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Small molecule-inducible gene circuits are some of the most
important tools in biology because they provide a convenient
way to exert precise regulation of biological systems. These
systems typically are designed to govern gene activation,
repression, or disruption at multiple levels, such as through
genome modification, transcription, translation, or post-
translational regulation of protein activity. Due to their
importance, many new systems have been created in the past
few years to address different needs or afford orthogonality.
They can be broadly characterized based on the inducer used,
the mode of regulation, and the effector protein enabling the
regulation. Furthermore, each synthetic circuit has varying
performance metrics and design considerations. Here, we
provide a concise comparison of recently developed tools and
recommend standardized metrics for evaluating their
performance and potential as biological interrogators or
therapeutics.
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Introduction

Small molecule-inducible genetic circuits have re-
volutionized our ability to fine-tune protein levels and
temporally control cellular output states. This advanced
precision instrumentally impacts our understanding of
cellular behavior and expands our toolset to address
biotech challenges. An inducible system typically con-
sists of two main protein components — a ligand binding
domain that senses the inducer and the effector domain
that enacts a change on the genetic target. These com-
ponents can be combined to develop complex,

multilayered circuits with temporal control over gene
expression. Using small molecules as inducers is desir-
able because they tend to have high bioavailability,
membrane permeability, and are also easy to manu-
facture. These tools have been developed within every
aspect of regulation surrounding the central dogma of
biology with effectors that modulate DNA, RNA, and
protein activity. Designing inducible switches at each of
these regulatory levels comes with its own unique design
considerations and circuit performance. In this review,
we will briefly summarize circuits developed in the past
3 years and follow up with a discussion of suggested
standardized metrics for evaluating these systems.

Small molecule-inducible genetic switches:
modes of regulation and their design
considerations

Chemically inducible gene switches can be categorized
according to the effector’s mechanism of action. This
effector protein can be a nuclease that induces DNA or
RNA modification or a transcription factor (TF) that
controls the expression of the gene of interest (GOI).
Some systems directly control effector protein activity
through dimerization domains, destabilization domains,
or localization tags that bind to the inducer [1-7]. More
complex systems include multiple layers of induction by
controlling transcriptional or translational regulators
linked to the expression of the effector or GOI [8-16].
T'o this end, a digitizer circuit that integrates both che-
mically inducible site-specific recombinase (SSR) ac-
tivity and shRNA regulation to control protein
expression over a wide dynamic range has been devel-
oped [17]. Finally, some systems bypass the use of an
effector protein and instead directly control the func-
tional gene product through induced dimerization, de-
gradation or synthetic blocking of the active region of
the protein [18-22]. We break down these systems based
on their main mode of regulation: inducible DNA
modification, transcriptional, post-transcriptional, or
post-translational regulation. Within each category, we
highlight the main design elements that determine the
activity of each genetic switch, the inducer and effector
protein, and the advantages and disadvantages of these
circuit designs.

Inducible DNA modification via nucleases

A powerful method of gene regulation is direct genetic
manipulation through DNA modification. Sequence-
specific nucleases are a class of enzymes capable of

www.sciencedirect.com

Current Opinion in Biotechnology 78( 2022) 102823


http://www.sciencedirect.com/science/journal/09581669
mailto:wilwong@bu.edu
https://doi.org/10.1016/j.copbio.2022.102823
http://crossmark.crossref.org/dialog/?doi=10.1016/j.copbio.2022.102823&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.copbio.2022.102823&domain=pdf

2 Tissue, Cell and Pathway Engineering

cleaving DNA (or RNA) at precise locations based on
recognition domains. There are three main DNA nu-
clease-based systems that continue to advance over the
past few years: zinc-finger (ZFN) and transcription ac-
tivator-like effector nuclease (TALEN) systems, re-
combinase systems, and clustered regularly interspaced
short palindromic repeat (CRISPR)-Cas systems
(Figure Ta).

ZFNs and TALENS are fusion proteins composed of a
DNA binding domain that confers sequence targeting
and a catalytic domain, FoklI, that enables DNA clea-
vage. These nucleases can be fused with chemical-in-
ducible dimerization (CID) domains to design inducible
gene editing. However, both ZFNs and TALENs have
inherent limitations in their specificity. ZFNs have
proven difficult to design, and while TALENs have
overcome this limitation to some extent, they both suffer
from off-target activity at DNA sequences with high si-
milarity [23]. To overcome this limitation, most in-
ducible designs incorporate the dimerization of two
distinct Fokl domains targeting adjacent regions of the
target gene, such as a system developed by Matsumoto
et al. that combines dCas9-mediated gene targeting to
improve specificity [2].

