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ABSTRACT 1 

Neural responses are naturally variable from one moment to the next, even when the stimulus is held 2 

constant. What factors might underlie this variability in neural population activity? We hypothesized 3 

that spontaneous fluctuations in the cortical stimulus representation are created by changes in arousal 4 

state. We tested the hypothesis using a combination of fMRI, probabilistic decoding methods and 5 

pupillometry. Human participants (20 female, 12 male) were presented with gratings of random 6 

orientation. Shortly after viewing the grating, participants reported its orientation and gave their level 7 

of confidence in this judgment. Using a probabilistic fMRI decoding technique, we quantified the 8 

precision of the stimulus representation in the visual cortex on a trial-by-trial basis. Pupil size was 9 

recorded and analyzed to index the observer’s arousal state. We found that the precision of the cortical 10 

stimulus representation, reported confidence, and variability in the behavioral orientation judgments 11 

varied from trial to trial. Interestingly, these trial-by-trial changes in cortical and behavioral precision 12 

and confidence were linked to pupil size and its temporal rate of change. Specifically, when the cortical 13 

stimulus representation was more precise, the pupil dilated more strongly prior to stimulus onset and 14 

remained larger during stimulus presentation. Similarly, stronger pupil dilation during stimulus 15 

presentation was associated with higher levels of subjective confidence, a secondary measure of 16 

sensory precision, as well as improved behavioral performance. Taken together, our findings support 17 

the hypothesis that spontaneous fluctuations in arousal state modulate the fidelity of the stimulus 18 

representation in the human visual cortex, with clear consequences for behavior.  19 
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SIGNIFICANCE STATEMENT 20 

The fidelity of our sensory experiences varies from moment to moment. For example, we sometimes 21 

fail to recognize a friend in a crowd or mistake them for someone else. What determines the quality 22 

of human sensation and perception? In this study, we investigated whether fluctuations in alertness 23 

might play a role. We recorded brain activity while participants viewed images and reported both what 24 

they had seen and how confident they felt in this judgment. We discovered that a spontaneous change 25 

in alertness impacts the fidelity of information processing in the visual brain as well as reported levels 26 

of confidence and behavioral performance. These findings provide new insight into the mechanisms 27 

that underlie spontaneous changes in sensory information processing in the human brain.  28 
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INTRODUCTION 29 

Neural and behavioral responses are rarely constant over time – not even for repeated presentations 30 

of the same stimulus (see e.g. Faisal et al., 2008 for a review). While numerous processes underlie 31 

these apparent fluctuations in brain and behavior, spontaneous changes in arousal state likely play an 32 

outsized role in this variability. Arousal refers to a state of physiological alertness or readiness, 33 

mediated by brainstem neuromodulatory systems, with wide-spread influences on neural and 34 

physiological activity. Previous work has shown that arousal modulates overall activity in the visual 35 

cortex (Livingstone and Hubel, 1981; Reimer et al., 2014; Vinck et al., 2015; Roth et al., 2020) and even 36 

the retina (Schröder et al., 2020), but whether it influences the quality of sensory information 37 

processing remains unknown. Here, we propose that spontaneous fluctuations in arousal modulate 38 

the fidelity of stimulus representations in cortex. More specifically, we hypothesize that arousal 39 

enhances the precision with which sensory information is represented in neural population activity in 40 

the visual cortex.  41 

To test this hypothesis, we measured cortical activity with functional magnetic resonance imaging 42 

(fMRI) while participants performed a perceptual judgment task, and recorded pupil size as an index 43 

of arousal. Pupil size is commonly used as an indicator of arousal state, motivated by the tight links 44 

between pupil dilator muscles and the locus coeruleus-norepinephrine (LC-NE) system (see Mathôt, 45 

2018, for a review), which is believed to play a central role in arousal (Moruzzi and Magoun, 1949; 46 

Aston-Jones and Cohen, 2005; Sara, 2009). Indeed, the relationship between pupil size and arousal has 47 

been demonstrated in both neurophysiological (Aston-Jones and Cohen, 2005; Varazzani et al., 2015; 48 

Joshi et al., 2016) and neuroimaging studies (Murphy et al., 2014). Activity in the LC-NE system is not 49 

only linked to pupil size per se, but is particularly tightly coupled with rapid (phasic) changes in pupil 50 

size (Reimer et al., 2016). In recent years, researchers have therefore started using the rate of change 51 

in pupil size, quantified as the first derivative or slope of the pupil signal, as an (additional) measure of 52 
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arousal (e.g. de Gee et al., 2020; Podvalny et al., 2021; Pfeffer et al., 2022). In this study, we consider 53 

both pupil size and its rate of change (slope).  54 

To quantify the quality of the stimulus representation in the visual cortex, we applied a probabilistic 55 

decoding technique (van Bergen et al., 2015; van Bergen and Jehee, 2018). This method decodes 56 

stimulus information from a pattern of cortical activity as a probability distribution over all possible 57 

stimuli – on a per-trial basis. Importantly, the width of the decoded distribution provides a metric of 58 

the uncertainty associated with the cortical stimulus representation: the wider the decoded 59 

distribution, the wider the range of stimuli that are consistent with the activity pattern. Vice versa, a 60 

narrow decoded distribution suggests that only a few stimuli are likely to have triggered the given 61 

response pattern; in other words, the cortical representation of the stimulus is very precise. Previous 62 

work has shown that decoded uncertainty provides a reliable measure of the quality of the cortical 63 

representation of sensory information (van Bergen et al., 2015; van Bergen and Jehee, 2019; Li et al., 64 

2021; Geurts et al., 2022; Chetverikov and Jehee, 2023). Because sensory uncertainty has been linked 65 

to the participant’s self-reported levels of confidence about their perceptual decisions (Geurts et al., 66 

2022), we considered reported confidence as a secondary measure of sensory uncertainty. To assess 67 

arousal’s impact on behavior, we also quantified the precision of the participant’s behavioral responses 68 

across trials.    69 

Using these methods, we found evidence to suggest that spontaneous fluctuations in pupil-linked 70 

arousal state modulate the fidelity of stimulus representations in the human visual cortex. Specifically, 71 

we observed that decoded uncertainty, reported levels of confidence and behavioral precision vary 72 

from moment to moment and are linked to both pupil size and its rate of change. These results support 73 

the hypothesis that arousal plays a role in modulating the quality of sensory representations in the 74 

human visual cortex.  75 
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MATERIALS AND METHODS 76 

Participants 77 

Thirty-two healthy adult volunteers (20 female, 12 male, age: 19-31 years) with normal or corrected-78 

to-normal vision participated in this study, which was approved by the local medical ethics review 79 

committee (CMO Arnhem-Nijmegen, the Netherlands). All participants provided informed written 80 

consent and received monetary compensation for their participation. The sample size (N = 32) was 81 

based on a power calculation for detecting a reliable correlation between decoded uncertainty and 82 

behavioral variability using data from a previous study with a similar design (van Bergen et al., 2015; 83 

power = 0.8; α = 0.05). Participants were included based on their ability to perform the task, which was 84 

assessed in a separate behavioral training session prior to the experimental sessions. 85 

