Publications

lab logo

This page is updated periodically. Please see Prof. Sabelhaus’ Google Scholar for the most recent list.

[1]
M. L. Anderson et al., “Maximizing Consistent High-Force Output for Shape Memory Alloy Artificial Muscles in Soft Robots,” in IEEE International Conference on Soft Robotics (RoboSoft), Apr. 2024. doi: 10.1109/RoboSoft60065.2024.10521983. Available: https://ieeexplore.ieee.org/abstract/document/10521983/
[1]
A. Choi, R. Jing, A. P. Sabelhaus, and M. K. Jawed, “DisMech: A Discrete Differential Geometry-Based Physical Simulator for Soft Robots and Structures,” IEEE Robotics and Automation Letters, vol. 9, no. 4, pp. 3483–3490, Apr. 2024, doi: 10.1109/LRA.2024.3365292. Available: https://ieeexplore.ieee.org/abstract/document/10433745. [Accessed: Mar. 23, 2024]
[1]
A. P. Sabelhaus, Z. J. Patterson, A. T. Wertz, and C. Majidi, “Safe Supervisory Control of Soft Robot Actuators,” Soft Robotics, vol. To Appear, Feb. 2024, doi: 10.1089/soro.2022.0131. Available: https://www.liebertpub.com/doi/full/10.1089/soro.2022.0131
[1]
J. C. Pacheco Garcia, R. Jing, M. L. Anderson, M. Ianus-Valdivia, and A. P. Sabelhaus, “A Comparison of Mechanics Simplifications in Pose Estimation For Thermally-Actuated Soft Robot Limbs,” in ASME Conference on Smart Materials, Adaptive Structures, and Intelligence Systems (SMASIS), 2023. doi: 10.1115/SMASIS2023-110774. Available: https://asmedigitalcollection.asme.org/SMASIS/proceedings-abstract/SMASIS2023/87523/1171128
[1]
R. Jing, M. L. Anderson, M. Ianus-Valdivia, A. A. Ali, C. Majidi, and A. P. Sabelhaus, “Safe Balancing Control of a Soft Legged Robot.” arXiv, Sep. 27, 2022. doi: 10.48550/arXiv.2209.13715. Available: http://arxiv.org/abs/2209.13715
[1]
X. Huang et al., “Design and Closed-Loop Motion Planning of an Untethered Swimming Soft Robot Using 2D Discrete Elastic Rods Simulations,” Advanced Intelligent Systems, Sep. 2022, doi: 10.1002/aisy.202200163. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202200163
[1]
Z. J. Patterson, A. P. Sabelhaus, and C. Majidi, “Robust Control of a Multi-Axis Shape Memory Alloy-Driven Soft Manipulator,” IEEE Robotics and Automation Letters, vol. 7, no. 2, Apr. 2022, doi: 10.1109/LRA.2022.3143256. Available: https://ieeexplore.ieee.org/document/9682545
[1]
A. Wertz, A. P. Sabelhaus, and C. Majidi, “Trajectory Optimization for Thermally-Actuated Soft Planar Robot Limbs,” in IEEE International Conference on Soft Robotics (RoboSoft), Apr. 2022. doi: 10.1109/RoboSoft54090.2022.9762226. Available: https://ieeexplore.ieee.org/document/9762226
[1]
A. P. Sabelhaus, R. K. Mehta, A. T. Wertz, and C. Majidi, “In-Situ Sensing and Dynamics Predictions for Electrothermally-Actuated Soft Robot Limbs,” Frontiers in Robotics and AI, vol. 9, 2022, Available: https://www.frontiersin.org/article/10.3389/frobt.2022.888261
[1]
M. Zadan et al., “Liquid Crystal Elastomer with Integrated Soft Thermoelectrics for Shape Memory Actuation and Energy Harvesting,” Advanced Materials, vol. 34, no. 23, 2022, doi: 10.1002/adma.202200857. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202200857
[1]
A. P. Sabelhaus, K. Zampaglione, E. Tang, L.-H. Chen, A. K. Agogino, and A. M. Agogino, “Double-Helix Linear Actuators,” Journal of Mechanical Design, vol. 143, no. 10, May 2021, doi: 10.1115/1.4050739. Available: https://doi.org/10.1115/1.4050739
[1]
A. P. Sabelhaus and C. Majidi, “Gaussian Process Dynamics Models for Soft Robots with Shape Memory Actuators,” in IEEE International Conference on Soft Robotics (RoboSoft), Apr. 2021. doi: 10.1109/RoboSoft51838.2021.9479294. Available: https://ieeexplore.ieee.org/document/9479294
[1]
A. P. Sabelhaus, H. Zhao, E. L. Zhu, A. K. Agogino, and A. M. Agogino, “Model-Predictive Control With Inverse Statics Optimization for Tensegrity Spine Robots,” IEEE Transactions on Control Systems Technology, vol. 29, no. 1, Jan. 2021, doi: 10.1109/TCST.2020.2975138. Available: https://ieeexplore.ieee.org/document/9016220
