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Microsecond fingerprint stimulated Raman
spectroscopic imaging by ultrafast tuning and
spatial-spectral learning
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Label-free vibrational imaging by stimulated Raman scattering (SRS) provides unprecedented
insight into real-time chemical distributions. Specifically, SRS in the fingerprint region
(400-1800 cm™1) can resolve multiple chemicals in a complex bio-environment. However,
due to the intrinsic weak Raman cross-sections and the lack of ultrafast spectral acquisition
schemes with high spectral fidelity, SRS in the fingerprint region is not viable for studying
living cells or large-scale tissue samples. Here, we report a fingerprint spectroscopic SRS
platform that acquires a distortion-free SRS spectrum at 10 cm~! spectral resolution within
20 ps using a polygon scanner. Meanwhile, we significantly improve the signal-to-noise ratio
by employing a spatial-spectral residual learning network, reaching a level comparable to that
with 100 times integration. Collectively, our system enables high-speed vibrational spec-
troscopic imaging of multiple biomolecules in samples ranging from a single live microbe to a

tissue slice.
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timulated Raman scattering (SRS) microscopy is a high-

speed vibrational imaging modality that produces chemical

maps in dynamic living systems based on intrinsic molecular
vibrations! . Such capability allows direct visualization of com-
plex biological processes without perturbation, enabling a plethora
of biomedical applications, such as tracking voltage spiking during
neuron firing®, identifying the cancer margin of fresh, unprocessed
tissues’, and discovering biomarkers and therapeutic targets of
aggressive cancers®. When evaluating an SRS system, speed,
spectral bandwidth, and signal-to-noise ratio (SNR) are the three
major aspects, which characterize the temporal resolution, che-
mical specificity, and reliability. Utilizing narrowband pump and
Stokes lasers, single-color SRS has reached the speed of up to
video-rate!0. Meanwhile, spectroscopic SRS has been developed to
acquire a Raman spectrum at each pixel, enabling the simulta-
neous study of chemicals with overlapping Raman bands in
complex biological samples. Spectroscopic SRS has been achieved
in various ways. With a broadband and narrowband laser, an SRS
spectrum can be acquired by pulse shaping! 112, spectral coding in
Fourier!3-15 or compressivel® domain, or parallel detection of a
complete spectrum by a detector array!718. With two broadband
femtosecond pulses, spectral focusing is used to obtain an SRS
spectrum by scanning the temporal delay of two linearly chirped
pulses!®~22, To date, spectroscopic SRS can record a spectrum
within a ~200 cm~! window at the microsecond level!7-21, Despite
major advances in instrumentation that push the speed and the
spectral bandwidth, most SRS applications are focused on the
carbon-hydrogen (C-H) stretching region (2800-3100cm~1)
where strong Raman bands reside. However, the highly crowded
SRS signals in the C-H region severely limit the chemical speci-
ficity of SRS in a complex biological environment.

Fingerprint SRS can significantly enhance chemical specificity
by providing specific Raman peaks for each biochemical com-
ponent. However, two major properties of fingerprint Raman
spectroscopy impose challenges to existing high-speed spectro-
scopic SRS implementations. First, the much weaker Raman
cross-section in the fingerprint region results in a decrease in the
signal level. As a means of physical compensation, one can
increase the pixel dwell time, which slows down the speed and
elevates the potential of photodamage. Second, the fingerprint
Raman peaks for different biochemicals are spectrally narrow and
close to each other. Therefore, high-spectral resolution is required
to achieve high chemical specificity. Among the existing schemes,
spectral focusing?>24 is the most power-efficient since all energy
of the femtosecond pulses is used. Spectral focusing SRS imaging
is generally implemented by a delay stage in a frame-by-frame
manner!%29, which is not applicable to living systems. An existing
high-speed spectral focusing scheme?! by an edge-reflected
resonant mirror has only 2-ps delay range, which limits the
degree of chirping and leads to 28 cm~! spectral resolution that is
not sufficient for the fingerprint region. Another galvo-based
delay-line scanning setup can achieve a large tuning range and
high linearity??, but the scanning speed is limited to 1kHz.
Acousto-optical delay line has been demonstrated for pump-
probe spectroscopic imaging to reach a 6-ps delay range at
34 kHz, yet the fixed delay range and scanning speed make it less
versatile?>. Polygon delay-line scanning was implemented for FT-
CARS spectroscopy?° to reach an ultrafast speed of up to 50 kHz,
however, the implementation suffers from spectral nonlinearity
and fixed delay tuning range, limiting its versatility and reliability.
To date, a scheme that can acquire fingerprint SRS spectra at the
microsecond level with a spectral resolution below 10 cm~! has
not been reported, which prohibits spectroscopic fingerprint SRS
from being a reliable tool for broad applications.

Due to the physical limits, advances of instrumentation alone
are not enough to achieve reliable high-speed fingerprint

spectroscopic SRS imaging. The physical limits lead to the trade-
offs between speed, spectral bandwidth, and SNR, which can be
conveniently expressed as a 3D hyperplane design space (Fig. 1a).
Various computational methods have been proposed to extend
the design space. Matrix completion?’2% and compressed
sensing?®0 methods have been used to sub-sample images to
increase speed while avoiding information loss. Denoising algo-
rithms with models®!*2 on object structures have also been
proposed to recover the SNR of images with low light exposure or
low pixel dwell times. Most computational methods depend on
the formulation of forward models to describe the underlying
imaging process, such as the modulation of measurements by a
mask, the blurring of the image by the optical point-spread
function, the thermal and electronic noise of photodetector, and
the laser shot noise. However, formulating a forward model
requires detailed system calibration, and certain simplifications
are necessary for the sake of computational tractability. In con-
trast, deep learning®? offers an appealing approach that can
bypass model design and directly learn features of the image to
formulate mappings from raw experimental data to reliable
results. In this approach, given training data of input/output
image pairs, a deep neural network learns the nonlinear mappings
that find optimal approximate solutions to a variety of compli-
cated inverse problems that are challenging to address using
conventional analytical methods. Deep learning has been applied
to a broad range of vibrational imaging applications, such as
image restoration of single-color SRS images in the C-H region
under low light exposure3* and automated detection of the tumor
margin from fresh tissue3>3. In particular, a 3D convolution
neural network (CNN) with a U-Net architecture has been suc-
cessfully applied to recover the signal level of volumetric fluor-
escence data’’. However, little has been done to utilize deep
learning for processing spectroscopic SRS images, which are 3D
image stacks with unique spectral features that are different from
volumetric data. Directly applying a 3D convolution neural net-
work (CNN) on spectroscopic data fails to treat the different
physical correlations of the spatial and spectral domain, which
may introduce artifacts and degrades recovery quality. Besides, a
deep neural network with 3D CNN filters requires a very high
computation cost and is difficult to train. Thus, a novel con-
volution filter designed for handling spectroscopic image datatype
is much needed to facilitate deep learning as a practical tool to
push the physical limits.

