News
“Secrecy: Secure collaborative analytics in untrusted clouds” accepted at NSDI’23
Our paper, "Secrecy: Secure collaborative analytics in untrusted clouds", by John Liagouris, Vasiliki Kalavri, Muhammad Faisal, and Mayank Varia, has been accepted for presentation at NSDI'23! Secrecy is a system for privacy-preserving collaborative analytics as a service. Secrecy allows multiple data holders to contribute their data towards a joint analysis in... More
Papers accepted at DEEM and aiDM SIGMOD’22 workshops
The following papers were accepted for presentation at upcoming SIGMOD'22 workshops: Evaluating Model Serving Strategies over Streaming Data by Sonia Horchidan, Emmanouil Kritharakis, Vasiliki Kalavri and Paris Carbone was accepted at the 6th Workshop on Data Management for End-to-End Machine Learning (DEEM'22). GCNSplit: Bounding the State of Streaming Graph Partitioning by Michał... More
Paper accepted at BiDEDE’22 (co-located with SIGMOD’22)
The paper “The Non-Expert Tax: Quantifying the cost of auto-scaling in Cloud-based data stream analytics.” by Yuanli Wang, Baiqing Lyu, and Vasiliki Kalavri, has been accepted for presentation at the BiDEDE’22 workshop.
Shengyao Luo joins CASP Systems with Summer’22 UROP award
Shengyao (Jax) Luo is joining the CASP Systems lab this summer, after being awarded a UROP grant. Jax's project, "Monitoring and improving energy consumption in stream data processing", aims to curate and publish a unique data set of fine-grained time-series energy and performance data for streaming workloads.
Paper accepted at EuroSys’22
Our paper "A New Benchmark Harness for Systematic and Robust Evaluation of Streaming State Stores" has been accepted for presentation at the EuroSys'22 conference.
CASP receives three Research Incubation Awards from the Red Hat Collaboratory
Our research lab has received three Research Incubation Awards from the BU Red Hat Collaboratory: 1. Towards high performance and energy efficiency in open-source stream processing (PIs: Vasiliki Kalavri, Jonathan Appavoo) 2. Serverless Streaming Graph Analytics (PI: Vasiliki Kalavri) 3. Secure cross-site analytics on OpenShift logs (PI: John Liagouris) Read the full announcement here.
Paper accepted at SAC’22: “Learning on streaming graphs with experience replay”
Our paper "Learning on streaming graphs with experience replay" has been accepted to appear at the 2022 ACM/SIGAPP Symposium on Applied Computing (SAC'22). This is a collaboration with Massimo Perini (University of Edinburgh), Giorgia Ramponi (ETH Zurich), and Paris Carbone (KTH Royal Institute of Technology). See the preprint pdf here.
Postdoc position in self-managed and energy-efficient stream processing
We invite applications for a postdoc position in self-managed and power-efficient stream processing systems. Applications will be reviewed on a rolling basis starting November 22 and until the position is filled. More information and instructions on how to apply can be found here.
Industry awards from Google and Samsung
We are delighted to announce two recent industry gifts CASP Lab received: A 2021 Data Acquisition, Processing and Analysis (DAPA) Award by Google to continue our work on self-managed stream processing systems, understanding the characteristics of streaming state access workloads, and designing workload-aware streaming state stores. A Samsung Memory Solutions... More
Two new PhD students join the group
This fall, we welcome two new PhD students to the group: Yuanli Wang and Emmanouil Kritharakis. Yuanli recently graduated with a Master's degree from the University of Minnesota and is interested in all things distributed systems. Emmanouil got his M.Eng Degree in Electrical and Computer Engineering from the Technical University of... More