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a b s t r a c t

When an observer moves towards a square-wave grating display, a non-rigid distortion of the pattern
occurs in which the stripes bulge and expand perpendicularly to their orientation; these effects reverse
when the observer moves away. Such distortions present a new problem beyond the classical aperture
problem faced by visual motion detectors, one we describe as a 3D aperture problem as it incorporates
depth signals. We applied differential geometry to obtain a closed form solution to characterize the fluid
distortion of the stripes. Our solution replicates the perceptual distortions and enabled us to design a
nulling experiment to distinguish our 3D aperture solution from other candidate mechanisms (see Gori
et al. (in this issue)). We suggest that our approach may generalize to other motion illusions visible in 2D
displays.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

A new visual illusion discovered by one of the authors
(S.G.) is reported here. A simple observation shows a perceived
deformation from densely juxtaposed parallel lines while moving
toward and away from it. This pattern presents two illusory
effects: (1) Moving toward and away from the grating creates
an expansion/contraction of the stimulus frame perpendicular to
the stripes but not parallel with the stripes. One can notice it by
paying attention to the stimulus outline in Fig. 1 and observing
a horizontal expansion/contraction and less or negligible vertical
expansion/contraction. This illusory effect is less vivid than the
Rotating Tilted Line Illusion (Gori & Hamburger, 2006) in which a
clear rotation emerges. During the observation of the illusion, a loss
of the stripes’ rigidity (fluid distortion) is observed and the stripes
look curved as a function of the observer’s motion which is the
focus of the present analysis. Foster and Altschuler (2001) reported
distortion for a checkerboard grid being viewed by the subject in
a back and forth head movement, with the difference being that
they used a checkerboard pattern that has many intersections.
In the mathematical analysis of our present stimulus, there is no
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need for line-ends or intersections along the lines to explain the
illusion. In fact, our analysis shows that adding more and more
intersections systematically decreases the original illusory effect
as experimentally shown in Gori et al. (in this issue).

The combination of these phenomenal distortions is similar
to the deformations of an accordion while being played, and
originated the name of the illusion: the Accordion Grating (AG).

The simple geometrical design of the stimulus renders it a
suitable substrate for mathematical analysis (Fig. 1).

This phenomenon is interesting because long lines have
no singularities except the line-ends. Having few singularities
turned out to be a useful characteristic for the stimuli used
in motion analysis (Adelson & Movshon, 1982; Fennema &
Thompson, 1979; Grossberg & Mingolla, 1993). Data from single
cell electrophysiology shows a delayed true coherentmotion signal
detection for the mid-portion of long lines, which originates from
the motion signals of the line-ends (Pack & Born, 2001).

Without getting into the complexities of binocular vision, we
would like to analyze the situation for the monocular condition
and see how much of the illusion is predictable based on the
geometry of light projection aswell as themotion processing units’
properties. The result can then be used as a basis to analyze further
deviation from it, and uncover other possible factors involved.

2. Stimulus configuration

Although the original stimulus design is based on head
movement toward and away from the stimulus with a fixed size,
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Fig. 1. The stimulus of the Accordion Grating. The stimulus is composed of densely
juxtaposed parallel lines.Moving toward and away from the stimulus rapidlymakes
it look as if it centrally bulges and contracts respectively, hence the name, Accordion
Grating illusion. The stimulus has a unique design, while its illusory effect is vivid,
its geometrical structure is very simple – parallel lines – which makes it a useful
candidate for a differential geometry analysis.

in the present study we based our analysis on the fixed position
of the head and monitor using, instead, a uniform expansion and
contraction of the stimulus. This approach is beneficial, because
the presentation is replicable and there is no need to deal with
headmovement variation across subjects. In fact, a fixed amount of
expansion and contraction with a fixed distance frommonitor can
be replicated in different labs for consistency. Such an approachhas
been successfully tested in a previous work with Rotating Tilted
Line Illusion (RTLI) (Yazdanbakhsh & Gori, 2008) while the very
original version of RTLI has a head movement involved (Gori &
Hamburger, 2006; Gori & Yazdanbakhsh, 2008). In the few next
analysis sections, this fixed distance is represented by d which
is constant over time for each condition, but differs for different
conditions.

The pattern of grating expansion is shown in Fig. 2. As can be
seen, it has a radial pattern as if one prints the stimulus on an
elastic sheet and then the sheet expands/contracts radially. Each
point of the stimulus is expanded proportional to the distance
from the center. As mentioned, this is instead of having the head
move toward/away from the stimulus to produce the same radial
expansion over the retina.

