Predicting Town-level Cases of Lyme Disease in Southern Maine: Can we do it, and What Does it Tell Us?

Tempest D. McCabe*, John R. Foster*
*Boston University

Maine has some of the highest rates of Lyme in the United States.

Problem: Most Lyme exposure happens locally, but our understanding of Lyme is at the statewide or county scale.

Are there important spatial differences in Lyme at the town scale?
(Yes)

Could we use this spatial information for targeted prevention?
(Yes)

Do we have enough information for town-level forecast of Lyme?
(Maybe)

Null Model
\[Y_i \sim \text{binom}(X_i, p_{\text{detected}}) \]
\[X_i \sim \text{binom}(\text{Population}_{i}, p_{\text{infection}}) \]
\[p_{\text{infection}} \sim \text{beta}(0, 1) \]
\[p_{\text{detected}} \sim \text{beta}(a, b) \]

Temperature Model
\[Y_i \sim \text{binom}(X_i, p_{\text{detected}}) \]
\[X_i \sim \text{binom}(\text{Population}_{i}, p_{\text{infection}}) \]
\[\text{temp} \sim \text{norm}(\text{temp}, \text{error}) \]
\[\text{aqua} \sim \text{norm}(\text{aqua}, \text{error}) \]
\[\text{temp} \sim \text{unif}(\text{max_temp}, \text{min_temp}) \]
\[\log(\text{p}_{\text{detected}}) \sim \beta_1 + \beta_2 \times \text{temp} + \text{error} \]
\[X_i \sim \text{binom}(\text{Population}_{i}, p_{\text{infection}}) \]
\[\beta \sim \text{mnorm}(b, V) \]
\[y \sim \text{gamma}(ag, bg) \]
\[\text{error} \sim \text{gamma}(ag, bg) \]
\[p_{\text{detected}} \sim \text{beta}(a, b) \]

Temperature had significant effect on Lyme, that differs by town

- Raymond Model narrowly outperforms Null for half of towns
- Much more uncertainty around censored data
- Null model outperformed Temperature for majority of towns when projected into the future
- Null model captured 93% validation points within 95% confidence interval.

- Temperature captured 84% of validation points within 95% confidence interval.

Both models were able to predict held-out data most of the time, but temperature is less suited to yearly-forecasts.

Future Directions

- Contact Us!
 @TempestMcCabe
 @fosfate_

Acknowledgments

This work was done in collaboration with NASA DEVELOP’s Summer 2019 Boston – MA Health and Air Quality team. Thanks to participants: Celeste Gambino, Britnay Beaudry, Madison Berman, Monica Colmenares, and node lead Zach Bengtssson. Dr. Susan Elias, and Chuck Lubelczyk from MMCRI Vector-Borne Disease Laboratory advised model development. Dr. Michael Dietze assisted in model fitting.