In contrast to ZFNs and TALENs which must be de-
signed to include specificity to the GOI, SSRs such as
Cre and Flp are enzymes that recognize their own spe-
cific set of recombination sites that can be placed around
a GOI or termination sequence. Specific recognition
sites ensure high-fidelity recombination, the possibility
of orthogonality, and straightforward circuit construction
which we see extensively iz vitro and further in animal
model development [4,24]. While SSRs on their own are
sensitive to basal activity, our lab and others have com-
bined SSRs with CIDs to induce a variety of outputs
such as chimeric antigen receptor (CAR) expression in T’
cells [25], tumor neoantigen expression [11¢], or iz vivo
tissue-specific gene editing [4]. To further expand the
potential of SSRs, we have also curated a library of or-
thogonal, inducible, split recombinase systems that can
be combined to perform complex logic in mammalian
cells [26].

The CRISPR-Cas system is a revolutionary gene-cditing
tool that simplifies design considerations to a guide RNA
(gRNA) that targets the GOI and a protospacer adjacent
motif recognized by the Cas nuclease. The most well-
characterized version, CRISPR-Cas9, targets DNA, but
there are other classes of CRISPR-Cas enzymes that
target RNA or both DNA and RNA. While it has proven
to be a powerful tool, constitutively active CRISPR-Cas9
exhibits significant off-target effects as well as toxicity at
high activity levels [27]. It has therefore been critical to
design temporal control through exogenous inducibility
of the Cas9 activity. In a similar pattern to the previously

described nuclease systems, CRISPR-Cas9 has also been
fused with CIDs to confer inducibility [3]. More re-
cently, Kundert et al. employed a novel strategy of en-
gineering ligand-inducible gRNAs to control CRISPR/
Cas9 activity [28], and previous work has utilized post-
synthetic masking to control gRNA activity [29].

Transcription regulation-based systems

Many important reviews have been dedicated to de-
scribing seminal small-molecule inducible TF-based
systems [30-32]. Here, we will highlight some of the
more recent explorations (IFigure 1b). TFs are modular
proteins composed of a DNA binding domain, tran-
scription regulatory domain, and optionally a ligand-
binding domain. For example, a powerful collection of
transcription factors called synZiF'TRs (synthetic zinc
finger transcription regulators) fuses zinc fingers pro-
grammed as DNA binding domains to various tran-
scriptional regulators [33]. This platform is sensibly
optimized for induction via Federal Drug Administration
(FDA)-approved small molecules with a focus on com-
pact design, orthogonal regulation, tunable activity, and
human-based origins. The modular structure of tran-
scription factors has been leveraged to co-opt natural
inducible pathways as well as synthetic programmable
circuits.

There exists a wide range of 'T'Fs that naturally respond
to small molecule inducers and more are being dis-
covered and characterized every year [34]. Perhaps the
most widely used TF system is the Tet-On/Tet-Off
tetracycline-inducible system which has been widely
utilized to design multilayered genetic circuits [8,35,36],
such as induced differentiation of human induced plur-
ipotent stem cells (hiPSCs) into dopaminergic neurons
achieved by placing the expression of proneuronal and
ventral midbrain-specific T'Fs under the control of the
tetracycline responsive element promoter [7]. Simi-
larly foundational are IPTG (isopropyl-p-D-1-thioga-
lactopyranoside)-inducible  transcriptional regulators,
which have been studied extensively to identify design
criteria for reduced leakiness and increased inducible
fold change [37¢]. Despite their broad use, the IPTG-
binding lacl repressor and reverse tetracycline-controlled
transactivator, rtT'A, have shown immunogenicity in
mammalian systems due to their bacterial origin, ne-
cessitating the exploration of other inducible TF sys-
tems to leverage for therapeutic use [38].

A more recent subset of inducible transcriptional-based
tools uses catalytically dead Cas proteins fused with TFs
to activate or repress the GOI. In one example, cataly-
tically dead Cas9 (dCas9) was fused to an FKBP (FK506
binding protein) domain to impart transcriptional acti-
vation in the presence of chemical epigenetic modifier
(CEM) small molecules [12]. In another example, gene
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Classification of chemical-inducible gene circuits. Inducible gene circuits can be categorized into (a) nuclease-based systems (b) transcriptional

regulators (c) post-transcriptional and translational regulators and (d) post-translational regulators discussed throughout the text.
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repression was initiated via dCas9 fused to the Kriippel-
associated box (KRAB) repressor in the presence of
protocatechuic acid (PCA), a metabolite found in green
tea [10]. Compared with TF systems that rely on in-
ducible promoters of varying strength, CRISPR/Cas
systems advance our ability to multiplex gene control
with facile tunability and orthogonal guide RNAs for
different orthologs.