3. Problem formulation

To start approaching the nature of the illusion, we assume the
observer’s eye nodal point (O) has a distance OO′

= d from the
stimulus center (O′) where the stimulus is centered at the base
of the vertical line of sight (Fig. 3). We index the central bar of
stimulus which passes over O′ zero (n = 0). The parallel lines
to its right are indexed positively (n = 1, 2, 3 . . .) and to its left
indexednegatively (n = −1, −2, −3 . . .). The line passing through
O′ and orthogonal to parallel lines is called Ov or x = 0 line (Fig. 3).
Along each of the parallel lines, the distance from the x = 0 line is
denoted by x (positive on top of x = 0 and negative at the bottom).
The number of the bars are set to be odd to keep the symmetry
(n = −10–10). For each point of the stimulus A, OA is a projection
line.

To evaluate the projection line from each point of the stimulus
to the eye’s nodal point (O), we consider a point (A) located over
the nth bar and being offset from themid perpendicular line by the
amount x (Fig. 3). Because the distance between the consecutive
parallel lines is a, the coordinate of A is therefore (na, x).
Fig. 2. Expandingmotion of the AGpattern: each point of the stimulus is expanding
proportional to the distance from the center of the expansion.

Fig. 3. Eye and stimulus position. Fixed position of the eye nodal point (O) and a
line of sight perpendicular to the stimulus plane (OO′), in which O′ is set to be the
center of the middle line of the stimulus (indexed by n = 0). The parallel lines
to the right of the n = 0 line are indexed by n = 1, 2, . . . , 10 and to the left
by n = −1, −2, . . . ,−10. The perpendicular line passing through O′ is called the
x = 0 line or Ov. For each point of the stimulus A, OA is a projection line.

3.1. Classical aperture problem

If a motion processing unit does not encompass the line-
ends or any signal related to them, then the detector is said to
have an aperture problem (Gurnsey et al., 2002; Lorenceau et al.,
1993; Stumpf, 1911; Wallach, 1935) (Fig. 4(a)). In this case, the
motion processing unit can only detect the component of motion
perpendicular to the line orientation. Instead, Fig. 4(b) shows the
condition in which the line-ends are within the aperture and the
true direction of motion can be detected.

3.2. Can the classical aperture problem explain the fluid distortion?

Fig. 5 shows the classical aperture problem analysis of the
stimulus. Let us again consider an arbitrary point A over the nth
stimulus line from the center. Due to isotropical expansion, the nth
line speed or the speed of point A′ (image of A over the line x = 0)
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Fig. 4. If one considers the motion processing unit receptive field as an aperture to
the visual field, the long lines fool the motion unit (a) and the short lines do not (b).
In (a) the motion registered by the unit through the aperture is orthogonal to the
orientation of the line and in (b) is parallel with the true direction of motion. It is
obvious that there is a third case, in which only one line-end is in the aperture. But
in that case the line can be very long, and still, there is no aperture problem, hence
it is not the length of the line but rather the position of its terminator that matters.

a b

Fig. 5. The classical aperture problem cannot explain the fluid distortion.
(a) Consider an aperture over the stimuli (red dotted circle). In (b) the aperture
is zoomed. Due to the isotropical/radial expansion/contraction, the ratio of radial
speed of point A (vθ ) to its projection over the horizontal line (blue) is equal to
the ratio of the corresponding distances from the stimulus center (O), or aθ/na =

1/ cos θ , hence vθ = nv/ cos θ and its aperture component is vap = vθ cos θ = nv.
Therefore, the classical aperture problem predicts the same speed perpendicular to
the line orientation (vap = nv) throughout the line, which does not indicate the loss
of rigidity or fluid distortion: it rather predicts a solid displacement.

equals nv, in which v is the relative speed of two consecutive lines.
For the same reason, the real speed of point A (vθ ) compared to the
speed of A′ (nv) scales up by the factor of 1/ cos θ (the angle θ is
between O′A and O′A′) and hence vθ equals nv/ cos θ (Fig. 5).

However, through the red dotted aperture around A, only
the normal (perpendicular to line orientation) component of vθ

is detectable (classical or 2D aperture problem). This normal
component (vap) equals vθ cos θ . Because vθ = nv/ cos θ , as a
result, vap equals nv. This chain of calculationwhich goes clockwise
with reference to the right panel of Fig. 5, starting from O′A′,
provides the proof that the aperture problem, known classically
in the literature, and from now on we refer to it as the classical
or 2D aperture problem, cannot explain the fluid distortion of the
lines. The result of the calculation shows that the aperture speeds
of all the points along the stimulus line are equal (nv) to leave
no substrate for distortion. The part of illusion predictable by the
classical/2D aperture problem is the horizontal expansion of lines
(with the amount of nv for each line) and the less or absence of
vertical elongation of lines (parallel to the lines’ orientation). In
summary, the classical aperture problem explains the aspect ratio
modulation of the accordion grating illusion (widening) (Gori et al.,
in this issue) but not the fluid distortion of it.

