Terrestrial Carbon Cycle
The Greening Earth
- Duanmu et al., 2025. Changes in leaf and root carbon allocation of global vegetation simulated by the optimally integrated ecosystem models, Agric. For. Meteorol., 362 (2025) 110366
- Winkler et al., 2024. Carbon system state determines warming potential of emissions, PLoS ONE 19(8): e0306128. doi: 10.1371/journal.pone.0306128
- Zuo et al., 2023. Simulating Potential Tree Height for Beech–Maple–Birch Forests in Northeastern United States on Google Earth Engine, J. Remote Sens., 2023;3:Article 0084. https://doi.org/10.34133/remotesensing.0084
- Meng et al., 2023. Climate change increases carbon allocation to leaves in early leaf green-up. Ecol. Lett., doi: 10.1111/ele.14205
- Tucker et al., 2023. Sub-continental-scale carbon stocks of individual trees in African drylands. Nature, doi: 10.110.1038/s41586-022-05653-6
- Zhu et al., 2021. Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science, doi: 10.1126/science.abg5673
- Huang et al., 2020. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv., 6, eabb8508
- Zhao et al., 2020. Future greening of the Earth may not be as large as previously predicted. Agric. For. Meteorol., doi: 10.1016/j.agrformet.2020.108111
- Yang et al., 2020. Interannual Variability of Carbon Uptake of Secondary Forests in the Brazilian Amazon (2004‐2014). Global Biogeochem. Cycles, doi:10.1029/2019GB006396
- Piao et al., 2019. Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth and Environment, doi: 10.1038/s43017-019-0001-x
- Winkler et al., 2019. Earth system models underestimate carbon fixation by plants in the high latitudes. Nature Communications, doi:10.1038/s41467-019-08633-z
- Huang et al., 2019. Air temperature optima of vegetation productivity across global biomes. Nature Ecol. Evolution, doi:10.1038/s41559-019-0838-x
- Fan et al., 2019. Satellite-observed pantropical carbon dynamics. Nature Plants, doi:10.1038/s41477-019-0478-9
- Winkler et al., 2019. Investigating the applicability of emergent constraints. Earth System Dynamics, doi:10.5194/esd-10-501-2019
- Park et al., 2019. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Global Change Biology, doi:10.1111/gcb.14638
- Tømmervik et al., 2019. Legacies of Historical Exploitation of Natural Resources Are More Important Than Summer Warming for Recent Biomass Increases in a Boreal–Arctic Transition Region. Ecosystems, doi:10.1007/s10021-019-00352-2
- Yang et al., 2018. Post-drought decline of the Amazon carbon sink. Nature Communications, doi:10.1038/s41467-018-05668-6
- Piao et al., 2018. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nature Geoscience, doi:10.1038/s41561-018-0204-7
- Bastos et al., 2018. Impact of the 2015/2016 El Nino on the terrestrial carbon cycle constrained by bottom-up and top-down approaches, Phil. Trans. R. Soc. B 373: 20170304.http://dx.doi.org/10.1098/rstb.2017.0304
- Li et al., 2018. Recent Changes in Global Photosynthesis and Terrestrial Ecosystem Respiration Constrained From Multiple Observations. Geophys. Res. Lett., doi:10.1002/2017GL076622
- Tong et al., 2018. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nature Sustainability, https://doi.org/10.1038/s41893-017-0004-x
- Zhu et al., 2016. Greening of the Earth and its Drivers. Nature Climate Change, doi:10.1038/nclimate3004
- Piao et al., 2017. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nature Climate Change, doi: 10.1038/NCLIMATE3277
- Zhu et al., 2017. Attribution of seasonal leaf area index trends in the northern latitudes with “optimally” integrated ecosystem models. Global Change Biol., doi: 10.1111/gcb.13723
- Li et al., 2016. Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets. PNAS, doi: 10.1073/pnas.1603956113
- Choi et al., 2016. Application of the metabolic scaling theory and water–energy balance equation to model large-scale patterns of maximum forest canopy height. Global Ecol. Biogeography, doi:10.1111/geb.12503
- Ukkola et al., 2015. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nature Climate Change, 2015 (DOI: 10.1038/NCLIMATE2831)
- Anderegg et al., 2015. Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proc. Natl. Acad. Sci. USA, 2015 (www.pnas.org/cgi/doi/10.1073/pnas.1521479112)
- Xu et al., 2015. Satellite observation of tropical forest seasonality: spatial patterns of carbon exchange in Amazonia. Environ. Res. Lett., 2015 (doi: 10.1088/1748-9326/10/8/084005)
- Sitch et al., 2015. Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 2015 (doi: 10.5194/bg-12-653-2015)
- Piao et al., 2015. Detection and attribution of vegetation greening trend in China over the last 30 years, Global Change Biology, 2015 (doi: 10.1111/gcb.12795)
- Traore et al., 2014. Evaluation of the ORCHIDEE ecosystem model over Africa against 25 years of satellite-based water and carbon measurements, J. Geophys. Res. Biogeosci., 119, 1554–1575, doi:10.1002/2014JG002638.
