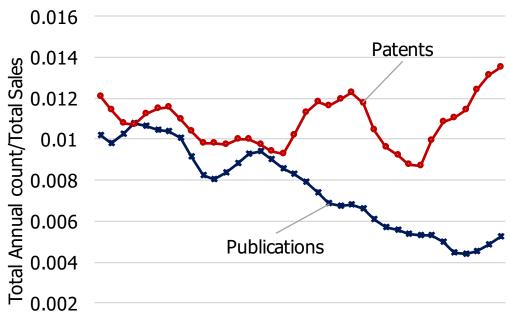

Scientific Voids and the Rise of American Corporate Research, 1900-1940

Ashish Arora^a, Sharon Belenzon^a, Konstantin Kosenko^b, Jungkyu Suh^c, and Yishay Yafeh^d

- a. Fuqua School of Business, Duke University, and NBER
- b. Bank of Israel
- c. Fugua School of Business, Duke University
- d. Jerusalem School of Business Administration, Hebrew University of Jerusalem, CEPR and ECGI

More Science for Less Growth



Less R in corporate R&D: corporate labs are in decline

Bell Labs Holmdel Complex, 1963

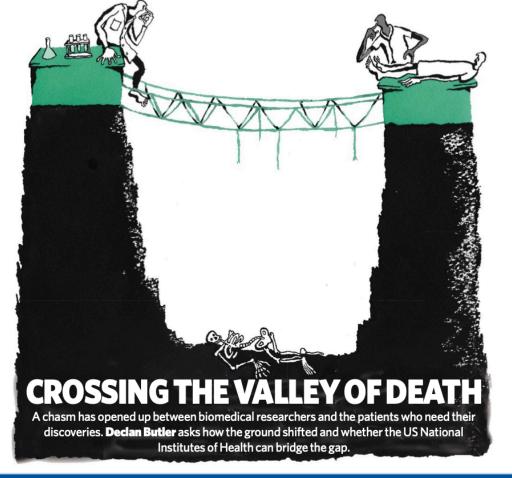
Bell Labs Holmdel Complex, 2010s

1980 1985 1990 1995 2000 2005 2010 2015 Arora Belenzon Sheer (2020)

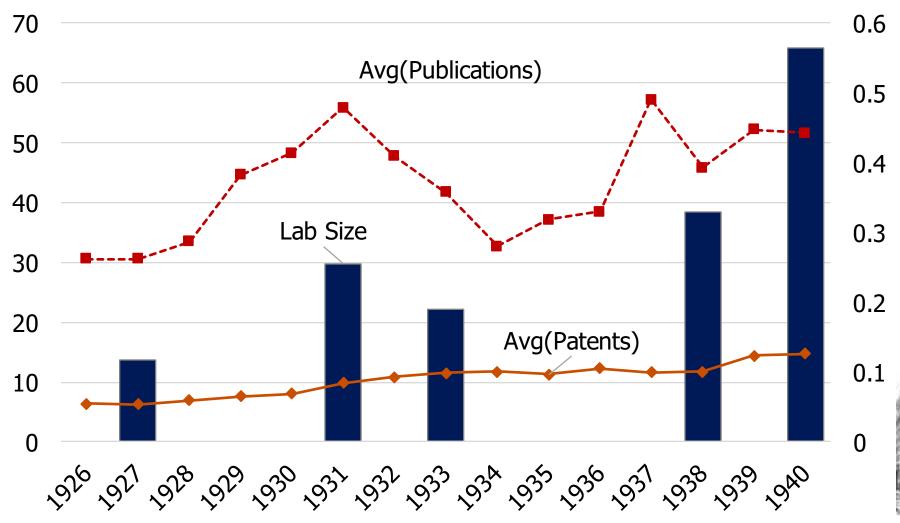
The new division of innovative labor and gaps in the innovation ecosystem