This situationmotivated the formulation of the problembeyond
the classical aperture problem and led to the introduction of the
concept of the 3-dimensional (3D) aperture problem, based on the
projection line analysis and angular speed. In the following section,
such a formulation is presented and the concept of the 3D aperture
problem is introduced.
3.3. Beyond the classical aperture problem: 3D aperture problem,
incorporating the projection line

Noticing that the classical or 2D aperture problem can only
explain the aspect ratio distortion and cannot account for the
fluid distortion, we introduce and formulate another source of
ambiguity in interpreting the projection line through the eye’s
nodal point. As can be seen, not only does the 2D or classical
aperture problem influence the formulation, but also another
component, based on the projection line and its relation with the
stimulus plane contributes in the ambiguity of motion detection.
Such a source of ambiguity, related to the projection line and
its angle with the stimulus plan has an extra dimension beyond
the 2D aperture on the stimulus plane and extends in 3D visual
space between the eye and stimulus. Therefore the ‘‘3D Aperture
Problem’’ denotes the ambiguity emergent from the contribution
of all 3 dimensions of visual space. In short, the 3D aperture
problem can be defined as the ambiguity of true direction of
motion faced by a motion detector due to a limited 2D aperture
view and the relation of the projection linewith the stimulus plane.
Corresponding to the 2D aperture problem, which occurs when a
sensor needs 2D information to resolve the stimulus but only has
access to 1D information, we define a 3D aperture problem, which
occurs when three dimensions of information are needed but only
two are presented.

In the present case, the third dimension is depth, which is
poorly specified by the 2D grating, despite its physical flatness.
The visual system needs to estimate possible motions in all three
planes, but the receptive fields at the ends of the bars only have
access to 2D information.

The next section shows that the inclusion of this extra
dimension yields less registration of motion further away from the
line centers which collectively creates the impression of a fluid
distortion.

3.4. Formulation of 3D aperture problem

Consider the projection line OA (Fig. 6). This linemakes an angle
ϕθ with the vertical line O′O. To get a handle on ϕθ for calculating
the angular speed of the projection line, we consider:

tgϕθ =
aθ

d
=

na
d cos θ

=
n
d

 a
cos θ


, (1)

which paves the path for calculating the angular speed or dϕθ

dt
by calculating dtgϕθ

dt . This can be done in two different ways:
considering the absence or presence of the classical/2D aperture
problem.

Appendix A shows that for the 3D aperture problem, the
presence of the 2D aperture problem is necessary. If the true
(radial) motion of point A is detected, there is no 2D aperture
problem and the component of motion perpendicular to the line
orientation (v⊥) then equals nv (see Appendix A). We therefore
only consider motion processing units that face the 2D aperture
problem.

The next section derives the configuration of the 3D aperture
problem in the presence of its 2D precursor.

3.5. Projection line analysis with the presence of the 2D aperture
problem: formulating the 3D aperture problem

At this point we consider the presence of the 2D aperture
problem in the neighborhood around point A and will follow the
same framework of calculations as in Appendix A and the previous
section to see whether v⊥ remains equal to nv or not.

Given the 2D aperture problem, θ must vary (Fig. 6, also
compare it with Fig. 3), because the x coordinate of the motion of
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Fig. 6. Aperture problem assumption. Only the perpendicular component v⊥ is
detectable (red). Parallel and equal to it, over line x = 0, v⊥ is projected (dotted,
black). In panel (b), the plane containing O′OA′ (from panel a) is shown to facilitate
the calculation of angular speed. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

a bar along its length, when seen through a 2D aperture remains
constant.

Hence,we re-write (1) in terms of x to separate the constant and
variable terms:

tgϕθ =
aθ

d
=

√
n2a2 + x2

d
. (2)

As derived in Appendix B, this time, the component of motion
perpendicular to line orientation (v⊥) is:

v⊥ = nvf Ap(n, x), (3)

where,

f Ap(n, x) =
na

√
n2a2 + d2

√
n2a2 + x2

√
x2 + n2a2 + d2

, (4)

indicating the distortion function under the aperture problem
assumption (f Ap) systematically deviates from one in terms of n
and x.

The shape of the function can best be realized by a graph which
plots v⊥ = nvf Ap(n, x) along abscissa against x on the ordinate
to be consistent with the way x is defined in Fig. 3. To make
this graph visually intuitive and consistent with the distortion
prediction it provides, we can fix d and draw the graph for each
n (−10, 9, . . . , 0, 9, 10) separately and put them side by side in
the sameway that stimulus lines are side by side (see the extensive
treatment of this in Figs. 9 and 10with different parameter choices
in the next sections).

An intuitive account of the 3D aperture problem, which is
analytically described in (4) involves the underestimation of v⊥

originating from the projection lines not perpendicular to the
stimulus plane and its lines. Further intuitions are described in the
next section.

