References

Alvarez L, Colom M, Morel J-D, Morel J-M. 2021. Computing the daily reproduction number of COVID-19 by inverting the renewal equation using a variational technique. Proceedings of the National Academy of Sciences 118:e2105112118; doi:10.1073/pnas.2105112118.
Bokányi E, Vizi Z, Koltai J, Röst G, Karsai M. 2023. Real-time estimation of the effective reproduction number of COVID-19 from behavioral data. Scientific Reports 13:21452; doi:10.1038/s41598-023-46418-z.
Champredon D, Papst I, Yusuf W. 2024. Ern: An R package to estimate the effective reproduction number using clinical and wastewater surveillance data. PLOS ONE 19:e0305550; doi:10.1371/journal.pone.0305550.
Cori A, Ferguson NM, Fraser C, Cauchemez S. 2013. A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics. American Journal of Epidemiology 178:1505–1512; doi:10.1093/aje/kwt133.
Driessche P van den, Watmough J. 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences 180:29–48; doi:10.1016/S0025-5564(02)00108-6.
Earn DJD, Ma J, Poinar H, Dushoff J, Bolker BM. 2020. Acceleration of plague outbreaks in the second pandemic. Proceedings of the National Academy of Sciences 117:27703–27711; doi:10.1073/pnas.2004904117.
Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, Coupland H, et al. 2020. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 584:257–261; doi:10.1038/s41586-020-2405-7.
Fraser C. 2007. Estimating Individual and Household Reproduction Numbers in an Emerging Epidemic. PLOS ONE 2:e758; doi:10.1371/journal.pone.0000758.
Gostic KM, McGough L, Baskerville EB, Abbott S, Joshi K, Tedijanto C, et al. 2020. Practical considerations for measuring the effective reproductive number, Rt. PLOS Computational Biology 16:e1008409; doi:10.1371/journal.pcbi.1008409.
Green WD, Ferguson NM, Cori A. 2022. Inferring the reproduction number using the renewal equation in heterogeneous epidemics. Journal of The Royal Society Interface 19:20210429; doi:10.1098/rsif.2021.0429.
Gressani O, Wallinga J, Althaus CL, Hens N, Faes C. 2022. EpiLPS: A fast and flexible Bayesian tool for estimation of the time-varying reproduction number. PLOS Computational Biology 18:e1010618; doi:10.1371/journal.pcbi.1010618.
Huisman JS, Scire J, Caduff L, Fernandez-Cassi X, Ganesanandamoorthy P, Kull A, et al. 2022. Wastewater-Based Estimation of the Effective Reproductive Number of SARS-CoV-2. Environmental Health Perspectives 130:057011; doi:10.1289/EHP10050.
Judge C, Vaughan T, Russell T, Abbott S, Plessis L, Stadler T, et al. 2024. EpiFusion: Joint inference of the effective reproduction number by integrating phylodynamic and epidemiological modelling with particle filtering. PLOS Computational Biology 20:e1012528; doi:10.1371/journal.pcbi.1012528.
Li T, White LF. 2021. Bayesian back-calculation and nowcasting for line list data during the COVID-19 pandemic. PLOS Computational Biology 17:e1009210; doi:10.1371/journal.pcbi.1009210.
Lison A, Abbott S, Huisman J, Stadler T. 2024. Generative bayesian modeling to nowcast the effective reproduction number from line list data with missing symptom onset dates. PLoS Computational Biology 20: e1012021.
Liu J, Cai Z, Gustafson P, McDonald DJ. 2024. Rtestim: Time-varying reproduction number estimation with trend filtering. PLOS Computational Biology 20:e1012324; doi:10.1371/journal.pcbi.1012324.
Ma J, Earn DJD. 2006. Generality of the Final Size Formula for an Epidemic of a Newly Invading Infectious Disease. Bulletin of Mathematical Biology 68:679–702; doi:10.1007/s11538-005-9047-7.
Musa SS, Zhao S, Wang MH, Habib AG, Mustapha UT, He D. 2020. Estimation of exponential growth rate and basic reproduction number of the coronavirus disease 2019 (COVID-19) in Africa. Infectious Diseases of Poverty 9:96; doi:10.1186/s40249-020-00718-y.
Nash RK, Bhatt S, Cori A, Nouvellet P. 2023. Estimating the epidemic reproduction number from temporally aggregated incidence data: A statistical modelling approach and software tool. PLOS Computational Biology 19:e1011439; doi:10.1371/journal.pcbi.1011439.
Obadia T, Haneef R, Boëlle P-Y. 2012. The R0 package: A toolbox to estimate reproduction numbers for epidemic outbreaks. BMC medical informatics and decision making 12: 1–9.
Parag KV. 2021. Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves. PLOS Computational Biology 17:e1009347; doi:10.1371/journal.pcbi.1009347.
Parag KV, Donnelly CA. 2020. Using information theory to optimise epidemic models for real-time prediction and estimation. PLoS Computational Biology 16:e1007990; doi:10.1371/journal.pcbi.1007990.
R Core Team. 2022. R-4.1.3.
Rabiner L, Juang B. 1986. An introduction to hidden markov models. ieee assp magazine 3: 4–16.
Riutort-Mayol G, Bürkner P, Andersen M, Solin A, Vehtari A. 2020. Practical hilbert space approximate bayesian gaussian processes for probabilistic programming. ArXiv prepr. arXiv preprint arXiv:200411408.
Schulz E, Speekenbrink M, Krause A. 2018. A tutorial on gaussian process regression: Modelling, exploring, and exploiting functions. Journal of mathematical psychology 85: 1–16.
Scire J, Huisman JS, Grosu A, Angst DC, Lison A, Li J, et al. 2023. estimateR: An R package to estimate and monitor the effective reproductive number. BMC Bioinformatics 24:310; doi:10.1186/s12859-023-05428-4.
Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, et al. 2013. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: A retrospective observational study. The Lancet Infectious Diseases 13:137–146; doi:10.1016/S1473-3099(12)70277-3.
Wallinga J, Teunis P. 2004. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. American Journal of epidemiology 160: 509–516.
Yang X, Wang S, Xing Y, Li L, Xu RYD, Friston KJ, et al. 2022. Bayesian data assimilation for estimating instantaneous reproduction numbers during epidemics: Applications to COVID-19. PLoS Computational Biology 18:e1009807; doi:10.1371/journal.pcbi.1009807.
Zhou Z, Kolaczyk ED, Thompson RN, White LF. 2022. Estimation of heterogeneous instantaneous reproduction numbers with application to characterize SARS-CoV-2 transmission in massachusetts counties. PLOS Computational Biology 18: e1010434.