Imaging data acquisition 86 

The MRI data were collected using a Siemens 3T MAGNETOM PrismaFit scanner and a 32-channel head 87 

coil at the Donders Centre for Cognitive Neuroimaging in Nijmegen, the Netherlands. The data were 88 

analyzed previously for a different purpose (Geurts et al., 2022). Each scan session started with the 89 

collection of T1-weighted image (3D MPRAGE; repetition time (TR): 2300 ms; inversion time (TI): 90 

1100 ms; echo time (TE): 3 ms; flip angle: 8 degrees; field of view (FOV), 256 mm × 256 mm; 91 

192 sagittal slices; 1-mm isotropic voxels) and B0 field inhomogeneity maps (TR: 653 ms; TE: 4.92 ms; 92 

flip angle: 60 degrees; FOV: 256 mm × 256 mm; 68 transversal slices; 2-mm isotropic voxels; 93 

interleaved slice acquisition). Functional MRI data were acquired using a multi-band accelerated 94 

gradient-echo EPI sequence, with 68 transversal slices covering the whole brain (TR: 1500 ms; TE: 95 

38.60 ms; flip angle: 75 degrees; FOV: 210 mm × 210 mm; 2-mm isotropic voxels; multiband 96 

acceleration factor: 4; interleaved slice acquisition). 97 
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Pupil data acquisition 98 

Pupillometry data were acquired using an SR Research Eyelink 1000 system. Pupil size was sampled at 99 

1 kHz. Pupil recordings were collected for 62 out of 64 sessions, and only partially (4-12 runs out of a 100 

total of 10-13) for 11 of these sessions, due to technical difficulties. 101 

Experimental design 102 

Participants performed an orientation estimation task (Figure 1) inside the MRI scanner. They were 103 

instructed to maintain fixation on a black-and-white bullseye target (radius: 0.375 degrees) presented 104 

at the center of the screen throughout each run. Runs consisted of 20 trials each (trial duration: 16.5 105 

s, inter-trial interval: 1.5 s) and started and ended with a fixation period (duration: 4.5 and 16 s, 106 

respectively). Each trial began with the presentation of an orientation stimulus (duration: 1.5 s), 107 

followed by a 6-s retention interval, and two 4.5-s response windows in which observers were 108 

prompted to report the orientation of the viewed grating and indicate their level of confidence in this 109 

orientation response. The stimuli were counterphasing sinusoidal gratings (contrast: 10%; spatial 110 

frequency: one cycle per degree; randomized spatial phase; 2-Hz sinusoidal contrast modulation), 111 

presented inside an annulus around fixation (inner radius: 1.5 degrees; outer radius: 7.5 degrees; 112 

contrast linearly decreasing over the inner and outer 0.5 degrees of the annulus). Stimulus orientations 113 

were drawn pseudorandomly from a uniform distribution (0-179 degrees) to ensure an approximately 114 

even sampling of orientation within any given run. During the first response window, participants 115 

reported the orientation of the viewed grating by rotating a black bar (length: 2.8 degrees; width: 0.1 116 

degrees; contrast: 40%; initial orientation randomized across trials) presented at the center of the 117 

screen. During the second response window, participants indicated their confidence in this orientation 118 

judgment by sliding a white dot over a circular scale. The scale was a black bar of increasing width 119 

(contrast: 40%; bar width: 0.1–0.5 degrees, linearly increasing) that was wrapped around fixation 120 

(radius: 1.4 degrees). The mapping between confidence level and scale width (i.e., whether the narrow 121 

end of the scale indicated high or low confidence) was counterbalanced across participants, and the 122 
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orientation and direction of the scale (i.e., whether the width increased in clockwise or 123 

counterclockwise direction), as well as the dot’s starting position, were randomized across trials. For 124 

both response windows, the response bar (or scale) faded linearly over the last 1 s of the response 125 

window to indicate the approaching end of this window, and participants responded using two buttons 126 

(one for clockwise and one for counterclockwise rotation) on an MRI-compatible button box. Each trial 127 

was preceded by the fixation bullseye briefly turning black (duration: 0.1 s, timing: -0.5 s relative to 128 

stimulus onset) as a cue to stimulus onset. Participants performed a total of 22-26 task runs inside the 129 

scanner, divided over two sessions on separate days, and extensively practiced the task in separate 130 

behavioral sessions prior to the experiment (2-4 hours in total). 131 

Each scan session also included one or two functional localizer runs, in which flickering checkerboard 132 

stimuli (contrast: 100%, flicker frequency: 10 Hz, check size: 0.5 degrees) were presented within the 133 

same annulus as the orientation stimuli. Checkerboard stimuli were presented in seven 12-s blocks 134 

interleaved with fixation blocks of equal duration. In a separate scan session, retinotopic maps of the 135 

visual cortex were acquired using standard retinotopic mapping procedures (Sereno et al., 1995; Deyoe 136 

et al., 1996; Engel et al., 1997).  137 

Visual stimuli were generated by a Macbook Pro computer using MATLAB and the Psychophysics 138 

Toolbox (Brainard, 1997; Kleiner et al., 2007), and displayed via a luminance-calibrated projector (EIKI 139 

LC-XL100; screen resolution: 1,024 × 768 pixels; refresh rate: 60 Hz) on a rear-projection screen, which 140 

the participants viewed via a mirror mounted on the head coil. 141 

Preprocessing of MRI data 142 

Preprocessing procedures for functional imaging data are also described in Geurts et al. (2022), and 143 

reproduced here for convenience. Motion correction was performed with respect to the middle 144 

volume of the middle run of each session (the motion correction template) with FSL’s MCFLIRT 145 

(Jenkinson et al., 2002). The motion-correction template was corrected for distortions due to B0 field 146 
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inhomogeneities using the acquired field maps, and registered to a high-resolution anatomical (T1-147 

weighted) image acquired in the same session using epi_reg within FSL’s FLIRT (Jenkinson and Smith, 148 

2001). For co-registration of data across sessions, we created participant-specific anatomical 149 

templates by combining the anatomical reference images from the two separate sessions using 150 

Freesurfer’s mri_robust_template (Reuter et al., 2012), to which the single-session anatomical images 151 

were registered. All transformations were then combined and applied to the raw data. To remove slow 152 

drifts in the MRI signal, the transformed data were temporally filtered using FSL’s nonlinear high-pass 153 

filter (Jenkinson et al., 2012) with a sigma of 24 TRs (two trials), which corresponds to a cut-off of 154 

around 83 s. Residual motion effects were removed from the data through linear regression, using a 155 

set of 24 motion regressors derived from the motion parameters estimated by MCFLIRT. 156 