Herein, we demonstrate a high-fidelity fingerprint spectro-
scopic SRS imaging scheme with microsecond spectral acquisition
speed. Such capability is enabled by integrating two innovations
of ultrafast delay-line tuning by a polygon scanner and image
restoration by a spatial-spectral residual net (SS-ResNet). We
have developed a high-speed and high-spectral resolution spectral
focusing scheme by incorporating a 55-kHz polygon scanner and
a Littrow-configured reflective grating as the delay-line scanner.
To compensate for the decrease in signal levels due to higher
imaging speed and extensive chirping, we further apply SS-
ResNet to reconstruct SRS spectroscopic images from high-speed,
low-SNR raw images in the fingerprint region. We adopt a 1 x
3 x 3 convolution filter on the spatial domain to capture spatial
correlations and a 3x1x1 convolution filter on the spectral
domain to maintain spectral continuity between adjacent frames.
Next, we deploy a pixel-wise least absolute shrinkage and selec-
tion operator (LASSO) regression algorithm to decompose the
recovered spectroscopic image into maps of different biomole-
cules. The pixel-wise LASSO unmixing can effectively suppress
the crosstalk between different chemical maps by incorporating
the prior knowledge that at each location only a few components
have dominant contributions. To demonstrate the capability of
our scheme, we perform real-time imaging of lipid species,
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Fig. 1 Overview of fingerprint SRS microscopy by ultrafast tuning and spatial-spectral residual learning. a The intrinsic cross-section of the coherent
Raman scattering process and instrumentation define the conventional design space for SRS imaging, resulting in trade-offs between bandwidth (i.e.,
spectral resolution), speed, and signal-to-noise ratio (SNR). Deep learning can expand the design space through computational methods, enabling high-
speed, high-SNR fingerprint SRS imaging of living cells and large-area tissues. b Setup of ultrafast delay-line tuning. A 55-kHz polygon scanner is used to
scan the Stokes beam onto a Littrow-configured blazed grating to generate an SRS spectrum within 20 us. By changing the angle between the grating
blazed line and the laser-scanned line (@), the effective delay range can be fine-tuned as Lsin(@)tan(a), where a represents the grating blazed angle and L is
the length of laser scan line. PBS polarizing beam splitter, QWP quarter-wave plate, HWP half-wave plate, PS polygon scanner, DM dichroic mirror.

¢ Training a spatial-spectral residual net (5S-ResNet) deep neural network for SNR improvement, ground truth (GT) images are generated by averaging
multiple acquisitions of the same field-of-view, equivalent to increasing the pixel dwell time. A trained network is then applied to recover the SNR of high-
speed yet noisy images. d Spectral unmixing using least absolute shrinkage and selection operator (LASSO) to generate chemical maps. Int., intensity. a.u.,

arbitrary unit.

including cholesterol and unsaturated fatty acids, in living cancer
cells. Our high-speed imaging technique also allows large-area
mapping of biomolecules in a whole mouse brain slice under 4 h,
revealing distinctive distributions of fatty acid and cholesterol in
nerve bundles and populations of cholesterol-rich cells in certain
brain regions. Finally, we show the capability of differentiating
multiple biomolecules by imaging biofuel production by engi-
neered microbes. These results and applications collectively
demonstrate high-speed, high-fidelity fingerprint spectroscopic
SRS imaging and its potential in addressing a plethora of sig-
nificant biomedical and bioengineering problems.

Results

Spectroscopic SRS by polygon scanner and Littrow-configured
grating. The concept of ultrafast tuning is illustrated in Fig. 1b.
Briefly, two femtosecond lasers (pump and Stokes) are linearly
chirped by high dispersion medium to temporally separate dif-
ferent frequency components. The Stokes beam is sent to a 55-
kHz polygon scanner and subsequently scanned to a blazed
grating at Littrow configuration, which acts as a wedge to intro-
duce a continuous-changing path difference between the pump
and the retroreflected Stokes beam. Consequently, an SRS spec-
trum can be acquired within 20 ps. A detailed description of the
optical setup is provided in the “Methods” section and depicted in
Supplementary Fig. 1a. Importantly, by rotating the blazed grat-
ing to change the angle between the laser scanning line and the
grating blazed line, the effective delay range can be shortened.

Consequently, the delay tuning range is adjustable from 0 to
20 ps, which allows for extensive chirping of the lasers for dra-
matically improved spectral resolution. Two factors jointly
determine the maximum delay range: the blazed angle of the
grating and the length of the laser-scanned line, both of which are
easy to change. In the current system, the long delay range
enables the use of 90-cm SF57 glass rods to chirp the beams to ~5
ps, resulting in a spectral resolution of 10 cm~! in the fingerprint
region (Supplementary Fig. 2a, b). Such spectral resolution is
essential for resolving spectrally congested peaks in a fingerprint
window. Also, given the linear speed of the polygon scanner, the
acquired raw Raman spectrum is free of spectral channel dis-
tortion. For evaluation, we measured the spectral profiles of five
chemicals and compared them with spontaneous Raman spectra
(Supplementary Fig. 2¢, d). Eleven significant peaks were used to
map the sampling points from triggering to the Raman shifts
from Raman spectroscopy, showing high linearity with R*> =
0.9997 (Supplementary Fig. 2e). The sensitivity was quantified by
acquiring SRS spectra from dimethyl sulfoxide (DMSO) diluted
with DI water (Supplementary Fig. 2f). Besides the background
due to cross-phase modulation, the DMSO solutions contributed
to a significant peak at 2913 cm~!. At concentrations as low as
0.125% v/v, the DMSO peak was still separable from the back-
ground, suggesting a high sensitivity in the C-H region.
However, in the fingerprint region, excessive averaging is neces-
sary to obtain an SRS spectrum with high SNR (Supplementary
Fig. 2g, h).
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SNR recovery via spectra-spatial residual net and chemical
mapping by pixel-wise LASSO unmixing. To extract informa-
tion from the high-speed yet noisy spectroscopic images, we apply
a two-step processing approach that involves SNR recovery and
chemical mapping. To recover the SNR, we deployed a deep
neural network, acting as a supervised denoiser, to recover the
SNR of high-speed fingerprint SRS images (Fig. 1c). We first
generated pairs of spectroscopic SRS images as the training set,
with high-speed, low-SNR images as the raw acquisition and a
low-speed, high-SNR image (through averaging of multiple raw
acquisitions) as the ground truth. The framework of the network is
shown in Supplementary Fig. 3a. Due to the large size of each
spectroscopic image and the experimental difficulty of generating
a large number of training images, the network is based on the U-
net3® encoder-decoder structure. The up-sampling and skip-
connection layers in the network improves the resolution of
learned features and thus requires less training samples. Inspired
by the pseudo-3D network for video processing, we consider the
different physical correlations between spatial and spectral
domains and replaced the widely used 3 x3x3 3D CNN filter
with two parallel filters, including a 1 x 3 x 3 spatial convolution
filter and a 3 x 1 x 1 spectral convolution filter to maintain spectral
continuity between adjacent frames (Supplementary Fig. 3a). Each
convolution filter is detailed in Supplementary Fig. 3b. Since the
memory cost for each filter is reduced, our network could incor-
porate six filters at each layer without exceeding the GPU memory
limit. Finally, a residual learning scheme? is applied to facilitate
the training of a deep network. The overall U-net structure greatly
reduced the need for the number of training samples.