While split TF systems are indispensable in activating
and repressing versatile gene targets with large fold in-
ductions, this class cannot establish permanent output
memory, which has limited the possible logic operations
[39]. Additionally, as more TFs are discovered and
added to our synthetic toolbox, each one requires char-
acterization of its DNA binding affinity and regulatory
dynamics in model systems before it can be integrated
into gene circuit designs.

Post-transcriptional regulation-based
systems

Post-transcriptional regulation encompasses control over
mRNA processing, RNA stability, and translational reg-
ulation. RNA modifications have been implicated in a
variety of human diseases [40], making strategies for
specific and inducible control of mRNA modification
particularly powerful. RNA interference (RNAIi) is the
most pervasively used tool to regulate target RNA ac-
tivity. This strategy uses endogenous machinery to ei-
ther repress translation or degrade RNA depending on
the degree of sequence complementarity (Figure 1c).
Some drawbacks of RNAIi have been off-target knock-
down due to partial complementarity-driven repression
and global interference of RNA degradation due to
competition of endogenous resources [41]. To mitigate
the first drawback, small molecule inducible RNAi has
improved tool specificity [42]. To this end, shRNA ex-
pression has been driven by inducible promoters [17]
and RNA aptamers have been fused to a ribozyme to
trigger gene expression [13e].

Inducible RNA-regulating effectors have also been gaining
more momentum recently. One example is CRISPR-
Cas13, an RNA-guided RNA nuclease (Figure 1c). Cas13
has been fused to RNA effectors to more precisely control
RNA editing in a dose-dependent manner [5¢]. An abscisic
acid (ABA) inducible and reversible m°A editing platform
developed by Shi et al. combines chemically inducible
proximity domains with dCas13b [15¢]. This system can
also be expanded to a light-inducible system by in-
corporating a photo-caged version of the inducer, ABA. In
comparison to RNAi, Cas13 is lauded for its ability to target
nuclear and circular RNA and has been claimed to have a
higher specificity due to its requirement of a near-perfect
match to its target [16,43]. Some downsides to Casl3 in-
clude its size and its display of nonspecific, off-target

cleavage in bacteria, although this has not been demon-
strated in mammalian cells [44].

Despite the challenge of off-target effects and slower
time scales compared with post-translational regulation,
post-transcriptional regulation benefits from reversible
dynamics [18]. This contrasts with nucleases, where the
permanence of off-target effects weighs more heavily.
Overall, the transience of post-transcriptional regulation
is incredibly appealing to therapeutics and has great
potential to shed light on RNA regulation mechanisms.

Post-translational regulation of protein
activity

The protein products of gene expression can also be the
targets of inducible regulation. This can occur through
steric blocking of protein activity, localization of the
protein product to hinder or facilitate its function [1,20],
induced degradation [19,22], and induced dimerization/
oligomerization (Figure 1d) [21e¢22]. For example, di-
merization strategies can be employed to control active
protein targets such as kinases, phosphatases, and gly-
cosidases. To investigate the endogenous signaling
pathways controlled by these proteins, Scheller’s group
designed and optimized an inducible kinase for signal
transduction in the generation of protein circuits [6°].

In contrast with dimerization strategies, a common in-
ducible degradation mechanism utilizes the ubiquitina-
tion pathway via inducible protein binders or chemical-
inducible domains. For instance, Simpson et al. devel-
oped a reversible protein degradation system that acti-
vates only in the presence of their novel HaloPROTAC
technology [45¢¢]. The HaloPROTAC tool includes a
Halo-tag that simultaneously binds to a protein of in-
terest and to a protein degradation complex in the pre-
sence of a ligand (HaloPROTAC-E). Other methods
utilize an auxin-inducible degron that functions by re-
cruiting endogenous ubiquitin-mediated protein de-
gradation machinery in response to the presence of the
plant hormone auxin. However, these strategies have
shown both basal degradation as well as incomplete
degradation of the protein target. Recently developed
systems have focused on improving this leakiness and
lowering the dose of inducer required for functional
degradation, resulting in induced rapid depletion of
protein targets for fast phenotype changes [19].