3.6. An intuitive description of the 3D aperture problem outcome

Regarding (3) and (4), by increasing n for a fixed value of

x, the fraction na
√

n2a2+d2
√

n2a2+x2
√

x2+n2a2+d2
gets closer to one, or closer

to the predicted speed at x = 0 (nv). This provides a better
understanding of the curvature decrement by increasing n. Fig. 7 is
hand drawn to show the situation for two different n’s to illustrate
the effect qualitatively.
Fig. 7. The effect of a larger n on decreasing the distortion due to its contribution
on closer-to-veridical motion detection along the entire line based on Eq. (4). With
the larger n, the change in x has less effect on deviating the perceived motion from
the veridical value nv (Eqs. (3) and (4)) and therefore the distortion is less (see also
Figs. 9 and 10).

Fig. 8. The target region of the stimulus for analysis. Mid-segments of longer lines
(a), or the stimulus with blurred line-ends to make the line-end signal weak (see
the text). These are candidate conditions through which we based our analysis and
graph generation (c).

As can be seen, for a stimulus line farther from the center
(n2 > n1), the decrement of displacement from the veridical is less.
Hence the closer the stimulus line to the center, the more curved
it appears.

3.7. How can blurring contribute to the illusion?

The resulting pattern of the illusion from (4), which is the
outcome of 3D aperture problem, requires the presence of the
classical/2D aperture problem and this excludes the regions close
to the line-ends, which naturally do not suffer from the 2D
aperture problem. In this sense, all of the predicted displacements
by Eqs. (3) and (4) can be attributed to the mid-portion of the
stimulus far from the line-ends as highlighted by a dotted red
outline (Fig. 8(a)).

Downgrading the line-ends, and thus their signal for the true
direction of motion can also be accomplished by blurring the line-
ends (Fig. 8(b)). We tested two separate sets of the stimuli; one set
consisted of AG stimuli with the sharp line-ends and the other set
with the blurred line-ends. All of the stimuli were smaller than the
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d = 1 d = 10 d = 100

Fig. 9. The predicted pattern of the illusion for d = 1, 10 and 100 obtained by Eqs. (3) and (4).
Fig. 10. Limit condition for d → +∞ obtained analytically. As can be seen, the
illusion is predicted not to vanish as the subject’s distance increases. Compared to
the smaller value of d (Fig. 9(a)), the predicted curvature of the illusion is less and
rather spans throughout the lines.

full screen. It turned out, with the blurred line-ends, the stimulus
level to null is higher (Gori et al., in this issue).

On the other hand, blurring the line-ends can influence
the illusion by decreasing the blurred part contrast with the
background and causing the velocity near the line-ends to appear
less.We showed that in fact this is the blurring rather than contrast
decrement which contributes to the reduced line-end signal to
enhance the illusion strength (Gori et al., in this issue).

3.8. Further insight into the illusion emergent from the 3D aperture
problem

For x = 0 the function f Ap(n, x) = 1, which means a veridical
registration of nv, but as soon as x deviates from 0 (mid-point of
each line) toward positive or negative values, f Ap(n, x) < 1, which
means the v⊥ gets less and less than nv (Fig. 7). This is congruent
with the illusion direction, where the lines bulge out in their mid-
region compared to line-ends. This bulging is predicted to have a
continuous and flowing nature because for any x1 and x2, when
|x1| < |x2|, f Ap(n, x1) > f Ap(n, x2), an indication that f Ap(n, x)
is a monotonic decreasing function in terms of |x|. The monotonic
decrement is less when n is larger (Fig. 7).

3.9. A few parameter choices for further insight

As a demonstration of the speed field, we show a few examples
for different parameters. As can be seen in Fig. 9, 21 parallel lines
are chosen, 10 to the left and 10 to the right of the central one
(−10 < n < 10). The distance between the consecutive lines is
set to be 1 (a = 1), hence the width of stimulus on each side of the
central line is 10a = 10 (total width 2 × 10 = 20). To make the
stimulus outline square, we chose the line length 20 equal to the
stimulus width (xmax = 10 for −xmax < x < xmax).

Also for the present examples, we choose v = 1 and keep in
mind that changing v merely scales the amount of v⊥, because as
(3) and (4) show, v appears in the numerator once and f Ap(n, x) is
invariant against v. To better understand the effect of distance d on
the predicted distortion, Fig. 9(a)–(c) show examples for d = 1, 10,
100 respectively. We chose d = 10 to be comparable to the lines’
length or the stimulus outline. To evaluate the effect of viewing
distance when it is one order of magnitude more or less than the
stimulus size, we chose d = 100 and 1, respectively (Fig. 9).

The graphs in Fig. 9 are generated by shifting horizontally each
point of thenth linewith coordinate xby the amount obtained form
v⊥(n, x) × 1t (for 1t = 0.3).

It can be seen that in all the above distance values d, the
predicted fluid distortion exists and does not vanish, in particular,
in the very close or far distances.

In the three examples of Fig. 9, the curvature of the central
lines vanishes to straight lines closer to their mid-point, compared
to peripheral lines, where the curvature extends longer (Fig. 7).
This can explain the illusions’ appearance as a bulging spherical
distortion.