After SNR recovery, the spectroscopic image stack is linearly
decomposed into chemical maps (Fig. 1d) to facilitate down-
stream visualization and analysis. Based on the observation that at
each spatial location, only a few chemical components have
dominant contributions, we used pixel-wise LASSO regression*!
to incorporate individual L,-norm sparsity regularization to the
concentrations at each pixel. The level of regularization can be
fine-tuned such that the output can suppress crosstalks between
different channels while avoiding artifacts. We applied the
approach to unprecedented imaging conditions reaching high
speed, high SNR, and high chemical specificity in the fingerprint
region for a wide variety of biological samples. The applications
include living cancer cells, whole mouse brain slice, and single
bacteria, with a focus on chemicals that are difficult to study in
the C-H region.

High-speed spectroscopic fingerprint SRS imaging of lipid
metabolism in Mia PaCa-2 cells. Lipid metabolism is a cellular
process involving spatiotemporal dynamics of fatty acid and
cholesterol. The distributions of different lipid species in the cell
are tightly regulated to ensure proper cellular activities and
function. Abnormal lipid metabolism is related to many human
diseases, including aggressive cancer®. Thus, quantitative ima-
ging of lipids in living systems is of great interest. Unlike fluor-
escence imaging of lipophilic dyes, Raman spectroscopy provides
high chemical specificity to differentiate lipid species, such as
cholesterol and various fatty acids. With enhanced signal levels,
SRS is capable of quantitative imaging of specific lipid species. For
example, cholesterol mapping has been demonstrated in
cholesterol-rich samples such as the atherosclerotic artery*? and
lysosome-related organelles in Caenorhabditis elegans*> by
focusing on the sterol C=C stretching band at 1669 cm™1.
However, due to the limited signal levels in the fingerprint region,
except in the abovementioned cases of excessive accumulation, it
remains challenging to study cholesterol in single living cells or
large-area tissues.

To demonstrate that our system can achieve real-time lipid
tracking in living cells, we imaged Mia PaCa-2, an aggressive
pancreatic cell line, within the 1550-1750cm™! fingerprint
vibrational window. For training, we first acquired a dataset
consisting of pairs of raw and ground truth images of Mia PaCa-2
cells. We used fixed Mia PaCa-2 cells to ensure that the ground
truth images formulated by excessive averaging do not suffer from
motion artifacts. Each raw spectroscopic image stack covering a
~200cm~! spectral window with 200 x 200 um? field-of-view
(FOV) was acquired within 1.8s. A total of ~20 image pairs were
used for training. For the raw images, the SNR of a cell region at
1650 cm~! was ~1.4. The ground truth image was generated by
averaging 100 raw images of the same FOV, resulting in a ~10-fold
SNR enhancement. After training, the performance of SNR
recovery was validated using a set of previously unseen images.
We compared the raw, network-recovered, and ground truth
images of the same FOV at 1650 cm~! (Fig. 2a—c), demonstrating
that the SS-ResNet recovery allows reconstruction of the raw
spectroscopic image stack, reaching comparable image quality to
the ground truth images. The same validation dataset was
processed by block-matching 4D filtering (BM4D)*4, a state-of-
the-art unsupervised 3D image denoising algorithm. Also, to
compare the performance of spatial-spectral convolution, a U-net
with 3D CNN was trained and tested on the same dataset. The
results (Supplementary Fig. 4a-e) suggest that both networks
outperformed BM4D significantly. Meanwhile, the SS-ResNet is
better than 3D CNN by maintaining more detailed structures
without introducing artifacts. We further quantified the observa-
tions by calculating the normalized root mean square error
(NRMSE) and structural similarity (SSIM) index** for the raw vs.
ground truth, BM4D vs. ground truth, 3D CNN vs. ground truth,
and SS-ResNet vs. ground truth (Supplementary Fig. 4f, g). Both
measurements suggest significant improvement of the image
quality using SS-ResNet. The averaged spectral profiles from a
small region of interest for the raw, ground truth, and recovered
images (Supplementary Fig. 5) show that the network introduces
no spectral distortion. To test whether the network recovery
facilitates downstream spectral analysis, we selected a small region
of interest from the validation set (Fig. 2d) and performed pixel-
wise LASSO unmixing on raw, SS-ResNet, and ground truth
image stacks. We used three SRS spectral profiles generated from
bovine serum albumin (BSA), triglyceride, and cholesterol (Fig. 2e)
as the references. These spectral profiles represent three major
Raman bands, namely the amide I band at ~1650 cm™! from
proteins, the acyl C=C band from lipid acyl chains at 1650 cm~1,
and the sterol C=C band from cholesterol a 1669 cm~!. The
outputs from the network and the ground truth show similar
spatial distributions and concentrations for all three components
(Fig. 2f). In contrast, the results from the raw data failed to provide
insights into the distributions of chemical species and were
difficult to distinguish from the background noise (Fig. 2f). To
quantify the quality of chemical maps after SNR recovery, we
calculated the SSIM index for all the three chemical channels
(Fig. 2g). The SSIM indices increased considerably after recovery,
which proved that our approach did not introduce artifacts and
provided reliable results on the subsequent chemical analysis.