- Tan et al., 2014. Seasonally different response of photosynthetic activity to daytime and night-time warming in the Northern Hemisphere, Global Change Biology, (doi:
10.1111/gcb.12724)
- Traore et al., 2014. 1982-2010 trends of light use efficiency and inherent water use efficiency in African vegetation: Sensitivity to climate and atmospheric CO2 concentrations, Remote Sensing, 6, 8923-8944; doi:10.3390/rs6098923
- Ciais et al., 2014. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system, Biogeosciences, 11: 3547-3602 (doi:10.5194/bg-11-3547-2014).
- Van Oijen et al., 2014. Impact of droughts on the C-cycle in European Vegetation: a probabilistic risk analysis using six vegetation models, Biogeosciences Discussion, doi:10.5194/bgd-11-8325-2014.
- Poulter et al., 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle, Nature, 2014 (doi:10.1038/nature13376)
- Zhou et al., 2014. Widespread decline of Congo rainforest greenness in the past decade, Nature, 2014 (doi: 10.1038/nature13265)
- Zhang et al., 2014. Estimation of forest aboveground biomass in California using canopy height and leaf area index estimated from satellite data, Remote Sens. Environ, 2014 (http://dx.doi.org/10.1016/j.rse.2014.01.025)
- Ni and Park et al., 2014. Allometric Scaling and Resource Limitations Model of Tree Heights: Part 3. Model Optimization and Testing over Continental China, Remote Sens. 2014 (doi: 10.3390/rs6053533)
- Wang et al., 2014. A two-fold increase of carbon cycle sensitivity to tropical temperature variations, Nature, 2014 (doi: 10.1038/nature12915)
- Ciais et al., 2013. Carbon and Other Biogeochemical Cycles, IPCC AR5 Chapter 6, 2013.
- Xu et al., 2013. Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, doi: 10.1038/NCLIMATE1836
Supplementary Information
- Peng et al., 2013. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation, Nature, doi: 10.1038/nature12434
- Wang et al., 2013.Variations in atmospheric CO2 growth rates coupled with tropical temperature, Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1219683110
- Ichii et al., 2013 Recent changes in terrestrial gross primary productivity in Asia from 1982 to 2011, Remote Sens., doi: 10.3390/rs5116043
- Barichivich et al., 2013. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011, Global Change Biol., doi: 10.1111/gcb.12283
- Piao et al., 2013. Evaluation of Terrestrial Carbon Cycle Models for their Response to Climate Variability and to CO2 Trends, Global Change Biology, doi: 10.1111/gcb.12187
- Anav et al., 2013. Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models, J. Climate, doi:10.1175/JCLI-D-12-00417.1
- Mao et al., 2013. Global Latitudinal-Asymmetric Vegetation Growth Trends and Their Driving Mechanisms: 1982-2009, Remote Sens., doi:10.3390/rs5031484
- Hashimoto et al., 2012. Exploring Simple Algorithms for Estimating Gross Primary Production in Forested Areas from Satellite Data, Remote Sens., doi:10.3390/rs4010303
- Samanta et al., 2011. Comment on “Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009”, Science, doi: 10.1126/science.1199048
Supplementary Online Material
- Zhousen et al., 2011. Retrieval of canopy height using moderate-resolution imaging spectroradiometer (MODIS) data, Remote Sens. Environ., doi:10.1016/j.rse.2011.02.010
- Yu et al., 2010. Regional distribution of forest height and biomass from multisensor data fusion, J. Geophys. Res., doi:10.1029/2009JG000995
- Kaufmann et al., 2008. The Power of Monitoring Stations and a CO2 Fertilization Effect: Evidence from Causal Relationships Between NDVI and Carbon Dioxide. Earth Interactions, doi: 10.1175/2007EI240.1
- Hashimoto et al., 2004. El Nin˜o–Southern Oscillation–induced variability in terrestrial carbon cycling. J. Geophys. Res., doi:10.1029/2004JD004959
- Kotchenova et al., 2004. Lidar remote sensing for modelling net primary productivity of deciduous forests. Remote Sens. Environ., 92: 158-172.
- Potter et el., 2003. Satellite data help predict terrestrial carbon sinks. EOS, 84(46): pages 502 & 508.
- Potter et al., 2003. Continental scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982-98. Global and Planetary Change, 39:201-213.
- Potter et al., 2003. Global teleconnections of climate to terrestrial carbon flux. J. Geophys. Res., doi: 10.1029/2002JD002979
- Kotchenova et al., 2003. Modeling lidar waveforms with time-dependent stochastic radiative transfer theory for remote estimations of forest biomass. J. Geophys. Res., doi: 10.1029/2002JD003288
- Potter et al., 2003. Major disturbance events in terrestrial ecosystems detected using global satellite data sets. Global Change Biology, 9(7): 1005-1021.
- Nemani et al., 2003. Climate driven increases in global net primary production from 1981 to 1991. Science, 300:1560-1563.
- Zhuang et al., 2003. Carbon cycling in extratropical terrestrial ecosystems of the northern hemisphere during the 20th century: A modeling analysis of the influences of soil thermal dynamics. Tellus, 55B: 751-776.
- Lucht etal., 2002. Climatic control of the high-latitude vegetationgreening trend and Pinatubo effect. Science, 296:1687-1689.
- Dong et al., 2002. Remote sensing of boreal and temperate forest woody biomass: Carbon pools, Sources and Sinks, Remote Sens. Environ. 84:393-410.
- Myneni and Dong et al., 2001. A large carbon sink in the woody biomass of northern forests. Proc. Natl. Acad. Sci. USA., 98(26): 14784-14789.
supplemental information