The BU White Dwarf Group

Boston Skyline

Welcome to the home page of the BU White Dwarf group, headquartered a few blocks from Fenway Park in Boston, MA, USA.

Our research focuses on white dwarf stars and their connection to the endpoints of stars, binary, and planetary systems. Our work is supported by Boston University, the Institute for Astrophysical Research, the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the Massachusetts Space Grant Consortium.


Recent news and group updates:
Research updates can be found below and on the news page.

Planetary bodies observed for first time in habitable zone of dead star

By JJ HermesMarch 24th, 2022
An artist's impression of the white dwarf star WD1054-226 orbited by clouds of planetary debris and a possible major planet in the habitable zone. (credit Mark A. Garlick / markgarlick.com).

In February 2022, a manuscript led by Jay Farihi from University College London and including members of the BUWD group (Farihi, Hermes, Marsh, et al. 2022) announced the discovery of a remarkable white dwarf that hosts the first planetary debris found in the habitable zone of a retired solar system. The white dwarf, WD1054-226, started out its life like the Sun, but has since evolved through its giant phase and is now a retired white dwarf star. The debris orbits the white dwarf every 25 hours, and features persistent structures in the transit light curve that are most simply explained by a more massive unseen object, in the same way that structures in the rings of Saturn are caused by orbital resonances with moons and moonlets. The discovery was covered by BBC News, NewScientist, Newsweek, Space.com, and IFLScience. A nice thread on Twitter by Corey S. Powell summarizes some of the most interesting figures from the manuscript, published in MNRAS.

TESS finds 74 bright pulsating white dwarfs

By JJ HermesJanuary 14th, 2022

In January 2022, a manuscript led by Alejandra Romero from the Universidade Federal do Rio Grande do Sul in Brazil announced the outcome of a large search for bright new pulsating white dwarfs: in the first three years of the TESS mission we have discovered 74 new pulsating hydrogen-atmosphere (ZZ Ceti) white dwarfs. The work involved many members of the BUWD group, as well as observations collected from both the 1.8m Perkins Telescope Observatory as well as the 4.3m Lowell Discovery Telescope, and was coordinated through Working Group 8 of the TESS Asteroseismic Consortium. These bright objects will be studied for the remainder of the TESS mission so that more information can be ascertained from their interiors through asteroseismology. The manuscript announcing these objects has been accepted for publication in the Monthly Notices of the Royal Astronomical Society.

Preempting an ‘oops’ with JWST

By JJ HermesJanuary 14th, 2022
A finder chart and TESS light curve of the now-omitted JWST standard star HD 38949 (credit Mullally et al. 2022).

In January 2022, Deputy Project Scientist for JWST Susan Mullally and members of the BUWD group announced the first results of a project to monitor nearly all possible spectrophotometric standards that are planned to calibrate the high-precision observations undertaken by the recently launched 6.5-meter James Webb Space Telescope. Using another NASA mission, TESS, we found that most planned standards are suitable for calibrations. However, we also discovered four that are intrinsically quite variable, including one especially poor standard that the JWST team has now thrown out (see image above). The work has been accepted for publication in the Astrophysical Journal; a short thread on the discovery can be found here.

TESS watches a low-mass white dwarf pulsate

By JJ HermesOctober 8th, 2021
Eight days of brightness changes as seen from TESS from the pulsating extremely low-mass white dwarf GD 278 (credit Lopez et al. 2021).

In October 2021, former BUWD group member Isaac Lopez led a global collaboration announcing the discovery, characterization with TESS, and asteroseismic modeling of the pulsations in the first extremely low-mass white dwarf observed from space: GD 278. Using a method to select variable white dwarfs from Gaia pioneered by our group, we first saw pulsations from McDonald Observatory in August 2019. We quickly secured TESS data (see above), producing some of the best data on a pulsating white dwarf ever collected. We matched the observed oscillation periods to theoretical models with multiple stellar evolution codes. This is now the lowest-mass white dwarf with a measured rotation rate. The work was accepted for publication and will appear soon in the Astrophysical Journal; a thread can be found here on Twitter: https://twitter.com/jotajotahermes/status/1446514046027640839?s=20.

A 99-min binary from SDSS-V

By JJ HermesSeptember 25th, 2021
Data (left) and the model (right) of the velocity changes of the new 99-min WD+WD binary SDSS J1337+3952 from SDSS-V (credit Chandra et al. 2021).

In one of the first science results from SDSS-V, collaborators led by Harvard graduate student Vedant Chandra have discovered a double-lined, double-white-dwarf binary orbiting one another every 99 minutes in a paper that was recently accepted for publication by the Astrophysical Journal. The two white dwarfs will merge into a roughly 0.85 solar-mass remnant in less than 300 million years, and the system is already likely giving off enough gravitational waves to be detectable by the LISA mission. A nice Twitter summary of the discovery is here. The pair of stars was found in just the first six months of SDSS-V data, so more exciting discoveries await when the robots take over later this year!