To apply this high-speed, high-sensitivity method to the real-
time mapping of lipid in living cells, we imaged living Mia PaCa-2
cells and recovered high-resolution images from the raw images
taken at high speed by applying the same SS-ResNet trained on
fixed cells. In living Mia PaCa-2 cells, lipid droplets are shown to
be highly dynamic®0. Live-cell imaging at the speed of 1.8 s per
stack was performed on Mia PaCa-2 cells to capture lipid droplet
dynamics. In contrast, we observed severe motion artifacts in the
100-averaged image from the live-cell data (Fig. 2h). SS-ResNet
recovered images from a single frame showed clear circular-
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Fig. 2 High-speed spectroscopic fingerprint SRS imaging of living Mia PaCa-2 cells. a-c Fingerprint spectroscopic SRS imaging of fixed Mia PaCa-2 cells
by single raw acquisition, spatial-spectral residual net (SS-ResNet) recovery from raw data, and 100 images averaging ground truth (GT). d Zoom-in
comparison of the same region of interest shown in white dashed boxes in (a-c). e Fingerprint SRS spectra of bovine serum albumin (BSA), cholesterol, and
triglyceride serving as the pure spectral references of protein, cholesterol, and unsaturated fatty acid. Int., intensity. a.u., arbitrary unit. f Chemical maps of
protein, cholesterol, and fatty acid by pixel-wise LASSO unmixing from spectroscopic SRS images shown in (d). g Quantitative analysis of chemical
mapping accuracy after network recovery. Box plots (n =19) show the SSIM for raw vs. GT and network vs. GT of the three chemical channels. The boxes
show interquartile range (IQR), the red line indicates medians, the black lines represent whiskers which extend to 1.5 times of the IQR and the red data
points are the outliers exceeding the whiskers. SSIM, structural similarity index. h Fingerprint spectroscopic SRS imaging of living Mia PaCa-2 cells by SS-
ResNet recovery of single raw acquisition and 100 averaging. i, j Cholesterol and fatty acid maps by LASSO unmixing from data in (h). Three significant
motion artifacts are highlighted as circled regions. k, I High-speed imaging of living Mia PaCa-2 cells in normal conditions after network recovery, followed
by chemical maps of protein, cholesterol, and fatty acid. m, n High-speed imaging of living Mia PaCa-2 cells with HPBCD treatment after network recovery,
followed by chemical maps of protein, cholesterol, and fatty acid. o Single-cell statistical analysis of the ratio between cholesterol and fatty acid over ~1000
cells in control and HPBCD-treated group. Scale bars, 20 um.
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shaped droplets within the cells, highlighting the importance of
temporal resolution during live-cell imaging. The chemical maps
of cholesterol and fatty acid (Fig. 2i, j) further confirmed that
motion artifacts affect the fidelity of the subsequent spectral
analysis. After recovery, clear lipid dynamics can be visualized at

1650 cm~! (Supplementary Videos 1-2), and real-time chemical
mapping of protein, cholesterol, and fatty acid can be achieved
(Supplementary Videos 3-5).

We further asked whether this method could be used to track
changes in cholesterol amount and distribution. To that end, we
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imaged two sets of living Mia PaCa-2 cells, a control set and a set
treated with HPPCD, which extracts cholesterol from the cell
membrane?’. Compared with the control group, the cholesterol
concentration in the cell membrane decreased significantly after
HPBCD treatment, whereas the fatty acid concentration main-
tained at the same level (Fig. 2k-n). The remaining cholesterol
after HPBCD treatment is mainly distributed within the lipid
droplets (Fig. 2n). By calculating the single-cell ratio between
cholesterol and fatty acid concentrations for ~1000 cells from the
control and the HPBCD-treated groups, we confirmed significant
reductions in cellular cholesterol after the treatment (Fig. 20).
These data collectively show that deep-learning high-speed
fingerprint SRS imaging enables high-fidelity, real-time chemical
mappings of chemical bonds in single living cells and facilitates
the tracking of metabolite dynamics at subcellular levels.

Chemical mapping of a whole mouse brain slice by high-
throughput spectroscopic fingerprint SRS imaging. Brain tissue
is comprised of many cell types, and biomolecules in the tissue
are highly heterogeneous among different brain areas. Chemical
mapping of the whole brain is essential for studying the func-
tionality of molecules in the brain. Previous label-free metabolic
studies of mouse whole-brain slices were mainly based on multi-
color SRS imaging in the C-H window, providing only protein
and lipid information”-48, For the sake of maintaining sample
conditions during the experiment, the total acquisition time of a
mouse whole-brain slice is usually several hours. Therefore, it
remains challenging to perform spectroscopic SRS imaging in the
fingerprint region to generate chemical maps of other
biomolecules.

Here, we used a fixed mouse brain frozen-sectioned to 150-um
slices as the testing sample. Following the procedures in Fig. Ic,
we first took a training and validation dataset in different brain
regions, including the lateral hypothalamus (LH), caudate
putamen (CPu), cortex (CTX), habenula (HB), medial habenula
(MH), ventral lateral nucleus (VL), hippocampus (HC), dentate
gyrus (DG), and corpus callosum (CC). Due to the much-
complicated spatial features in the brain tissue, a total of 50
training image pairs were taken for training. Each raw image was
taken at a speed of 3.8s per spectroscopic stack with a 100 x
100 pm? field-of-view (FOV), resulting in ~2.4 SNR level. The
high-SNR ground truth GT image was acquired by averaging the
raw measurements of the same FOV 100 times (Supplementary
Fig. 6). After training, a validation set was used to test the ability
to recover SNR using SS-ResNet. After recovery, the SNR of the
raw image improved significantly with the subcellular details
preserved, reaching comparable image quality to the ground truth
image (Fig. 3a-c). To quantify the reconstruction quality, we
measured the NRMSE and SSIM for the raw vs. ground truth and
SS-ResNet vs. ground truth for 15 different validation images
(Fig. 3d). A comparison between the performance of SS-ResNet,
3D CNN, and BM4D is illustrated in Supplementary Fig. 7. Like
the previous dataset, the performance of SS-ResNet is signifi-
cantly better than BM4D and slightly outperforms 3D CNN. The
averaged spectral profiles from a selected region of interest for the
raw, GT, and recovered images are shown in Supplementary
Fig. 8. Taking advantage of the high imaging speed of our system
and the ability to recover high SNR by SS-ResNet, we performed
fingerprint SRS spectroscopic imaging of a mouse whole-brain
slice. Acquisition of the whole-brain slice over a ~200cm~!
spectral window in the fingerprint region was finished within
3.5h, which is comparable to the acquisition time of multi-color
SRS imaging in the C-H region focusing on a few Raman shifts”.
The comparison between the raw image and the network
recovered the image of the whole-brain tissue at 1650 cm~!

demonstrates that morphologies of single cells and nerve bundles
within the brain can be clearly distinguished after recovery
(Supplementary Fig. 9).

