Memory 101: Understanding How We Remember

in Article
February 9th, 2011

Bookmark and Share

Do you ever wonder how you are able to remember the name of your third-grade teacher, or the skills you use to ride a bike, or even lines from your favorite movie?  Well, if you haven’t then you should, because it takes the workings of many regions of our brain to combine all the different aspects of one memory into a cohesive unit.

The first step in this complex process deals with our perceptions and senses.  Think about the last time you visited the beach.  Recall the sound of the wind and birds, the sight of the sun and ocean, the smell of the salt water and the feeling of the hot sand and shells underfoot.  Your brain merges all of these different perceptions together, crafting them into the “memory” that we are able to recall.

All of these separate sensations travel to the part of our brain called the hippocampus.  Along with the frontal cortex, the hippocampus plays a huge part in our memory system.  These two regions decide what is worth remembering and then store this information throughout the brain.

Perception starts the processes leading up to encoding and storage, which takes place through our brains’ synapses (or the gaps between neurons).  Through these synapses, neurons are able to electrically and chemically transmit information between themselves.  When an electric pulse is fired across the gap, it triggers the release of chemical messengers called neurotransmitters.

Here is a clear view of communication between neurons through the releasing of neurotransmitters over the synapse.

From there, the spread of information begins.  The neurotransmitters diffuse to neighboring cells and attach to them, forming thousands of links.  All of these cells process and organize the information as a network.  Similar areas of information are connected and are constantly being reorganized as our brain processes more and more.

Changes are reinforced with use.  So let’s say you are learning to play a sport.  The more you practice, the stronger the rewiring and connections will become, thus allowing the brain to do less work as the initiation of pulses becomes easier with repetitive firing.  This is how you get better at a certain task and are able to perform at a higher level without making as many mistakes.  But again, because our brain never stops the process of input and output, practice needs to be constant in order to promote strong information retention.

Knowing all of this, it probably comes as no surprise that the most basic function for ensuring proper memory encoding is to pay specific attention to what you are doing.  We are exposed to thousands of things in very short amounts of time, so the majority of it is ignored.  If we pay more attention to select, specific bits of information, we’ll have a higher potential to remember certain things (try it out for yourself in lecture).

Since the actual process has been discussed, we’ll go into greater detail about the types of memory we have and how they differ.  There are three basic memory types that act as a filter systems for what we find important.  This is based on what we need to know and for how long we need to know it.

The first is sensory memory, which is basically ultra-short-term memory.  It is based off of input from the five senses and usually lasts a few seconds or so.  An example would be looking at a car that passes by and remembering what color it was based on that split second intake.  The effect is vaguely lingering, and is forgotten almost instantly.

Short-term memory is the next category.  People sometimes refer to it as “the brain’s Post-it note”.  It has the ability to retain around seven items of information for about less than a minute.  Some examples would include telephone numbers or even a sentence that you quickly glance over (such as this one).  You have to remember what is being said at the beginning to understand the context.  Likewise, numbers are usually better remembered, and have longer staying power in the brain, when split up (800-493-2751 instead of 8004932751 for instance).

Repetition and conscious effort to retain information leads to the transformation of short-term memory into long-term memory.  By rehearsing information without interference or disturbances, one is better able to remember things and ingrain them into his/her brain.  This is a gradual process, but it proves why studying is important!  Unlike the other two memory categories, long-term memory has the ability to retain unlimited amounts of information for a seemingly indefinite amount of time.

This diagram shows a more complex view of the major memory types and their subdivisions.

A  piece of information must pass from both sensory and short-term memory to successfully be encoded in long-term memory.  Failure to do so generally leads to the phenomenon known as “forgetting”, something that many of us are all too familiar with ironically enough!

To give a common example of long-term encoding and memory retrieval, consider trying to recall where you have put your keys down.  First, you must register where you are putting your keys and attention while putting them down so that you can remember later.  Accomplishing all of this helps a memory to be stored, retained, and ready for retrieval when necessary.

Forgetting may deal with distraction, or simply just failure to properly retrieve a memory.  That being said, it should be noted that there is no predisposition to having a “good” or a “bad” memories.  Most people are good at remembering certain things (numbers, procedures and mechanisms for example) better than others (names, phrases, or even entire plays) and vice versa.  It all depends on where you are able to focus your interests and your attention.

Hopefully, you will be able to remember some of this so that you can use your understanding of the complexities of the brain and memory encoding to your advantage.  After all, your brain does all the hard work for you!  Now you just need to pay attention and focus on what you find important and what you want to remember to best suit your own needs.

How Human Memory Works – Discovery Health

Types of Memory – The Human Memory

How Does Human Memory Work? – USATODAY.com

Tagged ,

6 Comments on Memory 101: Understanding How We Remember

  • I enjoyed browsing through and i think this blog has alot really usefull information on it!

  • Hello there, just was aware of your blog through Google, and located that it is really informative. I am going to be careful for brussels. I will be grateful if you proceed this in future. Lots of other people might be benefited from your writing. Cheers! – Elite Escorts, 2, 50 Page Street, London, SW1P 4DE, 028 2088 0156

  • D. As long as you apply enough force to overcome osmosis, you can drive water away from any solution (pretty much).

  • Howdy admin, I just wanted to give you a brief heads up that your Website url: http://blogs.bu.edu/ombs/2011/02/09/memory-101-understanding-how-we-remember/ is being flagged as a potentially harmful web site in my browser ie. I would highly suggest having somebody look into it. You can easily lose a lot of visitors due to this problem. Best of Luck.

  • I would like to thank you for the efforts you have put in writing this website. I really hope to view the same high-grade blog posts from you later on as well. In fact, your creative writing abilities has inspired me to get my own site now

  • I like this weblog very much, Its a real nice berth to read and find information. “Famous remarks are very seldom quoted correctly.” by Simeon Strunsky.

Post Your Comment