Large Corporate Labs

Venture Capital + Startups + Universities

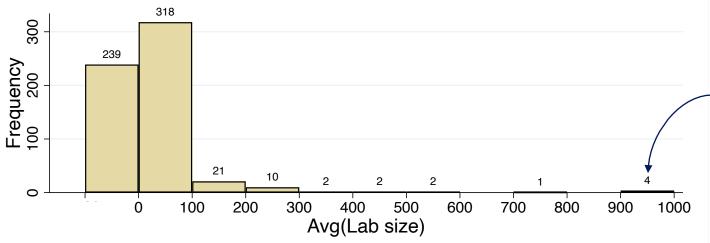


NATURE|Vol 453|12 June 2008

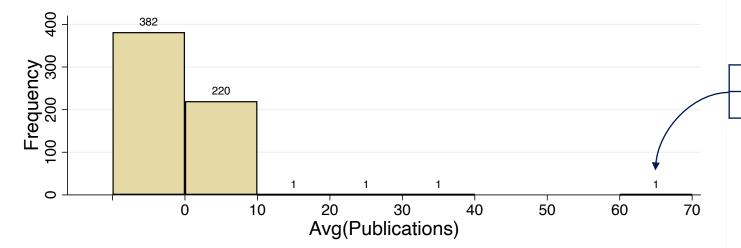

This paper:

Is the emergence of corporate science a response to a **scientific void** in the early 20C American innovation ecosystem?

- Inform current discussion on the division of innovative labor between companies and universities
- Contribute to our understanding of the nature of substitution between corporate and university research [even today, 20% of research is performed by industry]
- Develop firm level data on R&D activity for early 20th century, accounting for ownership changes



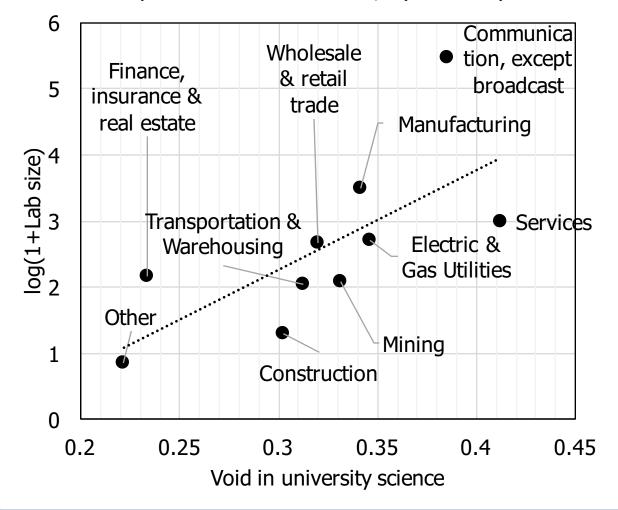
Rise of corporate research, 1926-1940



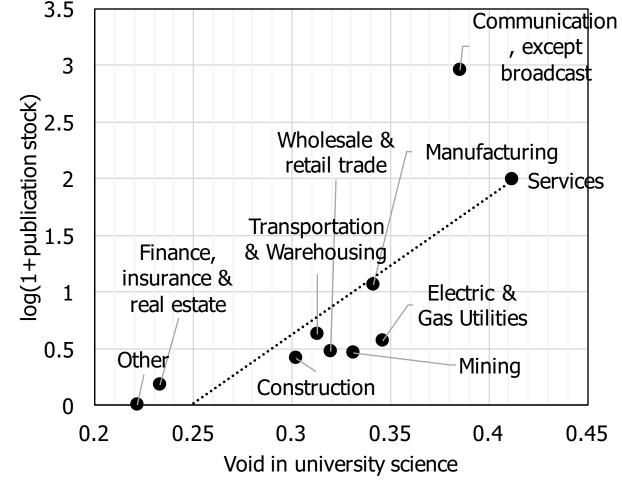
Distribution of Labs and Publications by Firms

Company Name	Avg(Personnel)
E.I. duPont de Nemours & Co.	1357
General Electric Co.	1083
American Telephone & Telegraph	
Co.	1500
Western Electric Company, Inc	1139

Company Name	Avg(Publications)
General Electric Co.	61


Scientific voids in the United States

- Areas of American strength: mechanical engineering, thermodynamics
- Areas of American weakness: organic chemistry, quantum mechanics



Firms respond to voids

Corporate Labs and Voids, by Industry

Corporate Publications and Voids, by Industry

Main findings

- Firms responded to a void in scientific knowledge by investing in research
- Response was stronger for larger, diversified, and inventive firms
- Firms responding to voids were valued more on the stock market

