Articles In High Impact Journals

    1. Tucker et al., 2023. Sub-continental-scale carbon stocks of individual trees in African drylands. Nature, doi: 10.110.1038/s41586-022-05653-6
    2. Zhao et al., 2022. Seasonal peak photosynthesis is hindered by late canopy development in northern ecosystems. Nature Plants,doi: 10.1038/s41477-022-01278-9
    3. Zhu et al., 2021. Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science, doi: 10.1126/science.abg5673
    4. Hashimoto et al., 2021. New generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests. Nature Communications, https://doi.org/10.1038/s41467-021-20994-y
    5. Xu et al., 2021. Seasonal biological carryover dominates northern vegetation growth. Nature Communications, https://doi.org/10.1038/s41467-021-21223-2
    6. Chi et al., 2020. Biophysical impacts of Earth greening largely controlled by aerodynamic resistance. Sci. Adv., 6 : eabb1981
    7. Huang et al., 2020. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv., 6, eabb8508
    8. Lian et al., 2020. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Science Advances, 6, eaax0255
    9. Piao et al., 2019. Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth and Environment, doi: 10.1038/s43017-019-0001-x
    10. Chen et al., 2019. China and India lead in greening of the world through land-use management. Nature Sustainability, doi:10.1038/s41893-019-0220-7
    11. Winkler et al., 2019. Earth system models underestimate carbon fixation by plants in the high latitudes. Nature Communications, doi:10.1038/s41467-019-08633-z
    12. Huang et al., 2019. Air temperature optima of vegetation productivity across global biomes. Nature Ecol. Evolution, doi:10.1038/s41559-019-0838-x
    13. Fan et al., 2019. Satellite-observed pantropical carbon dynamics. Nature Plants, doi:10.1038/s41477-019-0478-9
    14. Yang et al., 2018. Post-drought decline of the Amazon carbon sink. Nature Communications, doi:10.1038/s41467-018-05668-6
    15. Piao et al., 2018. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nature Geoscience, doi:10.1038/s41561-018-0204-7
    16. Wu et al., 2018. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nature Climate Change, https://doi.org/10.1038/s41558-018-0346-z
    17. Tian et al., 2018. Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite. Nature Ecology and Evolution, doi:10.1038/s41559-018-0630-3
    18. Liu et al., 2018. Extension of the growing season increases vegetation exposure to frost. Nature Communications, doi:10.1038/s41467-017-02690-y
    19. Tong et al., 2018. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nature Sustainability, https://doi.org/10.1038/s41893-017-0004-x
    20. Fauchald et al., 2017. Arctic greening from warming promotes declines in caribou populations. Science Advances, 3, e1601365 (2017)
    21. Zeng et al., 2017. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nature Climate Change, doi: 10.1038/NCLIMATE3299
    22. Piao et al., 2017. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nature Climate Change, doi: 10.1038/NCLIMATE3277
    23. Huang et al., 2017. Velocity of change in vegetation productivity over northern high latitudes. Nature Ecology and Evolution, doi: 10.1038/s41559-017-0328-y
    24. Zhu et al., 2016. Greening of the Earth and its Drivers. Nature Climate Change, doi:10.1038/nclimate3004
    25. Mao et al., 2016. Human-induced Greening of the Northern Extratropical Land Surface. Nature Climate Change, doi: 10.1038/nclimate3056
    26. Li et al., 2016. Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets. PNAS, doi: 10.1073/pnas.1603956113
    27. Ukkola et al., 2015. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nature Climate Change, 2015 (DOI: 10.1038/NCLIMATE2831)
    28. Piao et al., 2015. Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications, 2015 (doi: 10.1038/ncomms7911)
    29. Shen et al., 2015. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. USA, 2015 (www.pnas.org/cgi/doi/10.1073/pnas.1504418112)
    30. Anderegg et al., 2015. Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proc. Natl. Acad. Sci. USA, 2015 (www.pnas.org/cgi/doi/10.1073/pnas.1521479112)
    31. Poulter et al., 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle, Nature, 2014 (doi:10.1038/nature13376)
    32. Zhou et al., 2014. Widespread decline of Congo rainforest greenness in the past decade, Nature, 2014 (doi: 10.1038/nature13265)
    33. Wang et al., 2014. A two-fold increase of carbon cycle sensitivity to tropical temperature variations, Nature, 2014 (doi: 10.1038/nature12915)
    34. Piao et al., 2014. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity, Nature Communications, 2014 (doi:10.1038/ncomms6018)
    35. Hilker et al., 2014. Vegetation dynamics and rainfall sensitivity of the Amazon, Proc. Natnl. Acad. Sci. USA (www.pnas.org/cgi/doi/10.1073/pnas.1404870111)
    36. Peng et al., 2014. Afforestation in China cools local land surface temperature, Proc. Natl. Acad. Sci. USA (www.pnas.org/cgi/doi/10.1073/pnas.1315126111)
    37. Xu et al., 2013. Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, doi: 10.1038/NCLIMATE1836. Supplementary Information
    38. Peng et al., 2013. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation, Nature, doi: 10.1038/nature12434
    39. Fu et al., 2013. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection, Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1302584110
    40. Wang et al., 2013.Variations in atmospheric CO2 growth rates coupled with tropical temperature, Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1219683110
    41. Knyazikhin et al., 2012. Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1210196109.
    42. Saatchi et al., 2012. Persistent Effects of a Severe Drought on Amazonian Forest Canopy, Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1204651110.
    43. Samanta et al., 2011. Comment on “Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009”, Science, Vol. 333, p. 1093, doi: 10.1126/science.1199048. Supplementary Online Material
    44. Myneni et al., 2007. Large seasonal changes in leaf area of amazon rainforests. Proc. Natl. Acad. Sci., doi:10.1073/pnas.0611338104.
    45. Sundareshwar et al., 2007. Environmental Monitoring Network for India, Science, 316: 204-205.
    46. Zhou et al., 2004. Evidence for a significant urbanization effect on climate in China, Proc. Natl. Acad. Sci. USA, doi: 10.1073pnas.0400357101.
    47. Nemani et al., 2003. Climate driven increases in global net primary production from 1981 to 1991. Science, 300:1560-1563.
    48. Lucht et al., 2002. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science, 296:1687-1689.
    49. Myneni and Dong et al., 2001. A large carbon sink in the woody biomass of northern forests. Proc. Natl. Acad. Sci. USA., 98(26): 14784-14789. supplemental information
    50. Myneni, R. B. et al., 1997. Increased plant growth in the northern high latitudes from 1981-1991. Nature, 386:698-701.