Articles In High Impact Journals
- Tucker et al., 2023. Sub-continental-scale carbon stocks of individual trees in African drylands. Nature, doi: 10.110.1038/s41586-022-05653-6
- Zhao et al., 2022. Seasonal peak photosynthesis is hindered by late canopy development in northern ecosystems. Nature Plants,doi: 10.1038/s41477-022-01278-9
- Zhu et al., 2021. Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science, doi: 10.1126/science.abg5673
- Hashimoto et al., 2021. New generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests. Nature Communications, https://doi.org/10.1038/s41467-021-20994-y
- Xu et al., 2021. Seasonal biological carryover dominates northern vegetation growth. Nature Communications, https://doi.org/10.1038/s41467-021-21223-2
- Chi et al., 2020. Biophysical impacts of Earth greening largely controlled by aerodynamic resistance. Sci. Adv., 6 : eabb1981
- Huang et al., 2020. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv., 6, eabb8508
- Lian et al., 2020. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Science Advances, 6, eaax0255
- Piao et al., 2019. Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth and Environment, doi: 10.1038/s43017-019-0001-x
- Chen et al., 2019. China and India lead in greening of the world through land-use management. Nature Sustainability, doi:10.1038/s41893-019-0220-7
- Winkler et al., 2019. Earth system models underestimate carbon fixation by plants in the high latitudes. Nature Communications, doi:10.1038/s41467-019-08633-z
- Huang et al., 2019. Air temperature optima of vegetation productivity across global biomes. Nature Ecol. Evolution, doi:10.1038/s41559-019-0838-x
- Fan et al., 2019. Satellite-observed pantropical carbon dynamics. Nature Plants, doi:10.1038/s41477-019-0478-9
- Yang et al., 2018. Post-drought decline of the Amazon carbon sink. Nature Communications, doi:10.1038/s41467-018-05668-6
- Piao et al., 2018. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nature Geoscience, doi:10.1038/s41561-018-0204-7
- Wu et al., 2018. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nature Climate Change, https://doi.org/10.1038/s41558-018-0346-z
- Tian et al., 2018. Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite. Nature Ecology and Evolution, doi:10.1038/s41559-018-0630-3
- Liu et al., 2018. Extension of the growing season increases vegetation exposure to frost. Nature Communications, doi:10.1038/s41467-017-02690-y
- Tong et al., 2018. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nature Sustainability, https://doi.org/10.1038/s41893-017-0004-x
- Fauchald et al., 2017. Arctic greening from warming promotes declines in caribou populations. Science Advances, 3, e1601365 (2017)
- Zeng et al., 2017. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nature Climate Change, doi: 10.1038/NCLIMATE3299
- Piao et al., 2017. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nature Climate Change, doi: 10.1038/NCLIMATE3277
- Huang et al., 2017. Velocity of change in vegetation productivity over northern high latitudes. Nature Ecology and Evolution, doi: 10.1038/s41559-017-0328-y
- Zhu et al., 2016. Greening of the Earth and its Drivers. Nature Climate Change, doi:10.1038/nclimate3004
- Mao et al., 2016. Human-induced Greening of the Northern Extratropical Land Surface. Nature Climate Change, doi: 10.1038/nclimate3056
- Li et al., 2016. Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets. PNAS, doi: 10.1073/pnas.1603956113
- Ukkola et al., 2015. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nature Climate Change, 2015 (DOI: 10.1038/NCLIMATE2831)
- Piao et al., 2015. Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications, 2015 (doi: 10.1038/ncomms7911)
- Shen et al., 2015. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. USA, 2015 (www.pnas.org/cgi/doi/10.1073/pnas.1504418112)
- Anderegg et al., 2015. Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proc. Natl. Acad. Sci. USA, 2015 (www.pnas.org/cgi/doi/10.1073/pnas.1521479112)
- Poulter et al., 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle, Nature, 2014 (doi:10.1038/nature13376)
- Zhou et al., 2014. Widespread decline of Congo rainforest greenness in the past decade, Nature, 2014 (doi: 10.1038/nature13265)
- Wang et al., 2014. A two-fold increase of carbon cycle sensitivity to tropical temperature variations, Nature, 2014 (doi: 10.1038/nature12915)
- Piao et al., 2014. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity, Nature Communications, 2014 (doi:10.1038/ncomms6018)
- Hilker et al., 2014. Vegetation dynamics and rainfall sensitivity of the Amazon, Proc. Natnl. Acad. Sci. USA (www.pnas.org/cgi/doi/10.1073/pnas.1404870111)
- Peng et al., 2014. Afforestation in China cools local land surface temperature, Proc. Natl. Acad. Sci. USA (www.pnas.org/cgi/doi/10.1073/pnas.1315126111)
- Xu et al., 2013. Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, doi: 10.1038/NCLIMATE1836. Supplementary Information
- Peng et al., 2013. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation, Nature, doi: 10.1038/nature12434
- Fu et al., 2013. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection, Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1302584110
- Wang et al., 2013.Variations in atmospheric CO2 growth rates coupled with tropical temperature, Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1219683110
- Knyazikhin et al., 2012. Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1210196109.
- Saatchi et al., 2012. Persistent Effects of a Severe Drought on Amazonian Forest Canopy, Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1204651110.
- Samanta et al., 2011. Comment on “Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009”, Science, Vol. 333, p. 1093, doi: 10.1126/science.1199048. Supplementary Online Material
- Myneni et al., 2007. Large seasonal changes in leaf area of amazon rainforests. Proc. Natl. Acad. Sci., doi:10.1073/pnas.0611338104.
- Sundareshwar et al., 2007. Environmental Monitoring Network for India, Science, 316: 204-205.
- Zhou et al., 2004. Evidence for a significant urbanization effect on climate in China, Proc. Natl. Acad. Sci. USA, doi: 10.1073pnas.0400357101.
- Nemani et al., 2003. Climate driven increases in global net primary production from 1981 to 1991. Science, 300:1560-1563.
- Lucht et al., 2002. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science, 296:1687-1689.
- Myneni and Dong et al., 2001. A large carbon sink in the woody biomass of northern forests. Proc. Natl. Acad. Sci. USA., 98(26): 14784-14789. supplemental information
- Myneni, R. B. et al., 1997. Increased plant growth in the northern high latitudes from 1981-1991. Nature, 386:698-701.