3.10. Further insight into the predicted fluid distortion

Limit conditions provide further qualitative impression of the
illusion appearance. We investigate three limit cases:

(1) lim x → 0
From (3) and (4) it can be directly obtained:

lim
x→0

v⊥(n, x) = nv,

which indicates that independent from distance d, for x = 0
the speed detection is congruent with the real speed and is at
its maximum value. As (4) shows, as soon as x deviates from
zero, f Ap(n, x) and the predicted speed decreases.

(2) When the central line is considered (n = 0):
This condition can take place only when the total number of
parallel lines is odd, and therefore, the stimulus has the central
line with n = 0. From (4) it can be obtained directly:

v⊥ = nv = 0.v = 0.

The result reflects no distortion for the central bar. This can also
be deducted directly from the concept of symmetry, because
any result besides v⊥ = 0 means that the central bar would
split in the center, which is not the case. On the other hand, for
an even number of total bars, n = 1 and n = −1 represents
the immediate right and left bars with respect to the fixation
point with symmetrical distortions.
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(3) lim d → ∞

In other words, we are interested to know what could be
obtained from (4) when the subject gets far away from the
stimulus; in particular does the illusion vanish?
The terms containing d in (4) can be segregated:

f Ap(n, x) =
na

√
n2a2 + x2

 √
n2a2 + d2

√
x2 + n2a2 + d2


.

Regarding that, limd→+∞

√
n2a2+d2

√
x2+n2a2+d2

= 1, it can be concluded:

lim
d→+∞

f Ap(n, x) =
na

√
n2a2 + x2

,

and therefore:

lim
d→+∞

v⊥ = nv
na

√
n2a2 + x2

. (5)

The above situation is shown graphically in Fig. 10.
Therefore analysis shows that the illusion resists large viewing

distances and by moving away from the stimulus, one cannot
eliminate the effect.

3.11. Remark on large viewing distance and the persistence of the fluid
distortion

In reality, the receptive field of each motion detector unit
constitutes a portion of the visual field, rather than being an
infinitesimal point.

The above analysis shows that the illusion is preserved for every
d. The problem is that with the increasing of d, the projection
of the calculated distortion or segments of stimulus like a or x0
in terms of ‘‘visual angle’’ become negligible with respect to a
realistic receptive field size. This explains why the illusion cannot
be perceived after a certain viewing distance. In the analysis, step
one was to transform linear distances like na, aθ (or O′A in Figs. 3
and 6) to the corresponding visual angles, ϕ and ϕθ , and then
step two was to transform them back to the linear distance and
velocity, like v⊥. However, subtle differences in step 1 vanish after
distances (d) increase beyond a certain bound, leaving no hint to
be transferred back in step two; a sampling theorem related topic.

Therefore, the analysis holds as long as the viewing distance d is
small enough to let the calculated distortion in (4) generate a visual
angle resolvable by the receptive field and grouping processes
(denoted by dmax). Beyond dmax, to maintain the illusion, the
stimulus should be enlarged tomake a resolvable angular substrate
to be registered in step one; again; a sampling theorem related
topic.

3.12. Designing a nulling paradigm

If one inverts the distortion function in (4) within practical
distances (d) and speeds (v) for subjects it can be seen whether,
nulling is under- or over-compensating the perceived distortion.
The practical measures we used to test the subjects are summa-
rized in the following:

The stimuli were a series of movies with gratings increasing
from 9.4 to 9.8 cm. Four independent variables were manipulated:
(1) Five levels of inverted curvature (by inverting the numerator
and denominator in distortion function of Eq. (4)) were applied
with 0 for no inverted distortion or plain AG stimulus (nulling
stimulus level 0), and 4 for full inverted distortion (nulling stimulus
level 4). All other nulling stimuli levels in between 0 and 4
(nulling stimuli levels 1–3) are obtained by linear interpolation.
(2) The movies were prepared for 5 distances from the screen:
15, 25, 35, 45 and 55 cm. (3) Five speeds (v) were used: 1.2,
2.4, 3.6, 4.8, 6.0 mm/s. (4) Two gratings, one with sharp line-
end boundaries and one with Gaussian blurred line-ends were
tested (Gori et al., in this issue). Our results show that the faster
the expansion/contraction, the higher the stimulus level needed
to null the distortion, which is consistent with the fact that the
neural substrate needed to correct the distortion takes time. The
data confirm the presence of fluid distortion in the range of
distances: the closer the viewing distance, the higher the level
of stimulus to null the distortion. With respect to the blurring of
line-ends, the data show the stimuli with higher levels null the
distortion, consistent with the idea that either the lower contrast
of the line-ends or their burring reduces the influence of the end-
stopped units. In the following Discussion section we offer an
explanation on how these findings can contribute in experimental
and modeling domains.