The region of interest (ROI) for decoding (bilateral V1, V2, and V3, combined) was identified on the 157 

reconstructed cortical surface, obtained with Freesurfer’s cortical reconstruction algorithm (Dale et 158 

al., 1999), using single-participant retinotopic maps (see Experimental design). For further analysis, we 159 

selected the 2000 voxels within this ROI that were most strongly activated by the functional localizer 160 

stimulus while surviving a lenient statistical threshold of p<0.01, uncorrected. Voxel selection was 161 

performed for each participant individually in native space. Each voxel’s timeseries were z-normalized 162 

with respect to corresponding trial time points in the same run. Finally, we obtained single-trial 163 

activation patterns by adding a 4.5-s temporal shift (to account for the hemodynamic delay) and then 164 

averaging over the first 3 s of each trial. Importantly, this time window excludes activity from the 165 

behavioral response window. 166 

Decoding algorithm 167 

To quantify the trial-by-trial precision of stimulus representations in visual cortex, we applied a 168 

generative-model based probabilistic decoding algorithm (van Bergen et al., 2015; van Bergen and 169 

Jehee, 2018) to our data (see Preprocessing of MRI data for voxel selection criteria). We provide a 170 

concise description of the decoding algorithm here, and refer the interested reader to previous 171 
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publications for further detail (van Bergen et al., 2015; van Bergen and Jehee, 2018). The decoding 172 

model describes the across-trial distribution of activation patterns as a multivariate normal, centered 173 

around a stimulus-specific mean that describes the tuning function of each voxel. Tuning functions 174 

were modeled as a linear combination 𝐖𝐟(𝑠)  of eight bell-shaped basis functions 𝐟(𝑠) =175 

[𝑓!(𝑠),	..., 𝑓"(𝑠)]#, each centered on a different orientation (Brouwer and Heeger, 2009). The basis 176 

functions are described as follows:  177 

f$ (s)  =  max 30,  cos 72π
s − ϕ$
180 >?

%

	178 

in which	𝑠 is the orientation of the presented stimulus and ϕ$ is the center of the kth basis function. 179 

Basis functions were spaced equally across the full orientation space (0-179 degrees) with the first one 180 

centered at zero. The basis functions are weighted by coefficients 𝐖, with W&' 	the contribution of the 181 

kth basis function to the tuning function of the 𝑖th voxel. 182 

The variance around the stimulus-dependent mean activation pattern (i.e., the multivariate tuning 183 

function) is modeled by the covariance matrix: 184 

𝛀 = 𝜌𝛕𝛕# + (1 − 𝜌)diagJ𝛕𝟐K + 𝜎)𝐖𝐖#	185 

The first component of the covariance matrix 𝜌𝛕𝛕# 	models global fluctuations shared between all 186 

voxels in the ROI. The second component(1 − 𝜌)diagJ𝛕𝟐K, with 𝛕) = M𝜏&)O
#

, describes independent, 187 

voxel-specific variability (with variance 𝜏&)  for voxel 𝑖 ). The relative contributions of these two 188 

components are given by 𝜌. The third component 𝜎)𝐖𝐖#  reflects variance (with magnitude 𝜎) ) 189 

shared between voxels with similar orientation preference (given by 𝐖𝐖#). 190 

The voxel tuning functions and covariance matrix together model the generative distribution of 191 

activation patterns: 192 

𝑝(𝐛|𝑠, 𝜃) = Ν(𝐖𝐟(𝑠), 𝛀)	193 



 

11 

 

which is a multivariate normal distribution with mean 𝐖𝐟(𝑠)	and covariance 𝛀.	𝜃	 = {𝐖, 𝜌, 𝛕, 𝜎} are 194 

the generative model’s parameters.  195 

For model training and testing, a leave-one-run-out cross-validation procedure was used to prevent 196 

double-dipping. The model’s parameters were estimated on a dataset consisting of data from all but 197 

one task run. The trained model was then tested on the held-out run, and this procedure was repeated 198 

until all runs had served as a test run exactly once. The parameters were estimated in two steps: the 199 

coefficients 𝐖 were first estimated by ordinary least squares regression, and then the covariance 200 

parameters (𝜌, 𝛕, 𝜎) were estimated through numerical likelihood maximization (see van Bergen et al., 201 

2015 for further details regarding model estimation procedures).  202 

Model testing (‘decoding’) consisted of calculating a posterior distribution 𝑝(𝑠|𝐛, 𝜃W)	over stimulus 203 

orientation s, conditioned on the response pattern 𝐛  and estimated parameters 𝜃W . The posterior 204 

distribution is given by Bayes’ rule: 205 

𝑝(𝑠|𝐛, 𝜃W) =
𝑝(𝐛|𝑠, 𝜃W)𝑝(𝑠)
∫ 𝑝(𝐛|𝑠, 𝜃W)𝑝(𝑠)

	206 

The stimulus prior 𝑝(𝑠) was flat, reflecting the uniform stimulus distribution used in the experiment. 207 

The normalization constant ∫𝑝(𝐛|𝑠, 𝜃W)𝑝(𝑠)  was computed numerically. The circular mean of the 208 

decoded distribution was taken as the decoder’s estimate of the presented orientation (‘decoded 209 

orientation’) and the squared circular standard deviation quantified the uncertainty in this estimate 210 

(‘decoded uncertainty’).  211 

Preprocessing of pupil data 212 

Blinks and saccades were identified using the Eyelink software. Data recorded during saccades or less 213 

than 250 ms before (after) blink onset (offset) were removed. Missing or removed data were linearly 214 

interpolated. Data interpolated over more than 1000 ms were removed at the end of the preprocessing 215 
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procedure. If more than 50 % of the data in a given trial were missing, the trial was excluded from pupil 216 

data analyses.  217 

The pupil’s responses to blinks and saccades were estimated and regressed out using a deconvolution 218 

approach developed by Knapen et al. (2016), and implemented by Urai et al. (2017). Specifically, the 219 

shape of blink- and saccade-triggered pupil responses was first estimated by fitting a finite impulse 220 

response (FIR) model to the data of each participant. The estimated response was then used to create 221 

a regressor in a linear regression analysis, and blink- and saccade-related effects were removed 222 

(separately for each run). Data were subsequently low-pass filtered using a third-order Butterworth 223 

filter with a cut-off of 4 Hz, and downsampled to 100 Hz. Global effects in the data (cf. Knapen et al., 224 

2016) were removed by fitting an exponential function to each run and using the residuals of this fit in 225 

subsequent analyses. Finally, pupil size was z-normalized per session to correct for differences in 226 

camera and lighting position between sessions. 227 

We considered both the pupil size time series and its first derivative as indices of arousal. To estimate 228 

the derivative, we used a moving window with a width of 500 or 1000 ms. Within this window, we 229 

fitted a linear function to the pupil time series. We took the slope of this fitted function as a measure 230 

of the rate of change in pupil size at the time point on which the moving window was centered. 231 

