News

Testing Ages Using Spectroscopy of White Dwarfs

By JJ HermesMay 27th, 2024
An example of one widely separated pair of white dwarf stars (both marked with a yellow box), each analyzed independently to determine their ages. In this case, the two stars move together on the sky and are both at the same distance (59.5 pc); they are separated from each other by roughly 1500 au (credit Aladin / PanSTARRS survey).

In May 2024, a manuscript led by graduate student and BUWD member Tyler Heintz (Heintz, Hermes, Tremblay et al. 2024) announced the most detailed test of white dwarf ages measured from spectroscopic fits in wide WD+WD binaries. By comparing the age estimates of wide pairs of stars that should have both been born at the same time, using fits using both photometry and spectroscopy, Tyler provided one of the most reliable tests of current age-dating methods of white dwarf stars. This work shows that photometry + parallax (distance) measurements returns more reliable results for fainter white dwarfs. It also finds further evidence of a significant merger fraction among wide WD+WD binaries, where roughly 20% are inconsistent with a monotonically increasing initial-final mass relation. The manuscript has been published in The Astrophysical Journal.

Gaia’s Light Curve Prospects

By JJ HermesMay 27th, 2024
Phase-folded light curves showing Gaia epoch photometry in green for white dwarfs matching ZTF and TESS data in blue and red (credit Steen et al. 2024).

In April 2024, a manuscript led by former BU undergraduate student and BUWD member Maya Steen (Steen, Hermes, Guidry et al. 2024) detailed one of the first systematic analyses of Gaia DR3 multi-epoch light curves, this focused on white dwarfs. Roughly 1300 candidate white dwarfs have Gaia light curves (spanning roughly 1000 days with visits roughly every 44 days). Even with that sparse sampling, Maya (who is now a graduate student at New Mexico State University) showed that periodicities as short as minutes can be detected from the Gaia light curves alone! We discover 86 new objects from the 105 target sample, including pulsating, spotted, and binary white dwarfs, and even a new 68.4 min eclipsing cataclysmic variable. The manuscript has been published in The Astrophysical Journal.

JWST directly images two giant planet candidates

By JJ HermesFebruary 1st, 2024
Directly imaged candidate giant planets from JWST around two white dwarfs: WD1202-232 at top, WD2105−82 at bottom (credit Mullally et al. 2024).

In January 2024, a manuscript led by Susan Mullally from Space Telescope Science Institute and including members of the BUWD group (Mullally et al. 2024) announced that JWST has directly images giant planet candidates around two metal-polluted white dwarf stars. The two planet candidates (JWST/MIRI images shown above) are consistent with 1-7 Jupiter-mass planets on orbits that would have been similar to Jupiter or Saturn in our solar system before the host star lost mass to become a white dwarf. JWST has improved our sensitivity to such planets by an order of magnitude. If confirmed to move with the white dwarf (although unlikely, in each case the point source could be a background galaxy), these would be the oldest directly imaged exoplanets ever found, and would be direct evidence that giant planets like Jupiter survive the evolution of their host star. Because they orbit white dwarf stars, we can get reasonable estimates on their ages: WD1202-232b is likely close in age to our Sun (~5 billion years old), and WD2105−82b is between 1.4-2.4 Gyr. Some nice press coverage of the discovery was published by Science Magazine as well as Universe Today. The manuscript has been accepted in The Astrophysical Journal Letters.

USRA Distinguished Undergraduate award

By JJ HermesDecember 14th, 2023

Former BU White Dwarf researcher Madi VanWyngarden, who worked with us in Summer 2021 and helped with our discovery of many new pulsating white dwarfs in TESS, has recently been honored with a 2023 Universities Space Research Association (USRA) Distinguished Undergraduate Award. Madi is one of only five recipients of this year's award, and the first ever from Boston University!

A 23-min binary in TESS

By JJ HermesNovember 11th, 2023

In November 2023, a manuscript led by Matthew Green from the Max-Planck-Institut für Astronomie in Heidelberg, Germany and including members of the BUWD group (Green, Hermes, Barlow et al. 2023) announced the discovery of the shortest-period binary system yet found by NASA's Transiting Exoplanet Survey Satellite (TESS)! Although TESS is tuned to finding transiting exoplanets, we used the facility to discover a pair of stars orbiting one other roughly every 23 minutes, one of the brightest (and closest) AM CVn binaries ever found. This is the second system we have recently found from TESS that will be detectable in gravitational wave radiation when we launch space-based interferometers in the coming decades. The manuscript has been accepted for publication in the Monthly Notices of the Royal Astronomical Society.