4. Discussion and conclusion

The Accordion Grating illusion generates a percept of elastic
outward bulging and contraction although it is composed of
parallel lines which have isotropic expansion and contraction. The
well-defined geometrical pattern of the Accordion Grating illusion
rendered it a very suitable substrate for differential geometry
analysis. Other visual illusions were already investigated by
relating the empirical results to themodel assumptions (Fermuller
et al., 1997). In the present work, we demonstrated a few
properties of the illusion that can be obtained by the projection line
analysis. These properties which are summarized in the following
were tested by using the closed form solutions (3)–(4) under a
nulling paradigm (Gori et al., in this issue):

1. Bulging, limited rather to the mid-zone of the central lines
and more extended in the peripheral lines, creates a global
impression of a wave flowing from center to the periphery.

2. Obtaining the full predicted curvature either when the line-
ends are blurred or the mid-zone of the parallel lines is
considered (weak line-end signal conditions).

3. The illusion theoretically persists even for a large viewing
distance.

4. The bulging is related to the veridical speed perception of line
centers, and less than veridical away from the centers.

In general, the introduction of the 3D aperture problem, and its
prediction and the characterization of the fluid distortion, which
cannot be explained by the classical/2D aperture problem, shows
that besides a flat view of aperture, the angle of the projection line
with the stimulus plane within 3D visual space plays a crucial role.
It needs to be tested which part of the brain areas involved with
motion, for example MT and MST, can incorporate the correction
of the 3D aperture problem and falling behind when the stimulus
speed is high.

Designing a nulling experiment based on Eqs. (3)–(4) showed
the influence of the 3D aperture problem for the fluid distortion
aspect of the illusion (Gori et al., in this issue). Other factors
besides the classical and the 3D aperture problems could be
involved in the distortion and aspect ratio change (Caplovitz et al.,
2008) in particular that our nulling experiments show the perfect
nulling with stimuli with less than maximum levels. As Caplovitz
et al. (2008) suggested, the visual system can be faced with
ambiguities other than the traditionally acknowledged aperture
problem. Given that the aperture problem resulted in our closed
form solutionwith a deformation similar to the illusion appearance
of bulging, any less than predicted effect after a full nulling can
reveal other factors, ambiguities, or integrative processes involved.
Among the subtleties related to such an integrative process is the
one discussed by Fantoni and Pinna (2008) regarding the diamond-
like stimuli they used to investigate the integration of local and
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global motion signals by showing motion and form attributes
interact rather than being independent.

The Accordion illusion skips the compensatory neural substrate
that otherwise could have corrected the deviation from the straight
lines. As a result the illusion is perceived. This situation is enhanced
in a fast contraction/expansion of the stimulus compared to the
slower presentations (Gori et al., in this issue) indicating a time
consuming compensatory mechanism. The present mathematical
investigation provides a better understanding of the origin of the
distortion and a straightforward candidate for experimentalists
to observe which part of the brain areas can provide invariant
motion detection irrespective of x and na, which may have a
delayed initiation. Such a study can be considered equivalent
to the experimental study of Pack and Born (2001) for the
area MT, which shows that the activity of neurons are initially
consistent with the motion component of the 2D aperture
and after a 50 ms delay the same cell signals the corrected
coherent motion. In such a suggested experimental study based
on the present analysis, multiple brain areas can be tested for a
delayed coherent speed detection (nv) after the initial response
congruent with the underestimated value of n.vf ap(n, x). Within
a computational modeling context, testing the time dynamics
of motion detection while the model receives the input of
expanding/contracting stimulus could offer a straightforward
evaluation of model response. Given that the deviation from
veridical speed systematically depends on x, and n, characterized
directly by Eq. (4), modelers may start attempts to generate
the effects as predicted by the geometrical study (Figs. 9–10).
The facts that the illusory effect is enhanced with faster
expansion/contraction (Gori et al., in this issue) and is dependent
on viewer distance d from the stimulus (Fig. 9) impose further
parametric constraints on the proposed model.

In this context, approaches to motion integration based
on regularization frameworks are quite relevant. For example,
formulating an additional constraint of smoothness of the velocity
field, based on the physical assumption that object surfaces
are generally smooth, allows the computation of a unique
velocity field (Hildreth, 1984). Interestingly in our present
stimulus, the predicted distortion is smooth, and does not violate
this constraint, which may explain why the fluid distortion
survives. Gong and Brady (1990) have suggested Structure-from-
motion algorithms based on matched point-like features under
orthographic projection for use in analyzing image motion from
small rigid moving objects. By minimizing an energy term the
smoothness of the moving outline is generated. Given the latter
smoothness generation, the smooth distortion in our present
illusion can survive if passed through their algorithm. Moreover,
our present illusion lacks small fragments/objects to generate
multiple singularities along the line (opposite to a checkerboard)
which is used in the above analysis. With respect to models that
assume smoothness, the bistable percept of rigidity and elasticity
of the so-called gelatinous ellipses based on the overall contour
curvature is relevant (Weiss & Adelson, 2000). They showed that
the percept can be accounted for by a class of models that assumes
smoothness in a layered representation. Again the predicted fluid
distortion in the present stimulus does not violate the smoothness
assumption as illustrated by our direct percept.