We further applied pixel-wise LASSO spectral analysis of the
SS-ResNet recovered image stack to produce chemical maps of
the amide I group (blue, for protein), acyl C=C (red, for
unsaturated fatty acid), and sterol C=C (green, for cholesterol)
for the whole-brain slice (Fig. 3e-g). The composite image of the
three components shows significant heterogeneity among differ-
ent cells and brain structures (Fig. 3h), reflecting a relative
abundance of protein, fatty acid, and cholesterol. To further
characterize the distribution of the biomolecules, we focused on
several brain regions and features (Fig. 3i). Overall, the soma of
mature neurons shows relatively lower concentrations of all three
components compared to the surrounding tissue. Surprisingly,
we found abundant cholesterol-rich cells present near neurons in
the LH and basal amygdaloid (BM) regions, which may represent
different metabolic activities in this population of cells. We also
observed that nerve bundles in the ventral posterior nucleus (VP)
and CPu are comprised of different ratios of cholesterol and fatty
acid. Interestingly, there are a few rare cells that contain high
cholesterol concentrations in the DG region (Circled regions in
Fig. 3i). As DG is one of the regions containing neural stem/
progenitor cells, we suspect that these cholesterol-rich cells may
reflect cells undergoing hippocampal neurogenesis. In summary,
large-area SRS imaging in the fingerprint region is a viable tool
for label-free measurement of cellular cholesterol content, which
could be used to address the relationship between cholesterol
metabolic activity and a variety of brain diseases and disorders,
including various neurodegenerating disorders and brain tumors.

High-throughput spectroscopic fingerprint SRS imaging of E.
coli biofuel production. Limonene and pinene are biofuel pre-
cursors that can be produced biosynthetically in microbes such
as Escherichia coli (E. coli) using strains that have been engineered
to produce the enzymes necessary to synthesize these
chemicals**->1. Currently, quantitation of biochemical produc-
tion levels mainly relies on gas chromatography-mass spectro-
metry (GC-MS), which suffers from low throughput and requires
extraction steps that destroy the sample. Strain engineering and
optimization typically involve the construction of many variants,
followed by screening, in a lengthy iterative process. The limited
throughput of GC-MS approaches hinders efficient optimization
of design variables for biochemical synthesis. In addition, GC-MS
only provides quantification of population-level production,
ignoring the potential for genetic or phenotypic variation among
cells”>°3, Thus, a high-throughput quantification method that
provides direct measurement of biofuel concentrations has the
potential to improve the design, build, and test cycle necessary for
improving production strains. SRS is a promising approach to
fulfill this requirement by detecting intrinsic vibrational sig-
natures from the biofuels. Yet, due to the overwhelming SRS
contributions from endogenous proteins and lipids, quantitative
imaging of the production levels for certain biofuels (i.e., limo-
nene, pinene) in the crowded C-H region has not been reported.
High-throughput SRS imaging in the fingerprint region is
expected to address this challenge by providing specific and well-
separated Raman spectra for the biofuels.

We have applied our platform to perform high-throughput
quantitative chemical imaging of chemical compounds produced
by genetically engineered E. coli. Figure 4a depicts SRS spectra in
the ~1650 cm~! fingerprint Raman window, in which unsatu-
rated fatty acid contributes to the peak at 1655 cm™!, limonene
has two peaks at 1645 and 1678 cm~!, while a-pinene contains a
peak at 1660 cm~!. The peaks all originate from C=C bonds but
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Fig. 3 Spectroscopic fingerprint SRS imaging of mouse whole brain. a-c Fingerprint spectroscopic SRS imaging of mouse brain by single raw acquisition,
network recovery, and 100 averaging ground truth (GT). d Quantitative analysis of network recovery quality for mouse brain. Box plots (n =15) show the
NRMSE and SSIM for raw vs. GT and network vs. GT. The boxes show interquartile range (IQR), the red line indicates medians, the black lines represent
whiskers which extend to 1.5 times of the IQR and the red data points are the outliers exceeding the whiskers. NRMSE normalized root mean square error,
SSIM structural similarity index. e-g Protein, fatty acid, and cholesterol maps of a mouse whole-brain slice after SS-ResNet recovery. h Mouse whole-brain
composite chemical maps consisting of protein (blue), fatty acid (red), and cholesterol (green). Different colors indicate different percentage
concentrations from the three channels. i Zoom-in images of different mouse brain areas. Circled regions in the DG area include rare cells with high
cholesterol content. LH lateral hypothalamus, BM basal amygdaloid, VP ventral posterior nucleus, CPu caudate putamen, DG dentate gyrus, HC
hippocampus.
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Fig. 4 High-speed imaging of E. coli biofuel production strains. a Fingerprint SRS spectra of bovine serum albumin (BSA), pure limonene, and pinene
samples. Int., intensity. a.u., arbitrary unit. b-d Fingerprint spectroscopic SRS imaging of E. coli by single raw acquisition, spatial-spectral residual net (SS-
ResNet) recovery from raw data, and 100 averaging ground truth (GT). e Quantitative analysis of network recovery quality for the E. coli dataset. Box plots
(n =13) show the NRMSE and SSIM for raw vs. GT and network vs. GT. The boxes show interquartile range (IQR), the red line indicates medians, the black
lines represent whiskers which extend to 1.5 times of the IQR and the red data points are the outliers exceeding the whiskers. NRMSE normalized root
mean square error, SSIM structural similarity index. f-h Network-recovered image at 1650 cm~" and chemical mappings of protein, limonene, and pinene
for wild type, limonene production, and pinene-production strains. L-production, Limonene production. P-production, Pinene production. Scale bars, 10 um.

differ from each other due to the specific structures of each
chemical. In addition, the amide I group from protein
contributes a broad Raman band around 1650 cm~!, serving as
the contrast for the cell body. Using the same strategy as in the
previous two applications, we acquired training and testing sets
from both wild-type cells and biofuel production strains (~20
image pairs in total), which consisted of pairs of high-speed, low
SNR (~1.8) and low-speed, high-SNR GT images through 100
averages. After training, SS-ResNet was applied to a validation
set to test the recovery performance. Examples of validation
images at 1650 cm~!, including the raw image, SS-ResNet
recovery, and ground truth, are shown in Fig. 4b-d. Further
quantitation of the reconstruction quality is depicted in Fig. 4e,
suggesting that it is possible to denoise images while maintaining
high-quality spatial localization data. Further comparison with
3D CNN and BM4D is shown in Supplementary Fig. 10. As

depicted in Supplementary Fig. 11, the spectral quality of the
data is maintained after denoising.