TESS’s first gravitational wave source

By JJ HermesAugust 24th, 2023
The full-phase light curve from ULTRACAM (left) and the trailed spectrum showing velocity changes from the Goodman spectrograph on the SOAR telescope (right) for the 47.19-min WD+WD binary WDJ022558.21-692025.38 (credit Munday et al. 2023).

In August 2023, a manuscript led by James Munday from the University of Warwick and including members of the BUWD group (Munday, Tremblay, Hermes, et al. 2023) announced the discovery of an eclipsing, 47.19-min double-white-dwarf binary first identified by NASA's Transiting Exoplanet Survey Satellite. The pair of stars are massive enough (0.40 and 0.28 solar masses) and close enough (separated by roughly the distance from the Earth to the Moon) that they are an extremely strong source of gravitational radiation, ripples in the fabric of space. The system is likely the first binary identified by the TESS mission that will in the future have its gravitational wave radiation directly detected by the LISA space mission. The manuscript has been published in the Monthly Notices of the Royal Astronomical Society.

A two-faced white dwarf

By JJ HermesAugust 24th, 2023
Magnetic fields may explain the unusual two-face appearance of the star nicknamed "Janus" that rotates every 15 minutes. One side of the surface is composed primarily of hydrogen, while the other side is helium, as seen in this artist's animation (credit K. Miller, Caltech/IPAC).

In July 2023, a manuscript led by Ilaria Caiazzo from Caltech and including members of the BUWD group was published in Nature announcing the discovery of an enigmatic new star: a white dwarf that is entirely composed of hydrogen on one side and helium on the other. Every 15 minutes the star rotates once on its axis, showing both its hydrogen and helium faces; we nicknamed the star "Janus" after Roman mythology. We believe the chemical stratification is likely related to a small magnetic field and a very thin layer of hydrogen on the star, but it remains a relatively unsolved problem. The discovery was published in the July 19 2023 issue of Nature and included press coverage from Sky & Telescope, The Guardian, and Space.com.

Emerging magnetism in white dwarfs

By JJ HermesAugust 24th, 2023
A look at two of the Hydrogen Balmer lines in the white dwarf LP 705-64 showing Zeeman-split emission at photomtric minimum (top) and maximum (bottom) as seen from the 4.3-m SOAR telescope (credit Reding et al. 2023).

The BUWD group continues observational efforts to understand the emergence of strong magnetic fields in white dwarf stars as they cool down with age. In June 2023, BUWD group members helped in the discovery of two new stars with variable, strongly magnetic Balmer emission lines corresponding to surface magnetic fields more than 5 MG (more 5 million times stronger than in the Sun, see figure above); that work by Reding, Hermes, Clemens et al. was accepted for publication in a June 2023 issue of the Astrophysical Journal. Group members have also shown that at least some of these white dwarfs with Balmer emission lines do not necessarily have very strong magnetic fields, with some <0.05 MG; that work by Elms et al. is published in the Monthly Notices of the Royal Astronomical Society. Very recently, BUWD group members have helped show that the spot sizes on these magnetic stars cannot be composed of simple single spots; that work by Farihi, Hermes, Littlefair et al. is accepted and published in an October 2023 issue of the Monthly Notices of the Royal Astronomical Society.

A hidden white dwarf found

By JJ HermesSeptember 23rd, 2022
Changes in the arrival time of pulsations (top) of the 342-s pulsation period in the stripped red giant BPM 36430, along with residuals after subtracting the best-fitting sinusoid from the data (bottom). The data reveal that this stripped red giant is being orbited by an unseen, cool, white dwarf that is at least 42% as massive as the Sun (credit Smith et al. 2022).

In September 2022, a manuscript led by undergraduate student at High Point University, Bryce Smith, and including members of the BUWD group has been published (Smith, Barlow, Rosenthal, Hermes & Schaffenroth 2022), which announces the discovery of an unseen, cool white dwarf using the stable pulsations of a stripped red giant star. This work implements the same timing method used to find the first exoplanets around a pulsar --- looking for light-travel-time changes in an object with a steady pulsation period. The discovery was confirmed with spectroscopy showing the star really is wobbling from an unseen companion. The pulsation-timing changes were first discovered by a high-school student working with the BUWD group, Ben Rosenthal, who joined us as a RISE intern in July 2021; Ben is now an undergraduate at Yale University. The work has been accepted for publication in the Astrophysical Journal; a short thread on the discovery can be found here.