[1]
Z. Ren, M. Zarepoor, X. Huang, A. P. Sabelhaus, and C. Majidi, “Shape Memory Alloy (SMA) Actuator With Embedded Liquid Metal Curvature Sensor for Closed-Loop Control,” Frontiers in Robotics and AI, vol. 8, 2021, doi: 10.3389/frobt.2021.599650. Available: https://www.frontiersin.org/article/10.3389/frobt.2021.599650
[1]
Z. J. Patterson, A. P. Sabelhaus, K. Chin, T. Hellebrekers, and C. Majidi, “An Untethered Brittle Star-Inspired Soft Robot for Closed-Loop Underwater Locomotion,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2020. doi: 10.1109/IROS45743.2020.9341008. Available: https://ieeexplore.ieee.org/document/9341008
[1]
A. P. Sabelhaus et al., “Inverse Statics Optimization for Compound Tensegrity Robots,” IEEE Robotics and Automation Letters, vol. 5, no. 3, Jul. 2020, doi: 10.1109/LRA.2020.2983699. Available: https://ieeexplore.ieee.org/document/9050924
[1]
A. P. Sabelhaus et al., “Design, Simulation, and Testing of a Flexible Actuated Spine for Quadruped Robots.” arXiv, Sep. 10, 2018. doi: 10.48550/arXiv.1804.06527. Available: http://arxiv.org/abs/1804.06527
[1]
A. P. Sabelhaus, A. K. Akella, Z. A. Ahmad, and V. SunSpiral, “Model-Predictive Control of a Flexible Spine Robot,” in American Control Conference (ACC), IEEE, 2017. doi: 10.23919/ACC.2017.7963738. Available: https://ieeexplore.ieee.org/document/7963738/
[1]
L.-H. Chen et al., “Modular Elastic Lattice Platform for Rapid Prototyping of Tensegrity Robots,” in ASME International Design Engineering Technical Conference (IDETC), 2017. doi: 10.1115/DETC2017-68264. Available: https://doi.org/10.1115/DETC2017-68264
[1]
K. Zampaglione, A. P. Sabelhaus, L. Chen, A. M. Agogino, and A. K. Agogino, “DNA-Structured Linear Actuators,” in ASME International Design Engineering Technical Conference (IDETC), ASME, Aug. 2016. doi: 10.1115/DETC2016-60291. Available: https://doi.org/10.1115/DETC2016-60291
[1]
A. P. Sabelhaus et al., “Mechanism Design and Simulation of the ULTRA Spine: A Tensegrity Robot,” in ASME International Design Engineering Technical Conference (IDETC), ASME, Aug. 2015. doi: 10.1115/DETC2015-47583. Available: https://doi.org/10.1115/DETC2015-47583
[1]
A. P. Sabelhaus et al., “System design and locomotion of SUPERball, an untethered tensegrity robot,” in IEEE International Conference on Robotics and Automation (ICRA), IEEE, May 2015. doi: 10.1109/ICRA.2015.7139590. Available: https://ieeexplore.ieee.org/document/7139590
[1]
K. Caluwaerts et al., “Design and control of compliant tensegrity robots through simulation and hardware validation,” Journal of The Royal Society Interface, vol. 11, no. 98, Jul. 2014, doi: 10.1098/rsif.2014.0520. Available: https://royalsocietypublishing.org/doi/10.1098/rsif.2014.0520
[1]
J. Bruce et al., “SUPERball: Exploring Tensegrities for Planetary Probes,” in 12th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), Jun. 2014. Available: https://ntrs.nasa.gov/citations/20190001649
[1]
J. Bruce, K. Caluwaerts, A. Iscen, A. P. Sabelhaus, and V. SunSpiral, “Design and evolution of a modular tensegrity robot platform,” in IEEE International Conference on Robotics and Automation (ICRA), May 2014. doi: 10.1109/ICRA.2014.6907361. Available: https://ieeexplore.ieee.org/document/6907361
[1]
A. P. Sabelhaus et al., “Hardware Design and Testing of SUPERball, a Modular Tensegrity Robot,” in Proceedings of the 6th World Conference of the International Association for Structural Control and Monitoring (6WCSCM), 2014. Available: https://ntrs.nasa.gov/citations/20140011157
[1]
A. P. Sabelhaus, D. Mirsky, L. M. Hill, N. C. Martins, and S. Bergbreiter, “TinyTeRP: A Tiny Terrestrial Robotic Platform with modular sensing,” in IEEE International Conference on Robotics and Automation (ICRA), May 2013. doi: 10.1109/ICRA.2013.6630933. Available: https://ieeexplore.ieee.org/document/6630933