Data

Firm Panel

- Kandel et al. (SMJ 2019) + Kogan et al. (QJE 2017)+Graham et al. (JFE 2015)
- Extended and matched to labs, patents, papers
- Scientific Publications: Microsoft Academic Graph, Web of Science
 - 4,136 Scientific publications matched to firm panel and universities based on author affiliations
- American Industrial Research Laboratories (NRC Survey)
 - R&D personnel data (1927, 1931, 1931, 1938, 1940)
- **USPTO Patents**
 - 94,287 Patents matched to firm panel based on firm name and assignee name

PRODUCTION OF SINGLE SIDEBAND FOR TRANS-ATLANTIC RADIO TELEPHONY*

By

R. A. Heising

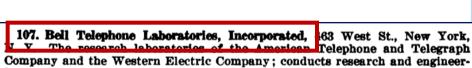
(WESTERN ELECTRIC COMPANY, NEW YORK)

On January 5, 1923 the first public demonstration was made

transmis

Western Electric

...Proceedings of the Institute of Radio Engineers (Vol 13, Issue 3)


UNITED STATES PATENT OFFICE

1.966.509 INSULATED CONDUCTOR

Alger Marcus Lynn, Oak Park, Ill., assignor to Western Electric Company, Incorporated, New York, N. Y., a corporation of New York

Application November 21, 1928, Serial No. 320,794

1 Claim. (Cl. 173-264)

ing activities for the Bell Telephone System. Research staff: F. B. Jewett, president; P. Norton, assistant to president; E. B. Craft, executive vice-president; E. P. Clifford, vice-president; heads of functional activities: H. D. Arnold, A. F. Dixon, S. P. Grace, R. L. Jones, J. J. Lyng, and J. G. Roberts; who have under their direction approximately 2000 research physicists, chemists, and engineers, and others immediately concerned with technical activities.

Research work: Full time of 2000 devoted to original investigation and development of new forms and improvement of existing forms of apparatus and equipment for electrical communication. The research problems are primarily physical and chemical, but also include many other fields of science. Problems in the development of transmission involve carrier current and

Measuring Scientific Voids

Europe: N*81%*19%=.15N

US: 0.5N*81%*19%=.075N

 \rightarrow Void= .67

C07C (19%)

Acyclic/Carbocyclic Compounds

1.04 Chemical Sciences (81%)

European papers: N

American papers: 0.5N

Marx & Fuegi (1947-57)

NPL Citations from Patents to Science

Web of Science (1900-1920)

Author name classification (Nameprism API)

ABSKY (1926-1940) Automated & manual matching

Minerva – Handbuch der Gelehrten Welt

Summary Statistics of Main Variables

	Obs	Mean	Std Dev	Min	Max
Lab size	2995	34.00	183.85	0	4669
Patents per year	9090	10.37	48.56	0	838
Publications er year	9090	0.37	3.28	0	88
Patent stock	9090	56.26	280.16	0	4441.06
Publication stock	9090	2.16	19.53	0	440.33
Total assets (\$1M)	5944	1056.59	2840.68	1.42	60114.66
Market capitalization (\$1M)	4646	967.49	2674.45	0.69	37352.08

Mean comparison test between High vs Low scientific voids

			est ow Void)	High Void	Low Void
	Obs	Difference	Std Error	Mean	Mean
Lab size	2995	8.73	7.20	40.30	31.57
Patents per year	9090	4.69	1.10	13.35	8.66
Publications per year	9090	0.46	0.10	0.62	0.16
Market capitalization (\$1M)	4646	101.63	80.71	1044.75	943.12
Total assets (\$1M)	5944	69.03	77.49	1125.98	1056.94

Firms grow their labs and publish more where American universities are weak

	(3)	(4)	(5)	(6)
Dependent variable:	In(1+Publication stock)	In(1+Lab size)	Publications (NegBin)	Lab size (NegBin)
Void in university science	0.23	0.72	2.44	3.20
	(80.0)	(0.30)	(0.75)	(0.81)
In(Assets)	0.19	0.43	0.68	0.50
	(0.01)	(0.03)	(0.05)	(0.04)
Average of dependent variable	0.32	1.268	0.40	36.26
R ²	0.24	0.25		
Number of firms	561	554	561	554
Number of observations	8415	2770	8415	2770