Localization of proteins to various cellular compartments
is a critical element to their endogenous function.
Leveraging this design element, Foight et al. designed
PROCISIR: a multi-input, multioutput inducible NS3a
reader-based analog switch [1]. This system utilizes
NS3a, ahepatitus C virus protease inhibited by dano-
previr, grazoprevir, and asunaprevir, as one half of a CID
system that dimerizes with a variety of engineered
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Figure 2
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Metrics to evaluate and optimize within inducible gene circuits. Chemical-inducible systems can be characterized in various ways. (a) Fold induction
calculates the ratio of an induced output to a negative control. (b) Signal-to-noise ratio accounts for overlap between on and off populations. (c)
Cellular viability can be plotted against concentration of inducer as a measure of toxicity. (d) Orthogonality matrices measure cross-talk as each

effector should ideally have high activity only with its intended pair.

‘readers’ to produce distinct analog outputs depending
on the inducer used. This multiplexed architecture ex-
pands the potential of chemically controlled systems to
integrate a variety of input signals to produce not only
digital, but graded analog responses. While these ex-
amples show the promise of post-translational regulation
strategies, the design of these systems can tend to have a
high genetic payload due to the additional regulatory
clements, and implementation of these strategies

towards native protein products requires extensive un-
derstanding of protein activity.

Performance metrics to compare inducible
genetic systems

Ideal chemical-inducible genetic circuits should have
robust fold induction, high signal-to-noise ratio (SNR),
low toxicity, and orthogonal effectors for multiplexed
control (Figure 2). Most groups report fold induction as a
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metric of switch activity, but we propose that each new
inducible system should be characterized on all four
metrics we have listed. Small molecule-inducible sys-
tems that meet these criteria will play an indispensable
role in interrogating native biological systems and de-
veloping the next generation of safe, effective ther-
apeutics.

Fold induction

Fold induction is the most common metric evaluated for
small molecule inducible genetic circuits. This value is
measured as the ratio of average activity with inducer
added to average basal activity without inducer [9]. The
basal expression level of a circuit used to calculate fold
induction is also quantified as leakiness, which Yeoh et al.
identify as a major impediment to the successful design of
inducible promoter-based genetic circuits [46]. Lower
leakiness improves fold induction metrics, since induced
expression levels are compared with basal expression le-
vels, and is also critical for therapeutic purposes where high
basal expression can impact the safety of a switch.

Signal-to-noise ratio

In contrast to fold-induction, SNR relays variance in
addition to amplitude of single-cell flow cytometry data.
While the signal measures on/off populations, noise es-
timates the standard deviation between populations as
well as the inability of the circuit to perform ideally due
to overlap between on and off states [17]. Although SNR
historically applies to information technology, this metric
can be adapted to inducible genetic circuits to measure
and improve differentiation between on/off output states
[14]. SNR is critical to characterize in multilayered ge-
netic circuits because obstacles such as cross-talk be-
tween genetic parts or limited strong regulatory
elements can lead to degradation of signals [47].

Toxicity

A rigorous safety profile of each inducer is necessary to
facilitate the clinical translation of small molecule-in-
ducible systems. Commonly used FDA-approved small
molecules such as tamoxifen, grazoprevir, and doxycycline
have extensive data supporting a lack of toxicity in mam-
malian and bacterial cells at appropriate doses. Small mo-
lecules that are not FDA-approved will face more
challenges translating into therapeutics, and circuits that
are designed to respond to these molecules should con-
sider including toxicity assays in their system evaluation.

Orthogonality

Orthogonal chemical-inducible effectors allow control of
multiple variables in a genetic circuit with minimal
cross-talk. Our lab has measured wild-type recombinase
activity against the recognition sites of other re-
combinases to evaluate SSR orthogonality [26]. This
characterization establishes that multiple recombinases

can be implemented into the same circuit to modulate
multiple reporters in an inducible manner. Orthogonality
of chemically inducible dCas9 is possible with the de-
sign of guide RNAs towards different target genes to
ultimately enable multiplex control [48]. Evaluating the
orthogonality of genetic circuit components will greatly
improve the complexity and versatility of synthetic cir-
cuits.

Conclusion and future outlook

We anticipate that the future of chemical-inducible circuit
design will focus on multiplexing orthogonal systems for
control over a greater number of components. This will
enable more complex temporal and sequential gene
switching and interrogation of native regulation pathway
dynamics. Additionally, we emphasize the need to more
thoroughly characterize these systems as they are devel-
oped with the metrics we have outlined to allow a direct
comparison of genetic circuit designs. Finally, we have
highlighted some recent advances in the development of
small molecule inducible systems, but a vast collection of
these tools exist beyond those mentioned here. To facil-
itate further creation and exploration, an international re-
pository should be created that organizes, validates, and
standardizes these systems as they are developed and
provides a collection of tools for future research. This will
overcome the challenge of tool standardization that we
have outlined and enable future iterations that continue to
improve our genetic regulatory toolkit.
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