Theory: Radiative Transfer and Remote Sensing

  1. Yang et al., 2017. Estimation of leaf area index and its sunlit portion from DSCOVR EPIC data: Theoretical basis. Remote Sens. Environ., http://dx.doi.org/10.1016/j.rse.2017.05.033
  2. Yang et al., 2016. Analyses of Impact of Needle Surface Properties on Estimation of Needle Absorption Spectrum: Case Study with Coniferous Needle and Shoot Samples, Remote Sensing, doi::10.3390/rs8070563
  3. Knyazikhin et al., 2013. Reply to Townsend et al.: Decoupling contributions from canopy structure and leaf optics is critical for remote sensing leaf biochemistry. Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1301247110
  4. Knyazikhin et al., 2012. Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1210196109
  5. Knyazikhin et al., 2010. Canopy spectral invariants. Part 1: A new concept in remote sensing of vegetation. J. Quant. Spectroscp. Radiat. Trans., doi: 10.1016/j.jqsrt.2010.06.014
  6. Schull et al., 2010. Canopy spectral invariants, Part 2: Application to classification of forest types from hyperspectral data. J. Quant. Spectroscp. Radiat. Trans., (2010), doi:10.1016/j.jqsrt.2010.06.004
  7. Huang et al., 2008. Stochastic transport theory for investigating the three-dimensional canopy structure from space measurement, Remote Sensing of Environ., 112:35–50.
  8. Shabanov et al., 2007. Stochastic radiative transfer model for mixture of discontinuous vegetation canopies, J. Quant. Spectroscp. Radiat. Trans., 107: 236-262.
  9. Huang et al., 2007. Canopy spectral invariants for remote sensing and model applications, Remote Sens. Environ., 106: 106–122.
  10. Knyazikhin, et al., 2005. Three-Dimensional Radiative Transfer in Vegetation Canopies. In: A. Davis and A. Marshak [Eds], “Three-Dimensional Radiative Transfer in the Cloudy Atmosphere,” Springer-Verlag, ISBN-10 (3-540-23958-8), pages 617-651.
  11. Knyazikhin, et al., 2005. A primer in three-dimensional radiative transfer. In: A. Davis and A. Marshak [Eds], “Three-Dimensional Radiative Transfer in the Cloudy Atmosphere,” Springer-Verlag, ISBN-10 (3-540-23958-8, pages 153-242.
  12. Kotchenova et al., 2003. Modeling lidar waveforms with time-dependent stochastic radiative transfer theory for remote estimations of forest biomass. J. Geophys. Res., doi: 10.1029/2002JD003288
  13. Shabanov et al., 2003. The effect of spatial heterogeneity in validation of the MODIS LAI and FPAR algorithm over broadleaf forests, Remote Sens. Environ., 85: 410-423.
  14. Knyazikhin et al., 2002. A missing solution to the transport equation and its effect on estimation of cloud absorptive properties. J. Atmos. Sci., 59: 3572-3585.
  15. Lyapustin, A. and Knyazikhin, Y., 2001. Method of Green Function in the Radiative Transfer Problem. Part I: Homogeneous non-Lambertian Surface. Applied Optics, 40: 3495-3501.
  16. Lyapustin and Knyazikhin, 2002. .Green’s function method in the radiative transfer problem. II. Spatially heterogeneous anisotropic surface. Appl. Opt., 41: 5600-5606.
  17. Panferov, et al., 2001. The role of canopy structure in the spectral variation of transmission and absorption of solar radiation in vegetation canopies. IEEE Trans. Geosci. Remote Sens., 39:241-253.
  18. Knyazikhin, J. and Marshak, A., 2000. Mathematical aspects of BRDF modelling: adjoint problem and Green’s function. Remote Sensing Reviews, 18: 263-280.
  19. Shabanov et al., 2000. Stochastic modelling of radiation regime in discontinuous vegetation canopies. Remote Sens. Environ., 74:125-144.
  20. Knyazikhin, Y., Kranigk, J., Myneni, R. B., Panfyorov, O.G. and Gravenhorst, G., 1998. Influence of small-scale structure on radiative transfer and photosynthesis in vegetation canopies. J. Geophys. Res., 103 (D6): 6133-6144.
  21. Myneni, R.B. and Asrar, G., 1993. Radiative transfer in three-dimensional atmosphere/vegetation media. J. Quant. Spectroscp. Radiat. Transfer, 49: 585-598.
  22. Ganapol, B. D. and Myneni, R.B., 1992. The application of the principles of invariance to the radiative transfer equation in plant canopies. J. Quant. Spectroscp. Radiat. Transfer, 48: 321-339.
  23. Myneni, R.B., Asrar, G. and Hall, F. G., 1992. A three dimensional radiative transfer method for optical remote sensing of vegetated land surfaces. Remote Sens. Environ., 41: 105-121.
  24. Ganapol, B. D. and Myneni, R.B., 1992. The F_N method for the one-angle radiative transfer equation applied to plant canopies. Remote Sens. Environ., 39: 213-231.
  25. Knyazikhin, Y. V., Marshak, A. L. and Myneni, R.B., 1992. Interaction of photons in a canopy of finite dimensional leaves. Remote Sens. Environ., 39: 61-74.
  26. Myneni, R.B. and Asrar, G., 1991. Photon interaction cross sections for aggregations of finite dimensional leaves. Remote Sens. Environ., 37: 219-224.
  27. Myneni, R.B. and Ganapol, B. D., 1991. A simplified formulation of photon transport in leaf canopies with finite dimensional scatterers. J. Quant. Spectroscp. Radiat. Transfer, 46: 135-140.
  28. Myneni, R.B., Marshak, A.L. and Knyazikhin, Yu., 1991. Transport theory for leaf canopies with finite dimensional scattering centers. J. Quant. Spectroscp. Radiat. Transfer, 46: 259-280.
  29. Myneni, R.B., Asrar, G. and Gerstl, S.A.W., 1990. Radiative transfer in three dimensional leaf canopies. Transport Theory and Statistical Physics, 19: 205-250.
  30. Myneni, R.B., Ross, J. and Asrar, G., 1989. A review on the theory of photon transport in leaf canopies in slab geometry. Agric. For. Meteorol., 45:1-153.
  31. Shultis, J.K. and Myneni, R.B., 1988. Radiative transfer in vegetation canopies with anisotropic scattering. J. Quant. Spectroscp. Radiat. Transfer, 39: 115-129.