Tagged: stem cells
Don’t Panic! – Mice Aren’t Actually the Smartest
“Man had always assumed that he was more intelligent than dolphins because he had achieved so much — the wheel, New York, wars and so on — whilst all the dolphins had ever done was muck about in the water having a good time. But conversely, the dolphins had always believed that they were far more intelligent than man — for precisely the same reasons….In fact there was only one species on the planet more intelligent than dolphins, and they spent a lot of their time in behavioural research laboratories running round inside wheels and conducting frighteningly elegant and subtle experiments on man. The fact that once again man completely misinterpreted this relationship was entirely according to these creatures’ plans.” – Douglas Adams, The Hitchhiker’s Guide to the Galaxy
As tempting as it may be to believe the science fiction version of the intelligence rankings, real-life science has spoken and suggests (much to my displeasure) that humans may actually be the highest on the intelligence scale.
Are you flushing away brain cells? How urine cells can give rise to neurons
Uh-oh, urine trouble! Well, now that that’s out of my system (ahem), how would you feel if you learned that you’ve been flushing away potential brain cells? I’m not talking about the copious amount of hours you’ve logged online or kicked back in front of the television just this past month. On a daily basis, you’re expelling 1-2 liters of a possible source of neurons in a way you’ve never expected – through urinating.
Back in 2009, stem-cell biologist Duanqing Pei demonstrated that kidney epithelial cells, a common component of urine, could be converted into induced pluripotent stem (iPS) cells, which have the ability to differentiate into any cell type found in the body. Recently, Pei and his colleagues at China’s Guangzhou Institutes of Biomedicine and Health took this technique a step further by converting iPS cells into functioning neurons. More
From Skin Cells to Brain Cells
As much fun as I had exploring psychology last time I set out to write a blog post, this article from Science Daily caught my eye last week and I had to revert to my biology-related posting habit. Evidently, researchers at Oxford in the UK are using skin cells to grow induced pleuripotent stem (IPS) cells to use in their study of Parkinson’s Disease. What’s so useful about this technique is that skin cells are easily accessible, in contrast to the hard-to-reach tissues of the brain. With the skin cells obtained, the scientists plan to grow dopaminergic neurons and work on techniques for early detection of PD, perhaps finding ways to diagnose it before patients start showing symptoms. The skin cells will be from early-stage Parkinson’s patients, so they can be compared to the dopaminergic cells of healthy individuals to determine where things go wrong in the neurons affected by the disease. More
A Peek at Parkinson’s: What’s New for the Old?
With the Pancakes for Parkinson’s event at Boston University nearing, on April 2nd, I thought it would be a good time to check up on the latest in Parkinson’s research.
Firstly, Parkinson’s Disease (PD) is a motor disorder that affects dopaminergic neurons of the brain, which are necessary in the coordination of movement. Onset is usually around age 60, starting with symptoms including tremor, stiffness, slowness of movement, and poor balance and coordination. While current treatments can help alleviate the symptoms in patients, none provide a cure.
Second off, the mission of the Michael J. Fox Foundation for Parkinson’s Research and other support groups is to find better treatments for those suffering from the disease. With the Baby Boomer generation entering late adulthood and old age, more research needs to be done to better understand the disease and help those with it find relief. Consider stopping by the GSU Alley for some pancakes to show your support for the Foundation and its cause next month!
Ranging from studying food intake to using technology, many approaches have been used in PD research. More