The phenomenological description and possible neurophysio-
logical correlation in the illusion can complement each other in
researches which seek the correlations between the percept and
the possible neural activities (Grossberg, 2000; Spillmann, 2009).
In conclusion, this new illusion presents useful characteristics to be
described by geometry, and consequently, it helps to understand
how the motion processing units of our visual system work in an-
alyzing the visual field.

In general, stimuli with an illusion which relates to the classical
aperture problem can be revisited in terms of the 3D aperture
problem, especially if the aperture elements are eccentric from
the line of sight. As is clear from the present work, the difference
between the predictions of the 2D and 3D aperture formulations
is quantitative but not qualitative and related to the amount
of perceived motion rather than its direction. For example, the
rotation direction of RTLI (Gori & Yazdanbakhsh, 2008) has been
predicted by the 2D aperture problem formulation. As mentioned,
the 3D aperture problem will predict the same direction of
rotation, but with different amounts because the RTLI stimulus
can be designed with different radii which locate its elements
at different eccentricities (Yazdanbakhsh & Gori, 2008). Such
a difference in the predicted amount of rotation can be large
enough to be measured experimentally and provide a direction
for subsequent research. All illusory stimuli previously studied
under the classical aperture problem can be presented in different
eccentricities for testing if the amount of perceived motion is
changed. This should be a general topic of interest to vision
scientists studying spatial vision and those focusing on motion
detectors with a limited sampling field.
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Appendix A. Obtaining v⊥ assuming no aperture problem

By following the projection line analysis, but assuming that
the motion processing units do not face the classical/2D aperture
problem, we aim to provide a proof of concept, namely, our
formulation of the projection line analysis is veridical and results
in correct registration of motion in the absence of the classical
aperture problem. After, this proof of concept, we implement
our projection line formulation to characterize the 3D aperture
problem in the presence of its 2D precursor.

With no classical/2D aperture problem, θ and, as a result, cos θ
and 1

cos θ
are constant. This is because the true motion of point A is

detectable (no aperture problem) and the radial expansion of point
A (Fig. 3) is detected to be along the radial line OA, which assures
the constancy of θ , the angle between OA and the line Ov (line of
x = 0).

In this condition, as the following calculations show, even
the projection line analysis yields no illusory distortion and the
component of motion perpendicular to line orientation (v⊥) is
governed by:

v⊥ = nvf no(n, x),

where, distortion function f no(n, x) equals 1. This means v⊥

replicates the original stimulus speed.
To derive the distortion function with no aperture problem

assumption (f no), note that θ is constant, and as a result in
differentiating fromboth sides of (1) one can take 1

cos θ
as a constant

term, hence:

dtgϕθ

dt
=

n
d cos θ

da
dt

=
nv

d cos θ
. (A.1)

Given the chain rule in derivation we have:

dtgϕθ

dt
=

1
cos2 ϕθ

dϕθ

dt
. (A.2)
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a b

Fig. A.1. Calculation of curve length and linear speed based on angle and angular
velocity.

a b

Fig. A.2. No aperture problem assumption. An arbitrary point A over one of the
parallel lines with the coordinate (na, x) is selected. The visual angle ϕθ which
subtends O′A (point O is the center of stimulus) is used for calculating of the angular
speed of point A. In the lack of aperture problem, the real motion of A which is a
radial one along OA or aθ can be registered by motion detectors. In panel (b), the
triangle OAA′ from panel (a) is laid flat on the page to facilitate the intuition of
analysis in Eqs. (A.4)–(A.5).

Combining (A.1) and (A.2) yields:

dϕθ

dt
=

n.v
d

cos2 ϕθ

cos θ
. (A.3)

With the no aperture problem assumption, to obtain vθ (Fig. 3), the
detectable true motion of each line can be obtained bymultiplying
dϕθ

dt with Dv

cosϕθ
, inwhichDv is the distance of the target pointA from

the eye nodal point O:

vθ =
dϕθ

dt
Dv

cosϕθ

.