Preprocessing of behavioral data 232 

The error in the observer’s orientation response on a given trial was calculated as the acute-angle 233 

difference between the presented and reported orientation. Participants generally performed well on 234 

the task, with a mean absolute orientation response error of 5.81 ± 1.29 degrees (mean ± s.d. across 235 

observers). To correct for orientation-dependent biases in the response (shifts in mean response), two 236 

fourth-degree polynomials modeling response error as a function of stimulus orientation were fit to 237 

each participant’s data (van Bergen et al., 2015; Geurts et al., 2022). The first polynomial was fit to 238 

trials with presented stimulus orientation between 0 and 89 degrees and the second to trials with the 239 
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presented stimulus between 90 and 179 degrees. The residuals of these fits (‘bias-corrected behavioral 240 

responses’) were used in subsequent analyses. Trials on which the bias-corrected response was more 241 

than three standard deviations away from zero were marked as guesses and excluded from all further 242 

analyses (0.91 ± 0.31 percent of all trials; mean ± s.d. across observers). Confidence ratings were z-243 

scored per session to correct for potential between-participant or between-session differences in 244 

usage of the confidence scale. We excluded trials on which observers did not finish adjusting their 245 

orientation and/or confidence response before the end of the response window (2.75 ± 2.40 percent 246 

of all trials; mean ± s.d. across observers). 247 

Statistical procedures 248 

To benchmark our decoding approach, we quantified orientation decoding performance by calculating 249 

the circular equivalent of Pearson’s correlation coefficient between the presented and decoded 250 

orientation across trials and for each individual observer. To quantify the effect at the group level, the 251 

single-observer correlation coefficients were Fisher-transformed, and a weighted average was 252 

computed. The weight for the correlation coefficient of observer 𝑖 was calculated as 𝑤& =
!
*!

, where 𝑣&  253 

corresponds to the variance of the Fisher-transformed correlation coefficient (Hedges and Olkin, 254 

1985). This variance is given by 𝑣& =
!

+!,-
, in which 𝑛&  represents the number of trials. Statistical 255 

significance of the group-averaged correlation coefficients was assessed using a Z-test. The results 256 

from this analysis, as well as the correlation between decoded uncertainty and distance to the nearest 257 

cardinal axis and behavioral variability (see below), were also reported as benchmarks in a previous 258 

study (Geurts et al., 2022, Extended Data Figure 2). 259 

To assess whether decoded uncertainty predicts behavioral variability, trials were divided into ten bins 260 

of increasing uncertainty for each individual observer. Mean decoded uncertainty was computed 261 

across all trials in each bin and behavioral variability was quantified as the squared circular standard 262 

deviation of the (bias-corrected) behavioral errors in the bin. Multiple linear regression was performed 263 
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to calculate the partial correlation coefficient for the relationship between decoded uncertainty and 264 

behavioral variability at the group level, with separate intercepts for each observer. Statistical 265 

significance was assessed by means of a t-test. We performed a number of control analyses, in which 266 

we varied several analysis parameters. First, because there is no principled way for determining the 267 

number of bins to use in this analysis, we ran two additional analyses using five or fifteen (instead of 268 

ten) uncertainty bins per participant. Second, because the strength of the link between decoded 269 

uncertainty and behavioral variability could vary across individuals, we performed a linear mixed-270 

effects analysis (using MATLAB's lmefit function) in which both the intercept and the slope were 271 

modeled as random effects. This is in contrast to the multiple linear regression approach described 272 

above, which assumes that the intercepts are random variables while the slope is fixed. Third, to assess 273 

the influence of extreme values, we performed the analysis on different subsets of the data. The first 274 

subset excluded all trials for which the standard deviation of the decoded distribution was larger than 275 

45 degrees. In the second subset, we simply excluded from our analyses the observer who gave rise to 276 

the data point in the top-right corner of Figure 2B. Statistical significance was assessed by means of t-277 

tests on the partial correlation coefficients (r) or estimated slope (β) for the multiple regression and 278 

linear mixed effects analyses, respectively. In the linear mixed effects analysis, Satterthwaite 279 

approximation was used to estimate the effective degrees of freedom. 280 

The relationship between pupil size and decoded uncertainty or reported confidence was tested in two 281 

different ways. For the first set of analyses, we divided trials into three bins per observer, based on the 282 

level of decoded uncertainty (or reported confidence), and compared pupil size between the highest 283 

and lowest bin.  We computed t-values to quantify the difference between these bins. T-values were 284 

computed for each observer individually, and then averaged across observers. The analysis was 285 

performed for each time point within the window of interest; that is, from 1.5 s before stimulus onset 286 

until 1.5 s after stimulus offset. To assess statistical significance, threshold-free cluster enhancement 287 

(TFCE; Smith and Nichols, 2009) and permutation testing (1000 permutations) were used. The family-288 
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wise error rate (FWER) was controlled by comparing the true single-timepoint TFCE scores against the 289 

null distribution of the maximum TFCE score across time obtained through data permutation (Nichols 290 

and Hayasaka, 2003).  291 

In the second set of analyses, we quantified the relationship between pupil size (or slope) and decoded 292 

uncertainty (or reported confidence) on a trial-by-trial basis. To do so, we computed Spearman’s 293 

correlation coefficient for each data point in the pupil time series, from 1.5 s before stimulus onset 294 

until 1.5 s after stimulus offset. Spearman’s correlation coefficient was used because there is no a-295 

priori reason to assume that the relationship should be linear. Correlation coefficients were computed 296 

for each observer individually and group-level correlation coefficients were calculated following similar 297 

procedures as for orientation decoding performance. Specifically, individual correlation coefficients 298 

were Fisher transformed and a weighted average was computed with weights 𝑤& =
!
*!

 (Hedges and 299 

Olkin, 1985). For Spearman’s correlation coefficient, 𝑣&  is given by 𝑣& =
!./0
+!,-

, with 𝑛&  representing the 300 

number of trials for observer 𝑖  (Fieller and Pearson, 1961). As before, statistical significance was 301 

assessed using TFCE and permutation testing (1000 permutations), and the FWER was controlled by 302 

comparing against the null distribution of the maximum TFCE-value across time points.  303 

For the visualizations in Figure 4D, pupil size was averaged over the stimulus presentation window on 304 

a trial-by-trial basis. Spearman correlation coefficients between decoded uncertainty and (mean) pupil 305 

size were computed per observer, Fisher-transformed and averaged as described above. Z-tests were 306 

used to assess significance both at the group level and for the example observer. 307 

The relative effect size of arousal state on changes in uncertainty was determined as follows. Because 308 

the effect size cannot be determined directly from the observed relationship between arousal and 309 

uncertainty (decoded uncertainty reflects not only neural but also many non-neural sources of noise, 310 

including from the fMRI scanner), we instead relied on an indirect approach and compared the effect 311 

of pupil-linked arousal with that of a manipulation of stimulus orientation to acquire an understanding 312 
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of its relative contribution. The impact of stimulus orientation on decoded uncertainty was quantified 313 

by computing the Spearman correlation coefficient between decoded uncertainty and the distance 314 

between the presented stimulus orientation and the nearest cardinal axis (cf. Geurts et al. 2022, 315 

Extended Data Figure 2B). Correlation coefficients were computed per observer, Fisher transformed 316 

and then averaged across observers as described above. The impact of pupil-linked arousal was 317 

summarized by first averaging pupil size over the stimulus presentation window on a per trial basis (cf. 318 

Figure 4D), and then computing and averaging the Spearman correlation coefficients between these 319 

trial-by-trial values and decoded uncertainty as described in the previous paragraph. Effect sizes were 320 

defined as the absolute group-averaged Spearman correlation coefficient.  321 

Code accessibility 322 

All custom analysis code is available from the corresponding author upon request. Code for the 323 

probabilistic decoding algorithm can be found at https://github. com/jeheelab/.  324 
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RESULTS 325 