Next, we performed high-speed imaging and SS-ResNet
recovery on images of a wild-type E. coli strain, which does not
produce biofuel. We compared this to limonene production®? and
pinene-production®! strains of E. coli. Based on the spectral
profiles from pure chemicals, pixel-wise LASSO spectral analysis
decomposed the network-recovered spectroscopic images of the
strains into the maps of the three chemicals. The chemical maps
indicated that the wild-type strain (Fig. 4f) only had significant
signals from the protein in the cell bodies, whereas the limonene
(Fig. 4g) and pinene (Fig. 4h) producing strains had protein
signals and a substantial increase in the corresponding concen-
trations of intracellularly aggregated chemicals. We did not
include fatty acid and cholesterol in the analysis due to the
negligible contributions. Using our scheme, the acquisition time
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of fingerprint SRS imaging was 8s for a 50 x50 um? FOV
covering hundreds of E. coli cells, offering excellent potential for
high-throughput screening to optimize the design variables of
biofuel production pathways. An independent verification of the
production level was performed by measuring the biofuel
concentrations of the whole culture using GC-MS (Supplemen-
tary Fig. 10). From the GC-MS results, limonene and pinene
are clearly present in the limonene and pinene-production
strains, respectively. Furthermore, GC-MS results represent the
average chemical concentration of the entire culture, yet we
noticed from the SRS results that the biofuels were highly
aggregated as droplets in single cells, which result in a much
higher local concentration that facilitates SRS detection.

Discussion

Raman spectroscopic imaging of living systems has been a grand
challenge due to limited speed in spectral acquisition. By the use
of picosecond pulses to focus on a single Raman peak, CARS or
SRS imaging of living cells has been demonstrated. By chirping
two femtosecond pulses and tuning the Raman shift in the time
domain, spectral focusing has allowed spectroscopic CARS or SRS
imaging. However, the standard implementation of spectral
focusing relies on moving a delay stage mechanically. Because of
the slow speed in this scheme, hyperspectral CARS or SRS ima-
ging is commonly done in a frame-by-frame manner, and a
hyperspectral cube would take a few minutes. Such speed does
not allow the study of a dynamic or living system without spectral
distortion. For biological cells, fixation is needed, which may
cause unwanted biochemical changes inside a cell.

Here, we addressed this difficulty through a novel imple-
mentation of SRS spectroscopic imaging that reaches an ultrafast
acquisition speed of 20 us per SRS spectrum. Compared with our
previous implementation using a 12-kHz resonant scanner?l, the
polygon scanning system not only improves the speed 5-fold but
also achieves high-spectral linearity that increases reliability.
More importantly, the delay range of our previous configuration
was fixed to ~2ps, which allowed only a moderate degree of
chirping and thus reached a spectral resolution of 28 cm~1. In
comparison, the tunable delay range of the current scheme
enables a much higher degree of chirping, reaching a spectral
resolution within 10 cm~! in the fingerprint region. Currently,
the spectral coverage of 200 cm™! is due to the spectral band-
width of the laser sources. However, since the delay range is freely
tunable, if combined with broadband lasers by fiber
amplification® or supercontinuum laser sources, the scheme can
potentially be used to obtain the entire fingerprint SRS spectrum
within 20 ps. In addition, the high-speed delay scanning scheme
can be applied to a broad range of modalities requiring a long
delay scan, such as transient absorption spectroscopy and
impulsive SRS imaging.

In this work, we trained a spatial-spectral residual net as a
supervised denoiser that outperformed conventional unsu-
pervised image restoration algorithms. The encoder-decoder
structure alleviates the requirement for training data size, which
is of great importance for biomedical imaging, given the high cost
associated with acquiring training data. Here, fewer than
20 spectroscopic images (200x 200x 128 size for each image)
were used as the training set for each application. Compared to
the 3D CNN U-net?’, the SS-ResNet has a reduced model com-
plexity. Thus, on the one hand, when the images are very chal-
lenging to denoise, it can formulate a deeper network for better
performance. On the other hand, if the image can be denoised
equally well by the two methods, the reduced size of the model
can always make room for more batches in the GPU memory for
faster training. Our supervised denoiser can significantly increase

the reliability of the subsequent chemical content analysis.
Besides, for the task of denoising spectroscopic image stacks, due
to the universal properties of noise under the same imaging
conditions, a trained network can be quickly tweaked to denoise
other samples by transfer learning. As shown in Supplementary
Fig. 13, we applied a network pre-trained on Mia PaCa-2 cells to
recover prostate tissue images taken under the same imaging
conditions. Direct application achieved high-SNR levels but
sacrificed spatial resolution due to the differences between spatial
features for the two datasets. By feeding in training data of the
new samples, the network required less than half of the training
epochs to converge and output high-resolution, high-SNR ima-
ges, making it convenient to apply to different applications.

It is important to discuss how far the network can push the
physical limit of SRS imaging. As discussed in the three
demonstrations, the lowest SNR that a network can recover is
dependent on the morphological and spectral structures of the
samples. In general, the network performs better for images with
complex structures, such as cancer cells and tissue. For the
ground truth images, the SNR should reach at least ~10 for
optimal recovery quality. Since SNR is proportional to the square
root of imaging time, we select 100 averages in our case. Further
increasing the number of averages for the GT does not improve
the denoising quality that much as the bottleneck has become the
noise level of the input, whereas decreasing the number of
averages will lead to poor quality of recovery since the network
cannot learn the actual structures. Thus, the deep-learning net-
work used here can increase the imaging speed by roughly two
orders of magnitude.

Like most deep-learning-aided optical imaging applications,
the most time-consuming part of the imaging and analysis
pipeline is the training of the network. Here, training from the
beginning takes ~10h to finish. However, after training, the
network takes only 2s to process an image. In addition, for
similar experimental conditions, a pre-trained network can be
quickly adjusted through transfer learning, which can greatly
reduce the training time. In comparison, BM4D denoising takes
3min for a hyperspectral SRS image of the same size. More
importantly, SS-ResNet has better denoising performance to
allow for a higher image acquisition throughput during the
experiment, which is often more critical than the offline proces-
sing speed. LASSO-based spectral unmixing takes <1 min to
finish for one hyperspectral image. To further improve the offline
unmixing throughput for a large dataset, we can simply run
multiple instances in parallel or even use several PCs since the
spectral unmixing problem for each image is independent.

