(Il)logical Lindstrom and the iPhone Infatuation

October 5th, 2011 in News, Opinion 1 comment


The only thing I love is my iPhone.

The only thing I love is my iPhone.

Ahh the Apple iPhone: sleek, sexy, and successful–monopolizing the mobile phone industry since its 2007 release. What is it about the iPhone in particular that sets it apart from its competitors, allowing it garner over 60 million followers worldwide? According to “neuromarketer” and consumer advocate Martin Lindstrom, iPhone users should not be considered addicts but rather amorous devotees who literally “love” their device. Now, I understand the dependency characteristic of an avid cell-phone user, whether Apple or otherwise. But as a neuro-nerd, I am obligated to ask: “Where’s the science behind this?” More

Tagged , , , ,

Esref Armağan

October 4th, 2011 in Arts + Media 1 comment


Most would agree that the most important of our basic senses is sight. Without it, many basic forms of communication fall apart, the vibrance of the world around us dulls, and our understanding and ability to sense the complexity of the physical world diminishes. Without the ability to see, it would logically be impossible to portray our surroundings artistically in a coherent and visually realistic manner...

...wait...what? More

Tagged , , , , , , , , , , , , , , ,

Gossip Can Influence Perception

October 3rd, 2011 in Article 2 comments


How you feel influences what you see, it is not just what you see that influences how you feel; a top down approach to understanding the visual system.

Affective Circumplex

Affective Circumplex: Affect can vary in terms of valence (positive/negative) and arousal (high/low).

A great analogy for understanding how affect (the experience of an emotion) influences perception is to think of affect as a spotlight, or a source of "attention" that sheds light on the external world. This is known as a top-down process because the cortical and sub cortical levels of the brain directly influence what one externally experiences. This is opposed to a bottom-up process wherein external stimuli influences processing in the brain (an example of this process would be hearing something hit the floor behind you and immediately shifting your attention to that object). The brain uses both of these processes interchangeably, but it has only been recently that a top-down understanding of the visual system (a system that has classically been believed to be primarily regulated by external stimuli and how such stimuli influence attention) has been accepted. Many studies by Lisa Feldman Barrett and the Interdisciplinary Affective Sciences lab at Northeastern University seem to have proved strong evidence against the popular claim that the bottom-up system is the sole means by which perception can be influenced. More

Tagged , , , ,

What You Don't Know CAN Kill You.

August 16th, 2011 in Uncategorized 0 comments


Zombies are terrifying creatures. The most panic-inducing aspect of their completely factual existence among us is that they have a taste for human blood and they will do anything  to get to it. Recently, the Zombie Research Society (ZRS) has been attempting to scan (with some difficulty due to the fact that zombies aren't huge fans of staying still in MRIs) and create a map of the zombie brain. A leading researcher in ZRS, Dr. Bradley Voytek, lectured about these terrors at Nerd Night SF. In his presentation he gives a medical term to describe the zombie condition: "consciousness deficit hypoactivity disorder (CDHD)- the loss of rational voluntary and conscious behavior replaced by delusional/impulsive aggression, stimulus-driven attention, and the inability to coordinate motor or linguistic behaviors." So with those messy scans and some preliminary facts we know about the living dead, researchers such as Dr. Voytek have been able to come up with multiple images of what a real zombie brain must look like. More

Tagged , , , ,

Neurotransmission: Now, Soon, L.A.T.E.R., or Never?

July 28th, 2011 in Uncategorized 0 comments


Lobsters, Axons, Telephones, and Extracellular Recordings – A look at how neuronal signals can be transmitted differently under certain pharmacological conditions.

teleaxon

Neuronal signals are normally transmitted from cell bodies, or somas, to terminals via extensions called axons. At these terminals, connections called synapses are made with other neurons whereby the signals are released via the aide of chemical messengers called neurotransmitters. Many still believe that axons are reliable conductors of these signals.

However, with several years’ worth of experiments, scientists have questioned the fidelity of axonal conduction. They’ve realized that axons do not work like telephones. While telephones and axons may both have buttons – at the terminals in axons – only telephones faithfully conduct signals. And only telephones ring aloud and send messages to voicemail…

In any case, neuronal signals, unlike telephone signals, can change along their paths. Moreover, the pre-synaptic neuron may communicate a different message from the one originally sent from the soma to the synapse with the post-synaptic cell.  Researchers at the lab I’ve been working at this summer, the Whitney Laboratory for Marine Bioscience, have focused on the role of neuromodulation in signal transmission along axons, particularly by the well-known neurotransmitter – dopamine. More

Tagged , , , , , , , ,

The Hard Problem of Consciousness

July 26th, 2011 in Uncategorized 16 comments


You’re lying on a sandy beach on a hot sunny afternoon, enjoying a few hours of much needed laziness. As you open your eyes and confront the vastness of the ocean in front of you, light of 600nm wavelength hits your retina, kindling an impossibly long cascade of events in your brain: a molecule called retinal changes shape, neurons fire action potentials down the optic nerve, arrive at the lateral geniculate nucleus deep in the brain causing more action potentials in primary visual cortex in the back of your head, and so on ad infinitum. At some point, the mechanical wonder of 100 billion neurons working together produces something special: your experience of the color blue. What’s special is not that you can discriminate that color from others; nor that you are aware of it and paying attention to it. It is not notable that you can tell us about it, or assign a name to it. It’s that you have a subjective, qualitative experience of the color; there is something it is like to experience the color blue. Some philosophers call these experiences qualia – meaning “what kind” – but it is not important what kind of experience you are having, just that you are having one at all. Modern science hypothesizes that subjective experience is a product of the brain, but has no explanation for it. More

Tagged , , ,

Dolphins Prove Themselves (Yet Again)

July 25th, 2011 in News 0 comments


Dolphins are pretty amazing creatures, to put it simply. In Douglas Adams' The Hitchhiker's Guide to the Galaxy, the dolphins knew of the Earth's impending doom well before people did ("So long, and thanks for all the fish!"). In addition to their extraordinary cognitive abilities, they have highly developed and extremely interesting social skills (such as killing for pleasure).