Do spontaneous fluctuations in arousal modulate the cortical representation of the stimulus? To 326 

address this question, we presented thirty-two human observers with oriented gratings while 327 

simultaneously measuring pupil size and recording their brain activity with fMRI. Observers reported 328 

the orientation of the grating and rated their level of confidence in this orientation judgment (Figure 1). 329 

To quantify the degree of imprecision in the stimulus representation in visual cortex (areas V1, V2, and 330 

V3 combined), we used a probabilistic decoding technique (van Bergen et al., 2015; van Bergen and 331 

Jehee, 2018). This technique computes a probability distribution over stimulus orientation for each 332 

trial of cortical activity (Figure 2A, top panel). The width of the decoded distribution reflects the degree 333 

of uncertainty contained in the pattern of activity. We refer to this metric as ‘decoded uncertainty’. To 334 

measure arousal, we relied on pupil recordings (Figure 2A, middle panel). That is, pupil size is an 335 

established indicator of arousal state (e.g. Aston-Jones and Cohen, 2005; Gilzenrat et al., 2010; Reimer 336 

et al., 2014; Vinck et al., 2015; de Gee et al., 2017, 2020; Urai et al., 2017; Pfeffer et al., 2022). Both 337 

physiological and neuroimaging studies have linked changes in pupil dilation to activity in the locus 338 

coeruleus (LC) and the release of noradrenaline (NE) (Aston-Jones and Cohen, 2005; Murphy et al., 339 

2014; Varazzani et al., 2015; Joshi et al., 2016). Previous work suggests that while overall pupil size is 340 

influenced by multiple factors, rapid (phasic) changes in pupil size more specifically track activity in the 341 

LC-NE system (Reimer et al., 2016). To quantify arousal, we therefore considered both pupil size and 342 

the first derivative (‘slope’) of its timeseries, which is specifically sensitive to changes in pupil size. Note 343 

that there is an inherent link between (changes in) pupil slope and pupil size: a large (positive) pupil 344 

slope at any given moment in time should be linked to an increase in pupil size moments later. For this 345 

reason, a true change in arousal state should be reflected in the pupil signal via an effect on slope 346 

followed by one on size (albeit that the two measures need not be equally sensitive; Reimer et al., 347 

2016). 348 
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Decoded distributions reflect presented stimulus and behavioral imprecision 349 

To benchmark our decoding approach, we first tested how closely the decoder’s orientation estimate 350 

(the mean of the decoded distribution) matched the presented orientation on a trial-by-trial basis. We 351 

computed the circular correlation coefficient between the decoded and presented orientations for 352 

each participant individually and then averaged the coefficients. This analysis revealed that the 353 

decoded and presented orientations were significantly correlated (z = 83.58, p < 0.001, r = 0.60, 354 

95% CI = [0.58, 0.61], see also Extended Data Figure 2A in Geurts et al., 2022). 355 

Having established that the presented orientation can reliably be extracted from cortical activity, we 356 

next asked whether the width of the decoded distribution is a meaningful measure of the degree of 357 

imprecision in the cortical stimulus representation. That is, a more precise representation in cortex 358 

should result in more precise (less variable) behavior. Is decoded width linked to behavioral variability, 359 

suggesting that it reflects the quality of the underlying neural representation? To address this question, 360 

we divided trials into bins of increasing distribution width (ten bins per participant), calculated the 361 

variance of the behavioral orientation estimates in each bin (Figure 2A, bottom panel), and quantified 362 

their relationship via a regression analysis. Replicating previous studies (van Bergen et al., 2015; 363 

Chetverikov and Jehee, 2023), this revealed a significant link between the width of the posterior 364 

distribution and behavioral variability (Figure 2B; t(287) = 2.30, p = 0.011, r = 0.13, 95% CI = [0.019, 365 

0.25]). Specifically, the broader the distribution’s width, the more variable the observers´ behavioral 366 

orientation estimates were. Control analyses, in which we varied the number of uncertainty bins, used 367 

two different statistical models (mixed versus fixed effects), and analyzed various subsets of the data 368 

(see Methods for details), showed that these results are fairly robust to changes in analysis parameters 369 

(see Figure 3 for data and statistics). Taken together, this suggests that posterior width provides a 370 

reliable measure of the degree of uncertainty contained in neural activity. Interestingly, it also shows 371 

that the imprecision in the cortical representation is not constant over trials, but rather varies from 372 

one trial to the next, with clear consequences for behavior.    373 
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Pupil-linked arousal reliably predicts decoded uncertainty 374 

Our analyses revealed that uncertainty fluctuates considerably from one trial to the next. What 375 

processes might underlie these spontaneous changes in neural activity? Here, we hypothesize that 376 

fluctuations in sensory uncertainty might be linked to arousal state. That is, given that arousal is a 377 

physiological state of alertness with effects on neural activity (Livingstone and Hubel, 1981; Reimer et 378 

al., 2014; Vinck et al., 2015), we reasoned that higher levels of arousal might lead to better stimulus 379 

representations in cortex, and hence, lower stimulus uncertainty. To measure arousal, we recorded 380 

pupil size while participants performed the task in the scanner. We predicted that the size of the pupil 381 

should vary across trials and be linked to uncertainty. Specifically, sensory uncertainty should decrease 382 

when the pupil dilates, indicating higher levels of arousal. To index arousal state, we considered both 383 

pupil size and the slope of the pupil timeseries, which quantifies the rate of change in pupil size. 384 

Because we were interested in the effects of arousal on sensory uncertainty, we focused on pupil size 385 

and dilation just before, during and just after stimulus presentation (Figure 4A). Note that while a 386 

change in pupil size alone can affect retinal resolution (which might, in turn, affect downstream 387 

activity), the direction of this effect runs opposite to what we predict here, as retinal image quality is 388 

reduced for larger pupils due to spherical aberrations (Campbell and Gregory, 1960; Campbell and 389 

Green, 1965).  390 

To test the link between pupil-linked arousal and representational fidelity, we first divided all trials of 391 

each individual participant into three equal-sized bins of increasing uncertainty, computed for each 392 

point in time the mean pupil size across all trials in each bin, and then compared between the lowest 393 

and highest uncertainty bin. Paired t-tests revealed a significant difference in pupil size between high 394 

and low uncertainty trials starting just before cue onset and lasting until at least 1.5 s after stimulus 395 

offset (Figure 4B, left panel; permutation tests, all p<0.05, FWER-corrected). Thus, the size of the pupil 396 

was larger when uncertainty in cortex was low and the stimulus representation was more precise. 397 
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Interestingly, the effect started well before stimulus onset, suggesting that altered arousal state led to 398 

the change in the cortical representation of the stimulus.  399 

We next asked if decoded uncertainty is also linked to pupil size on a per trial basis. To address this 400 

question, we computed the trial-by-trial correlation coefficient between decoded uncertainty and 401 

pupil size (calculated separately for each time point). We did this first for each individual observer and 402 

then averaged across observers (see Methods for details). We observed a significant inverse link 403 

between decoded uncertainty and pupil size (permutation tests, p < 0.05, FWER-corrected). Thus, pupil 404 

size was reliably larger when the cortical representation of the stimulus was more precise (Figure 4C, 405 

left panel). Interestingly, the timing of the effect overlapped strongly with stimulus presentation, 406 

consistent with the idea that arousal modulates the quality of the stimulus representation in cortex.  407 