For all demonstrated applications, the laser powers on the
sample were 15mW for the pump at the wavelength of 891 nm
and 75mW for the Stokes at the wavelength of 1040 nm. An
advantage of the SRL modality is that most laser power is on the
Stokes beam, which has a longer wavelength and, consequently, a
higher damage threshold. Overall, the powers used in our
experiments are far below the cell damage threshold of femto-
second pulses at corresponding wavelengths, characterized by our
earlier work on SRS microscopy®>°® and others’ work on mul-
tiphoton microscopy>’. Notably, in this work, we applied exten-
sive pulse chirping for both beams, which much reduced the laser
peak powers and diminished the nonlinear damage consequently.
For the Mia PaCa-2 training and validation samples (Fig. 2a—c), a
few very bright spots were observed. These spots were only found
occasionally in fixed cells, which are likely the aggregates of cell
debris formed during the fixation process. These aggregates were
floating in the environment and could easily attach to the cells. In
comparison, we did not observe such bright spots in continuous
imaging of live Mia PaCa-2 cells (Supplementary Videos 1-5),
nor did we found cell membrane blebbing, a signature of cell
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membrane damage>”. Before training, we performed image nor-
malization using 0.3 and 99.7% intensity percentile to avoid
including the bright spots. Therefore, these spots did not affect
the actual performance of the network.

It is important to discuss whether cell fixation alters the
spectral profiles used in our hyperspectral SRS imaging. We used
a 4% formalin to fix the cells, which cross-links proteins chemi-
cally. It is reported that after cross-linking, the amide I band
showed a general peak intensity decrease, but the peak position
had no shifting®®. Comparing SRS images of fixes and live cells,
we did not observe significant cellular intensity change to alter the
SNR of the raw images. Besides, since we used intensity-
normalized spectral profiles as references, we anticipate that
cross-linking of proteins does not affect the accuracy of spectral
unmixing.

In our setup, we used a low groove density (300 grooves/mm)
grating (GR50-0310, Thorlabs) in Littrow configuration as the
wedge to introduce optical delay. It is important to know whether
the grating can cause angular dispersion to the beam and sub-
sequently induce spatial resolution degradation. As shown in
Supplementary Fig. 14, using x60 1.2 NA water objective, 800 nm
pump, and 1040 nm Stokes, we imaged 500-nm PMMA beads to
validate the PSF using polygon scanning and standard frame-by-
frame SRS. The FWHMs of the beads are 520 and 518 nm,
respectively, showing very similar spatial resolution between the
two setups. Thus, the spatial resolution of the polygon scanning
system is not compromised.

Due to the wavelength difference between pump and Stokes, it
is a good practice to chirp them using the rods with different
lengths. For the fingerprint region data reported in this work, we
used 5 SF57 rods (15-cm each) on the common path and added a
15-cm rod on the Stokes path to compensate for its longer
wavelength. For the CH region, the wavelength difference is more
significant. Therefore, the spectral resolution using this “5+ 17
configuration leads to 11.7cm~! spectral resolution. We can
optimize and push the spectral resolution below 10 cm~! by
adding more glass rods on the Stokes path to compensate for the
increased wavelength difference. Yet, we note that an optimized
chirping condition for the CH region will sacrifice the spectral
resolution in the fingerprint region due to the over-chirping of
Stokes. Therefore, we chose the “5+4 17 chirping condition in
this work.

In conclusion, the combination of ultrafast tuning via a poly-
gon scanner and SNR recovery via deep learning has enabled
reliable fingerprint SRS imaging at microsecond spectral acqui-
sition speed. The improved speed and spectral resolution by our
polygon-based delay tuning of chirped pulses are essential for
SRS imaging in the fingerprint region. Meanwhile, the learning
network allowed effective SNR enhancement by one order of
magnitude. With such advances, we have demonstrated simul-
taneously imaging of various biomolecules that are difficult to
identify in the high-wavenumber C-H window. This technique
has broad applications, as demonstrated in this study: from
monitoring biofuel production levels in engineered bacteria to the
metabolic study of cancer cells, up to large-area whole-brain
tissue imaging. Collectively, our approach opens the door to a
plethora of biomedical applications from tracking dynamics and
interactions of metabolites in a single cell to the high-throughput
compositional mapping of an unprocessed human tissue.

Methods

Ultrafast tuning spectroscopic SRS microscope. The ultrafast tuning SRS
microscope is illustrated in Supplementary Fig. la. A dual-output 80-MHz fem-
tosecond pulsed laser (InSight DeepSee+, Spectra-Physics) outputs synchronized
pump and Stokes beams. The 120-fs tunable output (680-1300 nm) was used as the
pump beam, while the 200-fs output fixed at 1040 nm served as the Stokes beam.

The Stokes beam was modulated by an acousto-optical modulator (AOM, 1205-C,
Isomet) at 2.4 MHz for heterodyne detection. The Stokes beam was then directed to
a polygon scanner (Lincoln SA24, Cambridge Technology), which scanned the
laser onto a blazed grating (GR50-0310, Thorlabs) positioned at Littrow config-
uration. The grating acted as a reflective wedge to reflect the Stokes beam along the
same optical path. Each scan by the polygon scanner thus introduces a continuous
increase of light path for a few millimeters, resulting in a series of continuous
temporal delays between the pump and the retroreflected Stokes beam. The
maximum delay range of the system is determined by the length of the scan line
and the blazed angle of the grating. As shown in Fig. 1b, if we define the length of
the laser scan line as L and the grating blazed angle as a, then by rotating the
grating to change the angle between the scan line and the blazed line (denoted as
0), the effective delay is reduced to Lsinftana. The beams were collinearly com-
bined by a dichroic mirror (DM, Chroma) and were both broadened to picosecond
by high dispersion glass rods (SF57). To compensate for the chirping difference due
to the wavelength of the two lasers, we used five 15-cm glass rods on the common
path and added one 15-cm rod on the Stokes path. The angle 6 was set to ~20
degrees to match the range of the delay line and the degree of chirping. The chirped
beams were sent collinearly to an upright microscope, and a 2D galvo scanner set
(GVS102, Thorlabs) was used for scanning images. The pixel size was 200 nm for
all applications. A x60, 1.2 NA water immersion objective (UPLSASP 60XW,
Olympus) was used to focus the light onto the sample, followed by forward col-
lection by an oil immersion condenser. For all the experiments, the powers on the
samples were 15 mW for the 891 nm pump beam and 75 mW for the 1040 nm
Stokes beam. After filtering the Stokes beam following the interaction with the
sample, a photodiode (S3994-01, Hamamatsu) with a custom-built resonant circuit
was used to collect signals. The SRS signal was extracted by a lock-in amplifier
(UHFLI, Zurich Instrument) and was digitized by a high-speed data acquisition
card (ATS 460, AlazarTech). A custom-written Matlab (MathWorks) code was
used to synchronize the spectral scanning by the polygon scanner and the spatial
scanning of the galvo mirrors, generating spectroscopic image stacks in a A — XY
manner.