Speaking of killing, let's discuss sharks. Contrary to popular belief, sharks are only dangerous if you give them reason to be. During the course of my summer internship, I've seen many sharks, from toothless dogfish to five foot long juvenile tiger sharks. All have been docile; they tend not to try to attack unless you poke them hard enough (in an out of water case). But, say you happened to be standing in front of the aforementioned tiger shark's mouth and poked it, and it flailed and bit your leg. You'd probably scream in pain, bleed, and need to see a doctor right away.

Now consider an in water encounter between a dolphin and a shark. The dolphin could just be swimming normally and pass a shark. The shark could misinterpret the dolphin swimming nearby as a threat, and attack, leaving a 3 centimeter deep, 30 centimeter long, 10 centimeter wide wound. Not only would the dolphin not feel pain from this, but it would continue feeding, swimming, and behaving normally! Even more amazingly, the wound would heal over time with little scarring or changes in overall contour! More

Tagged , , , ,

Vineyard Brains

July 11th, 2011 in News 3 comments


Going on vacation with my family for thirteen days was both exciting and daunting. The West Coast adventure was extremely appealing and I couldn’t wait to see the Grand Canyon, explore Yosemite National Park, and drive a convertible down the Pacific Coast Highway. But where was I going to get my brain fix? The Scientific American issue I bought for the flight to Phoenix wasn’t doing it for me. Some hope was gained at The Exploratorium, a hands-on science museum in San Francisco that managed to convince my thirteen-year-old sister that neuroscience might be almost potentially cool, but it wasn’t until a trip to Sonoma County that my curiosity was finally piqued.

Tiger the horse and I were riding along on a vineyard tour and I was talking to the tour guide about school. I’ve got yet another new response to “I’m studying neuroscience”: the tour guide told me about his son’s mysterious mental illness that may or may not be schizophrenia and we rode through wine country discussing psychiatrists, Thorazine, thought disorders and SSRIs. All in all, a good day.

This conversation got me wondering about the kinds of challenges psychologists and psychiatrists face when having to diagnose patients with schizophrenia. All the clinicians have to go on are whatever behavioral abnormalities make themselves apparent. But how do you weed out schizophrenia from other kinds of psychosis (some of which may respond to the typical treatment for schizophrenia)? More

Tagged , , , ,

Progress for the Artificial Retina

June 29th, 2011 in News 0 comments


For patients who have lost their sight to various eye diseases, artificial retina technology allows them to experience limited vision once more.

The external parts of the artificial retina device include glasses with a mounted camera and a small computer.

External Devices for Artificial Retina

The device also includes an electrode implanted onto the patient's retina. When the camera "sees" an image, the computer is able to translate these into a pattern of neural signals. This pattern is then transmitted to the implanted electrode, and directly stimulates the optic nerve. These signals are then able to be processed by the brain and interpreted as very rudimentary images.

The first artificial retina to be implanted in a patient, known as Argus I, included only sixteen electrodes that stimulated the optic nerve. However, the patient with this implant was still able to tell the differences between light and dark, and could make out basic shapes. The newer version of the technology, Argus II, now includes sixty electrodes. However, it is still limited in that patients can only tell the differences between light and dark areas, and can only see shapes, outlines, and blurs, and not detailed images. Regardless, this is a large improvement over no sight, and patients with the implant are satisfied with simply a partial regain of their vision, and are hopeful that the technology will continue to improve. As of late, a third model of the artificial retina is in development, and will include over 200 electrodes.

Though the project began almost ten years ago, the implant has recently been approved for patients in Europe. The company has not yet submitted approval to the FDA, but hopes to do so by the end of this year.

Second Sight - How is Argus II Designed to Produce Sight?

CBS News HealthPop - First Artificial Retina Approved in Europe

US Department of Energy Office of Science - About the Artificial Retina Project

Tagged , , , , ,

Mystical Minds?

June 28th, 2011 in Uncategorized 0 comments


Using the human nervous system as a representational medium, are there parts of the universe that are innately unknowable to us- are there realities that we can experience but not objectively measure? Is spirituality real, or a man-made delusion to justify ambiguous emotions and guide behavior? Is consciousness an emergent property or does it extend beyond?

These are timeless ontological questions that have been posed by both philosophers and the common man for centuries. But only recently has the new field of neurotheology, the study of correlations between neural phenomena and subjelsdctive experiences of spirituality, emerged on the scene to advance our understanding of what the brain undergoes during religious practices. Whereas before we could only rely on logic and speculation in an attempt to tackle some of these controversial issues, today neuroscientists are beginning to uncover substantial information regarding the relationship between brain activity and “the feeling of God”.

Scientists have long been intrigued by claims of mystical encounters. Though these assertions may seem to be all too uncommon and even downright outlandish in an increasingly “secular” nation, still a survey by the Pew Form on Religion and Public Life demonstrated that nearly half of American adults today have had what they consider a “religious" or "mystical experience” of some kind. In order to investigate the biological basis of these obscure episodes, scientists first explored the effects of psychedelic drugs, which have a long history of traditional use in religion. Since users of psychedelics often report of the drug’s ability to elicit a sense of the spiritual, as well as promote mental healing, researchers sought empirical support for the notion that psychedelic drugs could facilitate "religious experiences". More

Tagged , , ,