We then turned to the rate at which pupil size changed prior to and during stimulus presentation. We 408 

first estimated the slope of the pupil response in a specified time window (sliding window of length 409 

500 ms and 1000 ms), and took this slope as a measure of change (see Methods). We then computed 410 

the across-trial correlation coefficient between pupil slope and decoded uncertainty. This revealed a 411 

significant inverse relationship between pupil slope and decoded uncertainty prior to the onset of the 412 

cue (permutation tests, p < 0.05, FWER-corrected; see Figure 4C, left panel and inset, 500 and 1000 ms 413 

windows), which lasted until the onset of the stimulus (Figure 4C, left, inset, 1000 ms window; see 414 

Figure 4D for individual correlation coefficients and an example observer). Thus, it appears that pupil 415 

size first dilates in anticipation of the stimulus, and then remains constant at increased size during 416 

stimulus presentation (Figure 4C left panel and inset). Taken together, our analyses show that there is 417 

a reliable relationship between decoded uncertainty and both pupil size and dilation. This altogether 418 

suggests that spontaneous fluctuations in arousal state result in an improved representation of 419 

stimulus orientation in the human visual cortex.   420 
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Relationship between pupil-linked arousal and reported confidence 421 

The participants not only reported the presented orientation, but also gave their level of confidence 422 

in this judgment. We previously showed, using the same dataset as here, that reported levels of 423 

confidence are linked to both behavioral performance and the precision of the cortical stimulus 424 

representation. This suggests that subjective confidence is computed from the degree of uncertainty 425 

in cortex (Geurts et al., 2022). Based on this relationship, we here asked whether pupil-linked arousal 426 

also predicts confidence. In other words, we took reported confidence as an (indirect) measure of the 427 

degree of uncertainty in cortex to see if it is linked to the pupil’s response. To address this question, 428 

we again divided the data for each individual observer into three bins of increasing confidence, 429 

computed the mean pupil size across all trials in each bin (separately for each time point), and 430 

combined the data across observers (see Methods). We compared pupil size between the first (lowest) 431 

and third (highest) confidence bins (Figure 4B, right panel). This analysis revealed a significant 432 

difference in pupil size between the high and low confidence bins, starting around 0.5-0.6 s after 433 

stimulus onset and lasting until about 1.5 s after stimulus offset (t-tests; all p < 0.05, FWER-corrected). 434 

That is, higher levels of confidence were reliably associated with greater pupil size, suggesting that 435 

arousal state affects the subjective level of confidence of the observers.  436 

We next analyzed the data on a trial-by-trial basis. Specifically, much like before, we computed for 437 

each individual observer the correlation coefficient between reported confidence and pupil size (for 438 

each time point) or slope (computed over a specified sliding window of time), and combined the data 439 

across observers (Figure 4C, right panel). While we observed no reliable link with pupil size, there was 440 

a significant positive relationship between reported confidence and pupil slope during stimulus 441 

presentation (0.3-0.9 s after stimulus onset; p < 0.05, FWER-corrected). Thus, the steeper was the slope 442 

of the pupil’s response, the more confident the observers were about their orientation judgments. 443 

Because stronger pupil dilation (or weaker constriction) is associated with higher levels of arousal 444 
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(Reimer et al., 2016), this altogether suggests that arousal state modulates both the cortical 445 

representation of orientation and reported confidence. 446 

Pupil-linked arousal is linked to behavior 447 

Is the link between arousal state and the quality of the cortical stimulus representation also reflected 448 

in behavior? We reasoned that if arousal state modulates the precision of information in cortex, it 449 

should similarly impact behavior. We tested this hypothesis as follows. We first divided, per participant 450 

and time point, all trials into ten bins of increasing pupil size or slope. We then quantified behavioral 451 

imprecision as the variance in the orientation estimation errors in each bin, and performed a multiple 452 

linear regression analysis to compute the partial correlation coefficient between pupil size or slope and 453 

behavioral variability, while controlling for interindividual differences in the mean. Our results indicate 454 

that pupil-linked arousal boosts behavioral performance, much like it improves neural precision. 455 

Specifically, we observed a reliable inverse correlation between pupil slope and behavioral variability 456 

prior to and during stimulus presentation (permutation tests, p < 0.05, FWER-corrected). The 457 

correlation coefficient between pupil size and behavioral variability during and immediately after 458 

stimulus presentation was also negative and significant (permutation tests, p < 0.05, FWER-corrected; 459 

Figure 5). In other words, orientation estimates were more precise on trials with stronger pupil dilation 460 

just before and during stimulus presentation, indicating a state of higher arousal. This shows that 461 

spontaneous fluctuations in arousal state manifest themselves not only at the neural level, but also in 462 

behavior.  463 

Assessing the relative magnitude of the effect of arousal on uncertainty 464 

Our findings suggest that arousal state modulates the precision of the cortical stimulus representation. 465 

However, it remains unclear how large the impact is of arousal on representational precision in cortex. 466 

The size of arousal’s impact cannot be taken directly from its relationship with decoded uncertainty 467 

(i.e., from the magnitude of the obtained correlation coefficient), as decoded uncertainty reflects not 468 
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only neural but also many non-neural sources of noise, including from the MRI scanner. Similarly, pupil 469 

size is not a direct read-out of arousal state, and likely also reflects many other physiological processes. 470 

For this reason, we instead relied on an indirect approach and compared arousal’s effect on 471 

uncertainty with that of stimulus orientation to acquire an understanding of their relative contribution 472 

in cortex. Behavioral accuracy and cortical activity are well known to vary across orientation stimuli, 473 

with poorer behavioral performance and reduced representational fidelity for oblique compared to 474 

cardinal orientations (Appelle, 1972; Furmanski and Engel, 2000; van Bergen et al., 2015). We also 475 

observed this oblique effect in our own data, with greater decoded uncertainty and larger behavioral 476 

variability for oblique compared to cardinal orientation stimuli (correlation between distance-to-477 

cardinal and decoded uncertainty or behavioral variability, respectively: ρ = 0.025, z = 2.95, p = 0.002, 478 

and r = 0.63, t(287) = 13.60, p < 0.001; Figure 6A; see also Geurts et al., 2022, Extended Data Figure 479 

2B). To assess the relative impact of pupil-linked arousal on representational imprecision, we 480 

compared the absolute effect sizes (|ρ|) between the two. Interestingly, we found that the impact of 481 

pupil-linked arousal on decoded uncertainty is of the same order of magnitude as that of stimulus 482 

orientation (|ρ| = 0.025 versus |ρ| = 0.023 for orientation and arousal, respectively, Figure 6B). This 483 

suggests that arousal state has a rather significant influence on representational fidelity in cortex – 484 

almost as large as that of a physical change in stimulus orientation.   485 
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DISCUSSION 486 