Note: All specifications with year and industry fixed effects

1SD increase in voids associated with .04 more publications (14% of sample mean)

Results are driven by large and diversified firms

	(1)	(2)	(3)	(4)	(5)	(6)	
Dependent variable:		In(1+Publication stock)					
	Assets below median	Assets above median	Standalone	Group- affiliated	Specialized	Diversified	
Void in university science	0.17	1.68	0.05	1.73	0.31	0.89	
	(0.04)	(0.25)	(0.16)	(0.29)	(0.19)	(0.24)	
In(Assets)	-0.01	0.26	0.18	0.30	0.24	0.25	
	(0.01)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	
Average of dependent variable	0.14	0.49	0.40	0.51	0.40	0.49	
R ²	0.28	0.32	0.22	0.35	0.25	0.30	
Number of firms	132	251	225	175	137	132	
Number of observations	3585	3765	2184	1411	2010	1965	

Note: All specifications with year and industry fixed effects

Results driven by technologically "advanced" firms

	(1)	(2)	(3)	(4)			
Dependent variable:	In(1+Publication stock)						
	Avg(Patent value) below median	Avg(Patent value) above median	Avg(Patent cites) below median	Avg(Patent cites) above median			
Void in university science	0.41	2.80	0.062	0.44			
	(0.16)	(0.50)	(0.14)	(0.25)			
In(Assets)	0.17	0.02	0.17	0.27			
	(0.03)	(0.03)	(0.02)	(0.02)			
In(MktCap)	0.12	0.45					
	(0.02)	(0.05)					
Average of dependent variable	0.32	0.63	0.33	0.56			
R ²	0.53	0.59	0.29	0.41			
Number of firms	293	224	526	465			
Number of observations	1639	1185	2487	1963			

Note: All specifications with year and industry fixed effects

Responding firms exhibit higher market value

		(4)	
In(Stock market value)			
OLS	2nd Stage	2nd Stage	
<u>Interaction</u>	IV	IV	
-0.103	1.053	1.284	
(0.140)	(0.471)	(0.399)	
0.772			
(0.426)			
-0.049			
(0.225)			
		2.823	
		(0.823)	
0.733	0.684	0.633	
(0.018)	(0.086)	(0.053)	
0.083	-0.051	-0.045	
(0.011)	(0.068)	(0.037)	
0.101		-0.049	
(0.012)		(0.056)	
0.708	0.468	0.387	
4408	4510	4443	
	OLS Interaction -0.103 (0.140) 0.772 (0.426) -0.049 (0.225) 0.733 (0.018) 0.083 (0.011) 0.101 (0.012) 0.708	OLS Interaction IV -0.103	

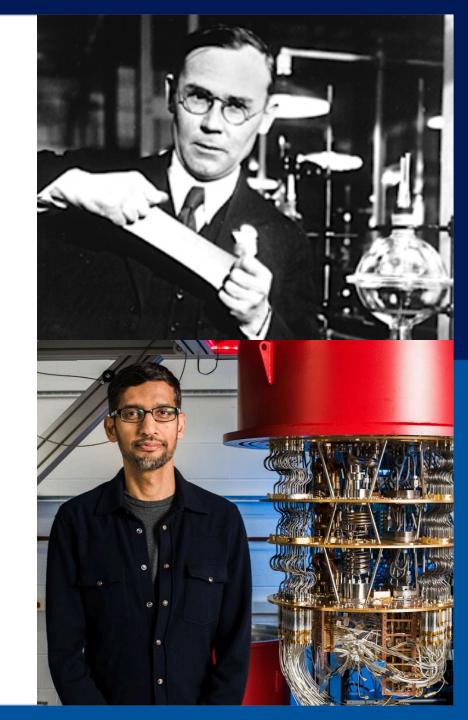
Instrument:

Share of European to total scientific publications for focal firm [Void], 1900-1920

1SD more publications associated with 40% greater stock market value, relative to sample mean