To prove this by the projection line analysis, two steps are needed
by starting from the angular speed dϕθ

dt to reach to the perceived
speed. As Fig. A.1 shows, to obtain the linear speed v orthogonal to
the projection line based on the s = rϕθ (Fig. A.1(a)), both sides
should be differentiated: v =

ds
dt = r dϕθ

dt (Fig. A.1(b)).
As Fig. A.2(a) shows, in the present case, r = Dv , therefore:

v =
dϕθ

dt
Dv. (A.4)

In Fig. A.2(b), the triangle with the sides Dv, aθ , and d (triangle
OAA′) is laid flatly over the page plane for clarity. As can be seen,
motion vector v obtained by Dv

dϕθ

dt is perpendicular to Dv and
hence is not representing the projection line-end velocity over the
stimulus plane. The reason v is not flat over the screen stems from
the simple geometrical fact that Dv (OA) is not perpendicular to
the stimulus plane (except when A is coinciding O, the center of
the stimulus).
Obtained speed vector v (Fig. A.2(b)) makes angle ϕθ with the
stimulus plane and vθ , hence, vθ cosϕθ = v, or vθ =

v
cosϕθ

.
By replacing v in the latter, using (A.4), we obtain:

vθ =
dϕθ

dt
Dv

cosϕθ

, (A.5)

which completes the proof.
As can be in Fig. A.2(b), Dv =

d
cosϕθ

, by replacing this value of
Dv in (A.5), we get:

vθ =
d

cos2 ϕθ

dϕθ

dt
. (A.6)

Using (A.3) to replace dϕθ

dt in (A.6), one obtains:

vθ =
nv

cos θ
. (A.7)

By having vθ , we can obtain the component of motion perpendic-
ular to line orientation (v⊥):

v⊥ = vθ cos θ =
nv

cos θ
cos θ = nv,

which is identical to the original stimulus speed.
We can summarize the above result by the following statement:
With no aperture problem assumption, the projection line anal-

ysis yields no illusory distortion and the expansion/contraction of
the grating is governed by:

v⊥ = nvf no(n, x),

in which, the distortion function for the no aperture problem
f no(n, x) equals 1.

This shows that for the 3D aperture problem to take place, the
2D aperture problem is needed. This is the topic of the following
Appendix B.

Appendix B. Obtaining v⊥ assuming the 2D aperture problem

To derive the distortion function with the aperture problem
assumption (f Ap), one can start by differentiating from the both
sides of (2) in terms of t (noting that x is constant over time,
because due to the aperture problem assumptionmovement along
the line is not detectable):

dtgϕθ

dt
=

1
d

d
dt


n2a2 + x2


. (B.1)

Using the chain rule


dtgϕθ

dt =
1

cos2 ϕθ

dϕθ

dt


and the fact that dx

dt = 0,
da
dt = v, (B.1) can be rewritten as:

1
cos2 ϕθ

dϕθ

dt
=

n2av

d
√
n2a2 + x2

, (B.2)

and therefore,

dϕθ

dt
= nv

na

d
√
n2a2 + x2

cos2 ϕθ . (B.3)

Remark. Given cos θ =
na√

n2a2+x2
(see Fig. 3), (B.3) can be rewrit-

ten as:

dϕθ

dt
=

nv
d

cos θ cos2 ϕθ . (B.4)

This equation highlights better the differencewith (A.3), its equiva-
lent with no aperture problem assumption


dϕθ

dt =
n.v
d

cos2 ϕθ

cos θ


by a
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factor of cos θ . This difference explicitly shows that under the aper-
ture problemassumption,we should expect a different value for v⊥

rather than nv (which was the case with the no aperture problem
assumption). In the following we show that v⊥ can obtained from
dϕθ

dt by the following transformation:

v⊥ =
dϕθ

dt
f ϕ(n, x),

in which,

f ϕ(n, x) =

√
n2a2 + d2

√
x2 + n2a2 + d2

d
.

To prove this, we note that in (A.5) for obtaining vθ from dϕθ

dt the
latter was multiplied by Dv

cosϕθ
. Here, although the multiplication

by Dv for the same reason remains, instead, the divisive term 1
cosϕθ

should be replaced by 1
cosϕ

to incorporate the 2D aperture problem
assumption. This is because only the vertical (or 2D aperture) com-
ponent of motion (shown by the dotted region in Fig. 6(a)) can be
registered, therefore:

v⊥ =
dϕθ

dt
Dv

cosϕ
. (B.5)

Again, (B.5) reflects the stage in which the 3D aperture problem
kicks in, where the projection line is not orthogonal to the stimulus
line.

Regarding Dv =
d

cosϕθ


where cosϕθ =

d√
x2+n2a2+d2


, and

cosϕ =
d√

n2a2+d2
(Fig. 3), one can re-write (B.5) as the following:

v⊥ =
dϕθ

dt

√
n2a2 + d2

√
x2 + n2a2 + d2

d
. (B.6)

Replacing the value of dϕθ

dt from (B.3) in (B.6) results in:

v⊥ = nvf Ap(n, x), (B.7)

in which,

f Ap(n, x) =
na

√
n2a2 + d2

√
n2a2 + x2

√
x2 + n2a2 + d2

, (B.8)
and f Ap indicates the distortion function under the aperture prob-
lem assumption. Occasionally, instead of using the abbreviation v⊥

weuse v⊥(n, x), which emphasizes the coordinate x of the targeted
point A over the nth line for which v⊥ is obtained.
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