Do spontaneous fluctuations in arousal state affect the quality of stimulus information contained in 487 

visual cortical activity? Here, we addressed this question by measuring the degree of uncertainty in 488 

the cortical stimulus representation using a probabilistic decoding technique, while taking pupil size as 489 

an index of arousal state. We observed that both pupil-linked arousal and decoded sensory uncertainty 490 

fluctuate over trials. Moreover, we discovered that these trial-by-trial fluctuations in arousal state are 491 

linked to the uncertainty contained in visual cortical activity. Specifically, trials of low sensory 492 

uncertainty differed from high uncertainty trials in that the pupil rapidly dilated just prior to stimulus 493 

onset, followed by sustained levels of increased pupil size during stimulus presentation, when 494 

uncertainty was low. Because rapid pupil dilation is a hallmark of a change in arousal state, this 495 

suggests that arousal affects the degree of uncertainty in the cortical representation of the stimulus. 496 

Interestingly, we observed a similar relationship between pupil size and subjective confidence, a 497 

secondary measure of sensory uncertainty, and between the pupil’s signals and behavioral 498 

performance. A comparison between the effects of pupil-linked arousal and those of stimulus 499 

orientation suggested that arousal’s impact on representational imprecision was almost as large as 500 

that of a physical change in the stimulus. Taken together, these results suggest that arousal state has 501 

reasonably large impact on the fidelity of information processing in the human visual cortex, with clear 502 

consequences for behavior. 503 

A key distinguishing aspect of this study is that we measured the precision of the neural representation 504 

directly in cortex, using a probabilistic decoding technique that enabled us to quantify representational 505 

imprecision as the width of a probability distribution over possible stimuli. Previous studies using this 506 

technique have shown that this imprecision in the cortical stimulus representation varies from trial to 507 

trial, even when the stimulus is held constant (van Bergen et al., 2015; Geurts et al., 2022; Chetverikov 508 

and Jehee, 2023). Consistent with Bayesian theories of decision-making, these changes in imprecision 509 

have moreover been shown to affect the observer’s decision-making, with larger uncertainty resulting 510 
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in enhanced perceptual biases (van Bergen et al., 2015; van Bergen and Jehee, 2019), lower reported 511 

confidence (Geurts et al., 2022), and different perceptual choices (Walker et al., 2020). It remained 512 

unclear, however, what drives such stimulus-independent fluctuations in sensory cortical uncertainty. 513 

The present work builds on and extends this line of research, suggesting that arousal is one of the 514 

factors influencing the imprecision in neural representations. 515 

Contrary to previous studies investigating the effect of arousal on neural activity in humans (e.g. Keil 516 

et al., 2003; Warren et al., 2016; Gelbard-Sagiv et al., 2018), we did not explicitly manipulate arousal, 517 

but specifically focused on spontaneous fluctuations. That is, we were interested in what drives 518 

variability in the precision of neural representations in the absence of external, experimentally 519 

manipulated change. We used pupil size as an index of arousal, because of its well-established links to 520 

the neuromodulatory systems underlying arousal (Aston-Jones and Cohen, 2005; Murphy et al., 2014; 521 

Varazzani et al., 2015; Joshi et al., 2016). Interestingly, our findings are consistent with earlier work in 522 

which catecholamine (noradrenaline and dopamine) levels were manipulated pharmacologically and 523 

representational precision was measured across trials (Warren et al., 2016). Here we show that the 524 

relationship between arousal and representational precision similarly holds on a trial-by-trial basis and 525 

in the absence of explicit manipulations of arousal or noradrenaline levels.  526 

What are the neural mechanisms by which arousal could modulate the precision of the stimulus 527 

representation in the human visual cortex? Behavioral studies in humans have reported greater 528 

contrast sensitivity with an increase in arousal (Lee et al., 2014; Kim et al., 2017), possibly mediated by 529 

multiplicative effects on the underlying cortical response (Kim et al., 2017). Neurophysiological studies 530 

in mice and rabbits have shown that an increase in arousal results in enhanced, more selective and 531 

reliable responses to visual stimuli, and weaker noise correlations (Cano et al., 2006; Niell and Stryker, 532 

2010; Erisken et al., 2014; Reimer et al., 2014; Vinck et al., 2015) – mechanisms that could all lead to 533 

an increase in the amount of information contained in neural activity. Theoretical work has linked 534 

arousal to changes in neural response gain (Servan-Schreiber et al., 1990; Aston-Jones and Cohen, 535 



 

26 

 

2005), which could similarly improve the quality of the information encoded in neural activity and, as 536 

such, reduce sensory uncertainty (Seung and Sompolinsky, 1993; Ma et al., 2006). Indeed, one 537 

neurophysiological study in monkeys directly related spontaneous fluctuations in activity (as we relied 538 

on here) to changes in neural excitability or gain (Goris et al., 2014). It altogether seems plausible that 539 

one of these mechanisms, or a combination thereof, could mediate arousal-linked fluctuations in 540 

sensory uncertainty in the human visual cortex.  541 

It is important to realize that we do not intend to argue that arousal is the sole driver of spontaneous 542 

fluctuations in cortical information. For example, it is well known that attending to a visual feature or 543 

location improves its representation in cortex (Kamitani and Tong, 2005; Saproo and Serences, 2010; 544 

Jehee et al., 2011). Attention has also been shown to modulate pupil size (see Strauch et al., 2022 for 545 

a review). It is highly conceivable that also attention-based processes spontaneously wax and wane 546 

and affect the amount of information in cortex, much like we observed for arousal here. One way to 547 

distinguish between these processes could be to focus on the different neural systems that mediate 548 

their effects, such as the LC for arousal (Moruzzi and Magoun, 1949; Berridge and Waterhouse, 2003; 549 

Aston-Jones and Cohen, 2005; Sara and Bouret, 2012). However, the current study was not designed 550 

nor optimized for this research question. Nevertheless, a preliminary analysis showed hints of a link 551 

between LC activity and decoded uncertainty in our dataset, which further supports the notion that 552 

changes in arousal state underlie the observed uncertainty fluctuations. It will be interesting for future 553 

studies to further investigate and disentangle these and other cognitive processes that give rise to 554 

spontaneous fluctuations in neural information. 555 

Taken together, we showed that spontaneous, trial-by-trial fluctuations in arousal state, as indexed by 556 

pupil size, are linked to the quality of visual cortical stimulus representations, as well as reported levels 557 

of subjective confidence and behavioral performance. This suggests that arousal is one of the driving 558 
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factors of variability in neural responses and the precision with which sensory information is encoded 559 

in cortical activity. 560 
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FIGURE LEGENDS 693 

