References
Alvarez L, Colom M, Morel J-D, Morel J-M. 2021. Computing the daily
reproduction number of COVID-19 by inverting the renewal
equation using a variational technique. Proceedings of the National
Academy of Sciences 118:e2105112118; doi:10.1073/pnas.2105112118.
Bokányi E, Vizi Z, Koltai J, Röst G, Karsai M. 2023. Real-time
estimation of the effective reproduction number of COVID-19
from behavioral data. Scientific Reports 13:21452; doi:10.1038/s41598-023-46418-z.
Champredon D, Papst I, Yusuf W. 2024. Ern: An R package to
estimate the effective reproduction number using clinical and wastewater
surveillance data. PLOS ONE 19:e0305550; doi:10.1371/journal.pone.0305550.
Cori A, Ferguson NM, Fraser C, Cauchemez S. 2013. A New
Framework and Software to
Estimate Time-Varying
Reproduction Numbers During
Epidemics. American Journal of Epidemiology 178:1505–1512;
doi:10.1093/aje/kwt133.
Driessche P van den, Watmough J. 2002. Reproduction numbers and
sub-threshold endemic equilibria for compartmental models of disease
transmission. Mathematical Biosciences 180:29–48; doi:10.1016/S0025-5564(02)00108-6.
Earn DJD, Ma J, Poinar H, Dushoff J, Bolker BM. 2020. Acceleration of
plague outbreaks in the second pandemic. Proceedings of the National
Academy of Sciences 117:27703–27711; doi:10.1073/pnas.2004904117.
Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, Coupland H, et al.
2020. Estimating the effects of non-pharmaceutical interventions on
COVID-19 in Europe. Nature 584:257–261; doi:10.1038/s41586-020-2405-7.
Fraser C. 2007. Estimating Individual and
Household Reproduction Numbers in
an Emerging Epidemic. PLOS ONE 2:e758; doi:10.1371/journal.pone.0000758.
Gostic KM, McGough L, Baskerville EB, Abbott S, Joshi K, Tedijanto C, et
al. 2020. Practical considerations for measuring the effective
reproductive number, Rt. PLOS Computational Biology
16:e1008409; doi:10.1371/journal.pcbi.1008409.
Green WD, Ferguson NM, Cori A. 2022. Inferring the reproduction number
using the renewal equation in heterogeneous epidemics. Journal of The
Royal Society Interface 19:20210429; doi:10.1098/rsif.2021.0429.
Gressani O, Wallinga J, Althaus CL, Hens N, Faes C. 2022. EpiLPS: A fast
and flexible Bayesian tool for estimation of the
time-varying reproduction number. PLOS Computational Biology
18:e1010618; doi:10.1371/journal.pcbi.1010618.
Huisman JS, Scire J, Caduff L, Fernandez-Cassi X, Ganesanandamoorthy P,
Kull A, et al. 2022. Wastewater-Based
Estimation of the Effective
Reproductive Number of
SARS-CoV-2. Environmental Health Perspectives
130:057011; doi:10.1289/EHP10050.
Judge C, Vaughan T, Russell T, Abbott S, Plessis L, Stadler T, et al.
2024. EpiFusion: Joint inference of the effective reproduction number by
integrating phylodynamic and epidemiological modelling with particle
filtering. PLOS Computational Biology 20:e1012528; doi:10.1371/journal.pcbi.1012528.
Li T, White LF. 2021. Bayesian back-calculation and nowcasting for line
list data during the COVID-19 pandemic. PLOS Computational
Biology 17:e1009210; doi:10.1371/journal.pcbi.1009210.
Lison A, Abbott S, Huisman J, Stadler T. 2024. Generative bayesian
modeling to nowcast the effective reproduction number from line list
data with missing symptom onset dates. PLoS Computational Biology 20:
e1012021.
Liu J, Cai Z, Gustafson P, McDonald DJ. 2024. Rtestim: Time-varying
reproduction number estimation with trend filtering. PLOS Computational
Biology 20:e1012324; doi:10.1371/journal.pcbi.1012324.
Ma J, Earn DJD. 2006. Generality of the Final
Size Formula for an Epidemic of a
Newly Invading Infectious
Disease. Bulletin of Mathematical Biology 68:679–702;
doi:10.1007/s11538-005-9047-7.
Musa SS, Zhao S, Wang MH, Habib AG, Mustapha UT, He D. 2020. Estimation
of exponential growth rate and basic reproduction number of the
coronavirus disease 2019 (COVID-19) in Africa.
Infectious Diseases of Poverty 9:96; doi:10.1186/s40249-020-00718-y.
Nash RK, Bhatt S, Cori A, Nouvellet P. 2023. Estimating the epidemic
reproduction number from temporally aggregated incidence data: A
statistical modelling approach and software tool. PLOS Computational
Biology 19:e1011439; doi:10.1371/journal.pcbi.1011439.
Obadia T, Haneef R, Boëlle P-Y. 2012. The R0 package: A toolbox to
estimate reproduction numbers for epidemic outbreaks. BMC medical
informatics and decision making 12: 1–9.
Parag KV. 2021. Improved estimation of time-varying reproduction numbers
at low case incidence and between epidemic waves. PLOS Computational
Biology 17:e1009347; doi:10.1371/journal.pcbi.1009347.
Parag KV, Donnelly CA. 2020. Using information theory to optimise
epidemic models for real-time prediction and estimation. PLoS
Computational Biology 16:e1007990; doi:10.1371/journal.pcbi.1007990.
R Core Team. 2022. R-4.1.3.
Rabiner L, Juang B. 1986. An introduction to hidden markov models. ieee
assp magazine 3: 4–16.
Riutort-Mayol G, Bürkner P, Andersen M, Solin A, Vehtari A. 2020.
Practical hilbert space approximate bayesian gaussian processes for
probabilistic programming. ArXiv prepr. arXiv preprint arXiv:200411408.
Schulz E, Speekenbrink M, Krause A. 2018. A tutorial on gaussian process
regression: Modelling, exploring, and exploiting functions. Journal of
mathematical psychology 85: 1–16.
Scire J, Huisman JS, Grosu A, Angst DC, Lison A, Li J, et al. 2023.
estimateR: An R package to estimate and monitor the
effective reproductive number. BMC Bioinformatics 24:310; doi:10.1186/s12859-023-05428-4.
Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, et al.
2013. Whole-genome sequencing to delineate Mycobacterium
tuberculosis outbreaks: A retrospective observational study. The Lancet
Infectious Diseases 13:137–146; doi:10.1016/S1473-3099(12)70277-3.
Wallinga J, Teunis P. 2004. Different epidemic curves for severe acute
respiratory syndrome reveal similar impacts of control measures.
American Journal of epidemiology 160: 509–516.
Yang X, Wang S, Xing Y, Li L, Xu RYD, Friston KJ, et al. 2022. Bayesian
data assimilation for estimating instantaneous reproduction numbers
during epidemics: Applications to COVID-19. PLoS
Computational Biology 18:e1009807; doi:10.1371/journal.pcbi.1009807.
Zhou Z, Kolaczyk ED, Thompson RN, White LF. 2022. Estimation of
heterogeneous instantaneous reproduction numbers with application to
characterize SARS-CoV-2 transmission in massachusetts counties. PLOS
Computational Biology 18: e1010434.