorter and Bongers, 2006), and the interspecies-specific leaf area in 
tropical regions usually gives large diversity (Butler et al., 2017; Reich 
et al., 2014b). Similarly, the root carbon varies with local site charac
teristics though its change is insignificant (Akburak et al., 2013). The 
root/leaf carbon allocation in this study relies on both interannual 
variation of root carbon and leaf carbon, while we only relied largely on 
the observed temporal changes of leaf carbon that is from quite detailed 
long-term satellite LAI. We use the spatial pattern of leaf carbon and root 
carbon can assist if over/underestimation exists. Another uncertainty 
source is the inconsistency among long-term LAI products (Jiang et al., 
2017). To overcome it, we used the average of three LAI products as the 
reference in this article. Previous research (Anav et al., 2013) regarded it 
as acceptable once the errors from reference are smaller than those from 
model outputs (Fig. S5). Therefore, higher temporal accuracy in satellite 
observed LAI can serve as a better reference for WMA.
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In aspects of ecosystem models, we attribute the model uncertainty 
to the intrinsic processes and parameters. We noticed an underestima
tion of leaf carbon in needleleaf forests (Fig. 2c), and found it was related 
to the coarse description of leaf traits especially for needleleafforests in 
the state-of-art models (Reich et al., 2014b). Similarly, the vertical fo
liage profile was another important parameter for leaf carbon (Heimann 
and Reichstein, 2008; Tang et al., 2016). PFT is a significant determinant 
in woody carbon allocation (Puglielli et al., 2021), but the simplified 
PFT of global vegetation has been regarded as inadequate to describe 
carbon allocation (Butler et al., 2017). Therefore, adequate divisions 
with detailed vegetation trait values can promote the simulation of 
vegetation carbon accuracy (Ma et al., 2023), and the number of carbon 
pools is positively related to the accuracy of carbon allocation estimates 
in Earth system models (Song et al., 2017) because more allocation 
parameters can be represented for different PFT. Our results also suggest 
that models with more carbon pools, such as ORCHIDEE, CLM5.0, and 
ISAM, perform better. Noted that models employed fixed carbon allo
cation strategy (CLM5.0 and CABLE-POP) ranked the highest in the in
tegrated performance of leaf carbon and root carbon, followed by four 
models using resources-limitation strategy, while the model 
optimal-allometric (LPX-Bern) performed worst. The phylogenetic effect 
is one of the most important contributors to allocation (Poorter et al., 
2012). For example, belowground biomass in young trees increased 
more than aboveground biomass under conditions of elevated CO2 (De 
Graaff et al., 2006). However, but phylogenetic effect fails to incorpo
rate into ecosystem models at current stage. Overall, the incorporated 
vegetation allocation strategies varied among models, and the mecha
nism of carbon allocation is still far from being modeled (Fatichi et al., 
2019).

5. Conclusions

Our observational constrained results from models have shown that 
more carbon was allocated to the root than to the leaf under global 
environmental changes since 1982 (Fig. 7). In northern high latitudes, 
climate change and increased atmospheric CO2 concentration promoted 
more carbon allocated to the root than to leaves. Only subtle effects of 
land use and land cover change on leaf carbon allocation were found. 
Tropical regions were another hotspot in root/leaf carbon allocation 
with an enormous influence of the elevated atmospheric CO2 

concentration, which was partly counterbalanced by the contribution of 
land cover change and climate change. In southern high latitudes, land 
use and land cover change along with elevated CO2 concentration were 
beneficial to leaf carbon allocation. Though the driving factors were 
divergent at the global scale, elevated CO2 concentration was the main 
cause for more root carbon allocation in most areas. Our research is of 
critical importance to reveal the mechanisms of root/leaf carbon allo
cation in the context of global environmental changes.
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Fig. 7. Schematic presentation of global vegetation root/leaf carbon allocation pattern during 1982–2018. The regions are divided by latitudes, from left to right: 
30◦N~90◦N (a), 30◦S~30◦N (b), and 90◦S~30◦S (c) respectively. See legends for the corresponding arrows and units. The values in black are the root/leaf carbon 
allocation under S0, and the values in red indicate the contribution of global change (that is, the divergence between S3 and S0) to root/leaf carbon. The asterisks 
illustrate that the trend is statistically significant (p < 0.05).
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