694 

Figure 1: Overview of the orientation estimation task. Participants were required to fixate the 695 

bullseye target in the center of the screen throughout each run. Each trial started with this bullseye 696 

briefly turning black, as a cue to stimulus onset. The visual stimulus was a counterphasing sinusoidal 697 

grating, presented in an annulus around fixation, and was presented for 1.5 s. After a 6 s-delay (fixation 698 

interval), a black bar appeared in the center of the screen, and participants were required to report 699 

their orientation estimate by rotating this bar. Next, they reported their level of confidence about this 700 

estimate by sliding a dot over the (circular) confidence scale. Both response intervals lasted for 4.5 s, 701 

and the bar or scale started fading after 3.5 s to indicating the approaching end of the response 702 

window. A 1.5-s intertrial interval separated the response window from the next stimulus. Participants 703 

completed 20 trials per run. 704 

 705 
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707 

Figure 2: Overview of behavioral, physiological, and neural measures and behavioral benchmarking. 708 

A) The imprecision in the cortical stimulus representation was quantified using a probabilistic decoding 709 

technique. This decoding algorithm computes a probability distribution over stimulus orientation from 710 

single-trial activity patterns. The width of the distribution was taken as a measure of the degree of 711 

uncertainty in the cortical stimulus representation. The observer’s perceptual uncertainty was 712 

quantified by the width of the distribution of behavioral responses across trials. Pupil size and the slope 713 

(the first temporal derivative) of the pupil signal were used to measure arousal over the course of each 714 

trial. Behavioral imprecision was measured as the variability in the observer’s orientation judgments 715 

across trials. B) Decoded uncertainty predicts behavioral variability on a trial-by-trial basis. Each 716 

observer’s trials were split into ten bins of increasing decoded uncertainty. Behavioral variability was 717 

computed as the squared circular standard deviation of behavioral response errors in each bin. The 718 

partial correlation coefficient between decoded uncertainty and behavioral variability (controlling for 719 

difference in intercept between participants) was computed and found to be significantly positive 720 

(t(287) = 2.30, p = 0.011, r = 0.13, 95% CI = [0.019, 0.25]). Thus, when the cortical stimulus 721 

representation was more uncertain, behavioral imprecision was larger, as well. Note that the data is 722 

centered around zero because this is a partial correlation plot so interindividual differences in the 723 



 

33 

 

mean have been removed. The fMRI results in (B) were also reported in Geurts et al. (2022), Extended 724 

Data Fig. 2. 725 
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728 

Figure 3: Control analyses for the relationship between decoded uncertainty and behavioral 729 

variability. Three parameters were varied in the analyses: 1) The number of uncertainty bins; that is, 730 

five, ten or fifteen bins per participant. 2) The statistical model; specifically, we modeled the strength 731 

(slope) of the effect as a fixed effect (multiple regression) or as a random effect (linear mixed-effects 732 

model). 3) The exclusion criteria; specifically, we either excluded the observer who gave rise to the 733 

extreme data point in the top-right corner, or excluded all trials on which the decoded level of 734 

uncertainty was unrealistically high (S.D. of the decoded distribution > 45 degrees). The reasoning 735 

behind the latter approach is that such very high values of decoded uncertainty (corresponding to a 736 

very wide or almost flat decoded distribution) likely reflect non-neural sources of noise related to, for 737 

example, the MRI scanner. We found that our results are fairly robust to these changes in analysis 738 

parameters. In fact, we even observed a stronger relationship between decoded uncertainty and 739 

behavioral variability when trials with unrealistically high decoded uncertainty were removed 740 

altogether. This shows that the observed positive correlation coefficient between decoded uncertainty 741 

and behavioral variability is not driven by extreme values, and strengthens our conclusion that 742 

decoded uncertainty reflects the precision of the underlying neural representation. Please note that 743 

this replicates previous findings (van Bergen et al., 2015; Chetverikov and Jehee, 2023).  744 
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Data points represent individual observers and colors indicate bin numbers (1-5, 1-10, or 1-15 745 

depending on the number of bins used). Dashed lines indicate the best (linear) fit, shaded area 746 

represents 95% confidence interval. For multiple regression, partial residuals are shown, which is why 747 

the data are centered around zero. 748 
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751 

Figure 4: Relationship between arousal state and the degree of uncertainty in the cortical stimulus 752 
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representation. A) Mean pupil size over time. The cue appeared at -0.5 s and lasted for 0.1 s, and the 753 

stimulus was on screen from 0 to 1.5 s (0 is when the stimulus appeared on the screen). B) Pupil size 754 

timeseries separated for high and low decoded uncertainty (left) or reported confidence (right). Trials 755 

were divided into three bins of increasing uncertainty (confidence); shown are the first and third bin. 756 

C) Trial-by-trial Spearman correlation coefficients between pupil size or slope (500 ms sliding window) 757 

and decoded uncertainty (left) or reported confidence (right). Inset in left panel shows correlation 758 

between decoded uncertainty and pupil slope for two sliding windows of different length (500 and 759 

1000 ms). A-C) Shaded areas represent the standard error of the mean (s.e.m.) across observers. Bars 760 

indicate significance (permutation tests, p < 0.05, FWER-corrected). D) Relationship between decoded 761 

uncertainty and pupil size during stimulus presentation. Pupil size was averaged over the stimulus 762 

presentation window to obtain a single value per trial. Left: Distribution of Spearman correlation 763 

coefficients for individual observers, and group average (shaded area indicates s.e.m.). Right: 764 

Relationship between pupil size and decoded uncertainty for an example observer. Decoded 765 

uncertainty and pupil size were ranked, trials were subsequently divided into ten bins based on 766 

decoded uncertainty, and the data was averaged within each bin. Error bars represent s.e.m. across 767 

trials.  768 
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 771 

Figure 5: Behavioral imprecision is linked to arousal state. The correlation between pupil size or slope 772 

and behavioral variability was calculated for each point in time, in a window from 1.5 s before stimulus 773 

onset until 1.5 s after stimulus offset. For each time point and participant, trials were divided into ten 774 

bins of increasing pupil size (slope), and the variance in behavioral orientation judgments was 775 

computed per bin. The correlation coefficient between pupil measures and behavioral variability was 776 

computed while controlling for differences in mean (intercept), and is plotted over time. We observed 777 

that increased pupil-linked arousal – as indicated by both pupil slope and size – results in more precise 778 

(less variable) behavioral responses. Shaded areas represent the standard error of the partial 779 

correlation coefficients. Bars indicate significance (permutation tests, p < 0.05, FWER-corrected). 780 

Dashed lines indicate on- and offsets of the cue and stimulus. 781 
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 784 

Figure 6: Effect sizes of arousal state and stimulus orientation are comparable. A) Decoded 785 

uncertainty is greater for oblique compared to cardinal orientation stimuli (correlation between 786 

distance-to-cardinal and decoded uncertainty: ρ = 0.025, z = 2.95, p = 0.002). This finding is paralleled 787 

by imprecision in the observer’s behavior (correlation between distance-to-cardinal and behavioral 788 

variability: r = 0.63, t(287) = 13.60, p < 0.001). B) The strength of uncertainty’s relationship with 789 

stimulus orientation, |ρ| = 0.025, is comparable to that with pupil-linked arousal, |ρ| = 0.023. Pupil 790 

size was averaged over the stimulus presentation window to obtain a single value per trial, and then 791 

correlated with trial-by-trial decoded uncertainty. Panel (A) was also reported in Geurts et al. (2022), 792 

Extended Data Fig. 2, and is reproduced here for convenience. 793 


