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Harmonic regression for phenology modeling

Let h be the number of harmonics,

ϵi
i .i .d .∼ N(0, σ2), i = 1, ..., n

yi |ti , β ∼ β0 + β1ti +
h∑

l=1

β2lsin(
2πti l

365
) + β2l+1cos(

2πti l

365
) + ϵi

And define X as the corresponding design matrix.
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Harmonic regression is too rigid for phenological modeling

1 Harmonic regression assumes the same phenology each year

2 But each aspect of phenology, such as the green-up or
senescence, naturally change year to year

3 The phenology model should incorporate that flexibility

4 A repeated measurement model can do just that
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Towards a Bayesian repeated measurement model

1 Repeated measurement models can provide flexibility to learn
natural changes in phenology each year

2 Common repeated measurement models include mixed effects
models

3 For example, a mixed effects model could learn a random
effect for the harmonics each year.

4 This would enable scientists to infer, for example, a separate
green-up time each year.
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Towards a Bayesian repeated measurement model con’t

1 The frequentist treatment of mixed effects models considers
the random effects as nuisance parameters

2 But in phenology modeling, we are interested in plotting the
mean predictive function given the data, as well as the series
of random effects through time.

3 We can use a Bayesian approach instead, capturing the
posterior distribution of the yearly random effects, in order to
understand how phenology naturally changes each year.
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A Bayesian repeated measurement model

Let J be the number of years in the study, d the number of random
effects, and n the number of observations,

ϵi
i .i .d .∼ N(0, σ2), i = 1, ..., n

y ∼ Xβ + Zγ + ϵ

γ ∼ N(0Jd×1,T )

Where Z ∈ Rn×Jd is the design matrix for the random effects, and
T is diagonal with parameters τl=1,...,d , each having J repeated
entries,

T = diag(τ1, ..., τ1(totalJ), ..., τd , ..., τd)
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Approach for inference and computation

1 We are tasked with modeling trillions of pixels, so
computation needs to be fast

2 We also wish to take a Bayesian approach to make an
inference about the expectation of the random effects given
the data

3 Expectation Maximization is suitable for this setting
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Posterior inference of the random effects

1 During EM, the posterior expectation of γ is under the
distribution p(γ|y , β(t)).

2 Since this distribution conditions on y and β(t), we can think
of the likelihood as being a function of just the parameters γ,
given the working response (y −Xβ(t)). This likelihood is still
normally distributed with respect to the working response,
leading to an analytical posterior expectation calculation for γ.

3 Furthermore, we can use (y −E(Zγ)) as the working response
when performing the M-step for β.

4 The remaining M-step calculations for σ2 and T are
analytically tractable.
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Random effects on intercept and first harmonics fits well
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The random effects provide insight into growth and
drought patterns
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Next steps

1 Include uncertainty of posterior estimates

2 Use labeled change point time series to cross validate model
flexibility
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