Sam joins BU’s Hariri Institute Junior Faculty Fellows

September 28th, 2015

apple_iie_largerThe Ling Lab now has affiliation w/ the Hariri Institute for Computing at Boston University!

Sam was selected as a 2015 Hariri Institute Junior Faculty Fellows.  The program recognizes junior faculty at Boston University working in diverse areas of computing and the computational sciences. Institute Fellows help connect like-minded researchers at BU and beyond, also providing a focal point for supporting broader collaborative research.

Official announcement here:

Sam awarded Peter Paul Career Professorship

September 17th, 2015

More info on the Peter Paul Award (and a brief interview) here:

Dongho got a position!!

September 14th, 2015

Congrats to Dongho Kim, who just accepted a position as Scientific Consultant at ASAN Medical Center, where he'll be conducting neuroimaging research in a clinical setting.

We're all very excited for you, Dongho!


New opinion piece by Dongho, Sam and Takeo Watanabe in F1000 Research!

September 10th, 2015

New opinion paper on the relationship between rewards and perceptual learning.

Kim, D., Ling, S., & Watanabe, T. (2015)
Dual mechanisms governing reward-driven perceptual learning.
F1000 Research

Great writeup, Dongho!

get pdf here

Sara Receives NIH Computational Neuroscience training grant

September 8th, 2015

Congrats to Sara Aghajari, who received an NIH fellowship to carry out her doctoral research for the coming year!

Congrats to Jianfei Guo

March 18th, 2015

Congratulations to lab member Jianfei Guo, who is joining Joo-Hyun Song's lab at Brown University for grad school!

Congrats to Savannah Lokey!

March 2nd, 2015

Congrats to lab alum, Savannah Lokey, who just accepted an internship position at NIH, working in Leslie Ungerleider's lab!

Attention alters orientation processing in the human lateral geniculate nucleus

February 1st, 2015

Nature Neuroscience (2015)
Sam Ling, Michael Pratte & Frank Tong

Screen Shot 2015-03-02 at 12.31.07 PM

Orientation selectivity is a cornerstone property of vision, commonly believed to emerge in the primary visual cortex (V1). Here, we demonstrate that reliable orientation information can be detected even earlier, in the human lateral geniculate nucleus (LGN), and that attentional feedback selectively alters these orientation responses. This attentional modulation may allow the visual system to modify incoming feature-specific signals at the earliest possible processing site.

Get the PDF here

A review of the mechanisms by which attentional feedback shapes visual selectivity

July 2nd, 2014

Brain, Structure & Function (In Press)
Sam Ling, Janneke Jehee & Franco Pestilli

Screen Shot 2014-07-02 at 4.02.17 PM

The glut of information available for the brain to process at any given moment necessitates an efficient attentional system that can ‘pick and choose’ what information receives prioritized processing. A growing body of work, spanning numerous methodologies and species, reveals that one powerful way in which attending to an item separates the wheat from the chaff is by altering a basic response property in the brain: neuronal selectivity. Selectivity is a cornerstone response property, largely dictating our ability to represent and interact with the environment. Although it is likely that selectivity is altered throughout many brain areas, here we focus on how directing attention to an item affects selectivity in the visual system, where this response property is generally more well characterized. First, we review the neural architecture supporting selectivity, and then discuss the various changes that could occur in selectivity for an attended item. In a survey of the literature, spanning neurophysiology, neuroimaging and psychophysics, we reveal that there is general convergence regarding the manner with which selectivity is shaped by attentional feedback. In a nutshell, the literature suggests that the type of changes in selectivity that manifest appears to depend on the type of attention being deployed: whereas directing spatial attention towards an item only alters spatial selectivity, directing feature-based attention can alter the selectivity of attended features.

Get the pdf here: 


wbur bit w/ sam.

June 16th, 2014