Responding firms produce "homerun" inventions

	Top 5% Value (KPSS)		Top 5% Cites		Top 5% Novelty (Fleming)	
	(1)	(2)	(3)	(4)	(5)	(6)
	OLS	2nd Stage IV	OLS	2nd Stage IV	OLS	2nd Stage IV
In(1+Publication stock)	1.36	2.34	1.81	1.71	4.92	5.09
	(0.21)	(0.68)	(0.17)	(0.57)	(0.48)	(1.59)
Void in university science, current	-0.46	0.51	-0.37	-0.32	0.92	1.73
	(0.42)	(0.77)	(0.36)	(0.65)	(0.98)	(1.78)
In(Assets)	0.37	0.29	0.09	0.10	0.32	0.32
	(0.08)	(0.08)	(0.03)	(0.06)	(0.09)	(0.17)
In(1+Patent stock)	0.28	0.23	0.45	0.48	1.29	1.33
	(0.03)	(0.05)	(0.02)	(0.04)	(0.06)	(0.11)
ln(1+Avg(Lab size))	0.12	-0.01	0.05	0.07	0.19	0.18
	(0.02)	(0.09)	(0.02)	(0.08)	(0.05)	(0.21)
R ²	0.14	0.12	0.39	0.39	0.37	0.38
Number of Observations	8891	8430	8891	8430	8891	8430


1SD more publications associated with 4X more "home-run" patents measured by excess stock market returns (KPSS, QJE 2017) relative to sample mean

Conclusion

The emergence of corporate science was a response to a scientific void in the early 20C American innovation ecosystem

- This suggests that the rise of American universities was partially responsible for decline in corporate research
- However, university research is not a perfect substitute for corporate research

Thank You

Measuring Scientific Voids

- Firm i patents in IPC j (1926-1940)
- Patents in IPC j cite articles in field k (1947-1957)
- Scientists in Europe and America publish in field k (1900-1920)
- Void for firm is share of European Science:

$$Void_{i} \coloneqq \frac{\sum_{j} Europe_{ij}}{\sum_{j} Europe_{ij} + \sum_{j} USA_{ij}}$$

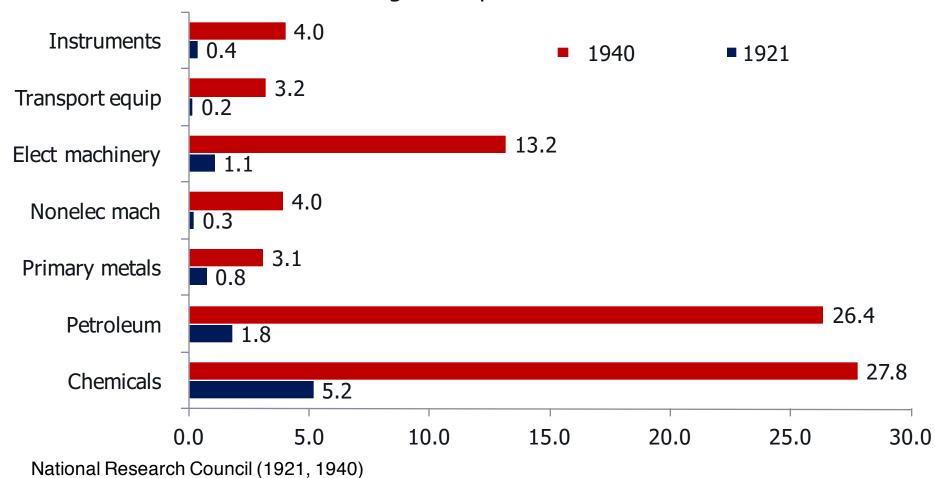
Crosswalk between firm and 299 IPCs:

$$Europe_{ij} \coloneqq \frac{Patents_{ij}}{Patent_i} \times \sum_{k} Europe_{jk}$$

Crosswalk between IPC and 35 OECD Scientific Subfields:

$$Europe_{jk} \coloneqq \frac{Patents_{jk}}{Patents_{j}} \times European \ Publications_{k}$$

Scientific voids in the United States


- Areas of American strength: mechanical engineering, thermodynamics
- Areas of American weakness: organic chemistry, quantum mechanics

American corporate response to scientific voids was heterogeneous

Scientists and Engineers in Industrial Research Labs in U.S. Manufacturing Firms per thousand