Deep-learning network structure, training, and error quantification. The net-
work for SNR recovery of the spectroscopic image is based on U-net (Supple-
mentary Fig. 3a), which consists of an encoder-decoder architecture. At each layer,
a 1x 1x 1 convolution layer is first used to increase the feature dimensions, fol-
lowed by a total of six spatial-spectral convolution (SS-Conv, Supplementary

Fig. 3b) layers. A max-pooling layer is applied at the end of each layer to reduce the
dimensions. In the decoder phase, each layer first up samples the feature map and
then concatenates it with the corresponding feature maps in the encoder phase.
The same six SS-Conv layers are used at each layer. At the final stage, a 1x 1x 1
convolution layer with linear activation was used to map the feature maps into the
prediction of pixel values of the high-SNR image. In addition, the prediction layer
was added with the input layer such that the prediction value was the residual®’
with respect to the raw input image, which has been shown to predict higher
resolution images. The parameters were learned by minimizing a loss function that
averages the mean squared error between the prediction and ground truth. The
network was implemented using Keras with Tensorflow as backend and was
trained using a graphics processing unit (GPU, RTX 2080 Ti, Nvidia).

To quantify the reconstruction error and compare it with the raw input, we first
normalized the ground truth and the predicted image to the same dynamic range
by the same method reported in the deep-learning image restoration work3”. We
then calculated the normalized root mean squared error (NRMSE) and structural
similarity index (SSIM) using the normalized image pairs. Using the same
procedure, we calculated NRMSE and SSIM values between the raw input and
ground truth in comparison.

Linear unmixing of spectroscopic images using pixel-wise LASSO. Assuming
the dimensions of the spectroscopic image in x, y, A as N, N, N, we first rear-

range the 3D spectroscopic image stack as a 2D data matrix (D € RN M) by

arranging the pixels in the raster order. Given the number of pure components as
K, a bilinear model is used to decompose the data matrix into the multiplication of
concentration maps C € RNN*K and spectral profiles of pure chemicals

Se RN,

D=CS+E 1)

where E is the residual term. To simplify the problem, we obtained S by measuring
the spectral profiles from pure chemicals. The concentrations can be obtained by
minimizing the error term E through the least-squares fitting. However, in practice,
least-squares fitting alone generates chemical maps with severe crosstalks in
complex biological samples where many biochemicals have overlapping spectral
profiles. To improve the performance, we observe that for each spatial pixel, only a
few chemical components contribute significantly, which is equivalent to the
sparsity of concentrations at each pixel. Thus, we introduced an L,-norm reg-
ularization to the original least-squares fitting problem. We denote i =
1,...,N,N, as a spatial pixel location and formulate the following optimization
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problem:
G, = argmin{IDGi, ) — CSIF + BIC,) )

where 8 is a hyper-parameter controlling the level of the sparsity of the con-
centration, D(i, :) € R™ stands for the spectrum at pixel i and C; e RXis a vector
that contains all the concentration values at the pixel. For a set of data recorded in
the same imaging and digitizing conditions, the value of 8 needs tuning only once.
The method, known as the least absolute shrinkage and selection operator
(LASSO), has been widely used to solve problems in which the variable is sparse,
e.g., compressed sensing®. With the use of pixel-wise LASSO unmixing, it is
possible to resolve more chemicals in the same window since LASSO effectively
stabilizes the solution and suppresses the crosstalks between different channels,
especially for a complex living system when the spectral profiles of independent
chemical components are similar. The method does not have a strict constraint on
the level of sparsity or the maximum number of independent chemical components
to tolerate, it is a soft regularization method, and the levels of sparsity can tone
down in the case of multiple mixtures.

Mia PaCa-2 cancer cell preparation. Mia PaCa-2 cancer cells were grown in a
monolayer at 37 °C in 5% CO, in RPMI-1640 medium supplemented with 10%
fetal bovine serum. To prepare fixed cell samples for training, we cultured Mia
PaCa-2 cells on a glass-bottom dish for 1-2 days at the humidified chamber and
fixed them with 10% neutral buffered formalin for 15 min at room temperature.
The cells were then washed with and imaged in PBS buffer. For cholesterol
depletion in Mia PaCa-2 cells, 500 uM HPBCD was added to the medium and
cultured for 24 h.

Brain tissue preparation. The mouse brain slice was prepared from a mouse
(Jackson Lab) at age 21 days. The housing conditions were dark/light 12/12 light
cycle, 21 + 3 °C temperature, and between 30 and 70% humidity. PBS was used for
perfusion, after which formalin was perfused to fix the brain tissue. Then the brain
tissue was frozen-sectioned at 150-pum thickness.

E. coli biofuel strains. The E. coli strains used in this study are derived from strain
JW0451-2 (K-12 BW25113 AacrB) from the Keio collection®®. The kanamycin
resistance marker gene was removed from the Keio collection strain. This “wild
type” strain was then transformed with plasmids expressing the heterologous
pathways for either pinene or limonene production. For pinene production, the
chassis strain was transformed with two plasmids, pJBEI-3933 & pJBEI-3085°1,
which were gifts from Jay D. Keasling. For limonene production, the chassis strain
was transformed with plasmid pJBEI-6409°0, provided by Taek Soon Lee via
Addgene (#47048).

Prior to SRS imaging, overnight cultures were inoculated in Luria Bertani (LB)
medium with appropriate antibiotics for plasmid maintenance and refreshed the
following day in 5 mL of M9 minimal media supplemented with 20 g/L glucose and
appropriate antibiotics. When the cultures reached an ODgq, (optical density at
600 nm) of 0.6, pinene or limonene production was induced by adding IPTG to the
culture (500 and 25 pM, respectively). The cultures were grown at 37 °C for another
18-24 h. Five to ten minutes before imaging, 5 uL of culture was placed on a 3%
agarose pad and pressed between microscope coverslips to immobilize the cells,
and then the sample was imaged.

Statistics and reproducibility. For each demonstration, the SS-ResNet was
independently trained three times with similar denoising and spectral unmixing
results. For Fig. 2 and Supplementary Fig. 5, 7 technical replicates of the Mia
PaCa-2 cells with both control and drug treatment were obtained. For Fig. 3,
Supplementary Figs. 6 and 8, SRS imaging of represented brain tissue regions
was repeated three times. For Fig. 4 and Supplementary Fig. 11, 4 technical
replicates of all the demonstrated E. coli strains were measured. For Supple-
mentary Fig. 13, the transfer learning results were repeated using prostate
cancer tissue images on 2 different days. For Supplementary Fig. 14, the spatial
resolution calculation was independently repeated in three different field-of-
views.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All the data related to the work is available upon reasonable request to the corresponding
author. Example datasets for neural network training and spectral unmixing are available
on the following website: https://github.com/buchenglab.

Code availability
Code for SS-ResNet and LASSO spectral unmixing is available on the following website:
https://github.com/buchenglab.
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