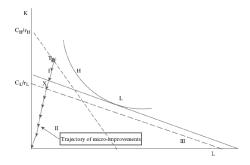
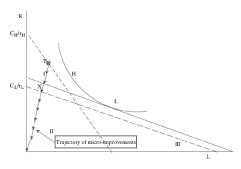
Innovation, localized knowledge spillovers, and the British Industrial Revolution, 1700–1850

Ugo Gragnolati ¹ Alessandro Nuvolari ² July 27, 2018


¹Centre d'Économie de la Sorbonne, Paris.

²Sant'Anna School of Advanced Studies, Pisa.

Introduction


Spatially localized efficiency gains

Spatially localized efficiency gains

Allen (2009), Figure 6.4.

Spatially localized efficiency gains

Newcomen Cornish--Best 40 - Cornish--average 35 30 Nuvolari (2004) 25 20 15 10 1727 1752 1777 1802 1827 1852

Allen (2009), Figure 6.4.

Allen (2009), Figure 8.

Knowledge Access Institutions (KAIs)

Knowledge Access Institutions (KAIs)

Table 9.6	Publishers and members of societies							
Sector	Publishers only	% of sector total	Members of societies only	% of sector total	Publishers and members of societies	% of sector total	Sector total	
Textiles	7.5	4	6.0	3	3.0	2	193.0	
Ships	6.5	24	2.0	7	11.0	41	27.0	
Road & rail & can	11.0	12	29.5	33	23.0	26	89.5	
Other eng	25.0	17	31.0	21	55.0	37	148.0	
Med & chem	4.0	14	3.5	12	13.5	46	29.5	
Instruments	13.0	14	13.5	15	40.5	45	90.5	
Iron & met	6.5	13	9.0	18	6.5	13	51.0	
Mining	4.5	18	3.0	12	8.0	31	25.5	
Agr & farm	6.5	31	1.5	7	3.5	17	21.0	
Construction	8.0	19	2.5	6	18.0	43	42.0	
Print & photo	3.0	15	2.5	13	4.0	21	19.5	
Others	1.5	7	1.0	4	5.0	22	22.5	
Category total	97.0	13	105.0	14	191.0	25	759.0	

Meisenzahl & Mokyr (2010): The 759 key inventors of the Industrial Revolution are argued to be crucially connected via scientific societies and publication activities enhancing the **dissemination** of "useful knowledge".

Mokyr (2009): Codified and tacit knowledge

"Mokyr's own view of the matter seems to be that tacit knowledge was **quickly incorporated** into the canon of encoded and stored knowledge thanks to the Industrial Enlightenment and as a result the all-important data on which technological progress was predicated could easily move across boundaries and national frontiers".

- Peter Jones (2008). *Industrial Enlightenment. Science, technology, and culture in Birmingham and the West Midlands, 1760–1820.*

Our proposal

Our proposal

County-level patent data with quality indicator

(Nuvolari and Tartari, 2011)

+

Discrete choice model with localized externalities

(Bottazzi and Secchi 2007, Bottazzi and Gragnolati, 2015)

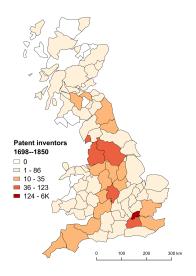
 $=\mbox{Insights}$ on the nature of innovation during the IR

Data and descriptive statistics

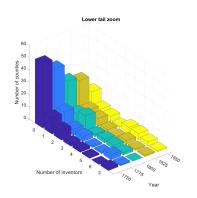
 The localization of inventive activities is identified by the address of the inventor/patentee.

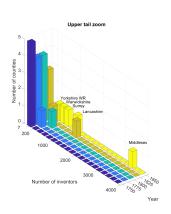
- The localization of inventive activities is identified by the address of the inventor/patentee.
- There is innovation also outside the patent system (MacLeod, 1988; Nuvolari, 2004; Moser 2005).

- The localization of inventive activities is identified by the address of the inventor/patentee.
- There is innovation also outside the patent system (MacLeod, 1988; Nuvolari, 2004; Moser 2005).
- Non patented inventions are more likely to be localized (Moser, 2011; Nuvolari, 2004).

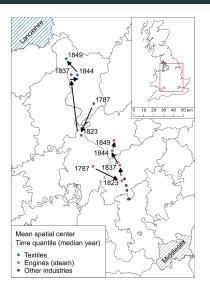

Sources

Sources


VARIABLE BY COUNTY	YEARS AVAILABLE	SOURCE		
Patents and/or inventors	1698–1850	[Nuvolari and Tartari(2011)]		
Population	1698-1850	[HCPP(1831), HCPP(1851), Kyd(1952), Wrigley(2007)]		
Urbanization rate	1698-1850	[Bairoch et al.(1988)Bairoch, Batou, and Chevre]		
Core KAIs	1698-1850	[Dowey(2017)]		
High-quality inventors	1698-1850	Own elaboration		
Coal output	1698-1850	[Nuvolari and Tartari(2011)]		
Distance from London (km)	Fixed	Own elaboration		
Employment by industry	1841; 1851	[CAMPOP(2009)]		
Coverage: The analysis regar	ds 13.630 inventors, a	mounting to 90% of all patents filed in England and Wale		


Coverage: The analysis regards 13,630 inventors, amounting to 90% of all patents filed in England and Wales over the span 1617–1850. Inventions are classified in 22 industries following Nuvolari and Tartari (2011). Spatial units consist of 85 historic counties covering the whole of Great Britain.

Inventors by county, 1698-1850

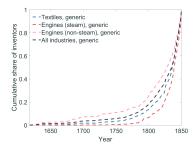


Evolution of spatial distributions - Aggregate

Evolution of spatial distributions – Industry level

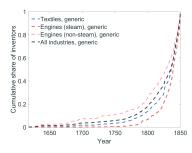
Woodcroft Reference Index (WRI)

Woodcroft Reference Index (WRI)

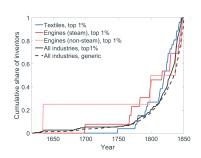

5	REFERENCE INDEX OF PATENTS OF INVENTION.				
Progressive Number.	REFERENCE.				
e10 {	Rolls Chapel Reports, 6th Report, page 136.				
	Rolls Chapel.				
911 912	No Specification: - Letters Patent printed.				
913	Petty Bag.				
	Repertory of Arts, vol. 1, page 217.				
- 1	Mechanics Magazine, vol. 1, page 4.				
- 1	Practical Mechanics' Journal, vol. 1, page 286. Register of Arts and Sciences, vol. 4, pages 24 and 346.				
- 1	Engineers' and Mechanics' Encyclopedia, vol. 2, page 725.				
- 1	Webster's Reports, vol. 1, page 31 (note p.), page 56 (note), and pages 230, 282, and 285.				
	Webster's Reports, vol. 1, page 31 (note p.), page 30 (note), and pages 230, 282, and 283. Webster's Patent Law, page 46 (also page 127 cases 30, 31, and 32); and Supplement				
	pages 2, 18, and 20.				
	pages 2, 18, and 20. Webster's Letters Patent, pages 6, 17, and 20.				
	Blackstone's Reports, vol. 2, page 463.				
	Carpmael's Reports on Patent Cases, vol. 1, pages 117, 155, and 156.				
913	Davies on Patents, pages 155, 162, and 221.				
	Collier's Law of Patents, pages 71, 75, 83, 90, 94, 100, 128, 139, and 181.				
	Parliamentary Report, 1829 (Patent Lew), pages 187, 189, and 190.				
	Vesey, junr.'s, Reports, vol. 3, page 140.				
	Vesey, junr. 8, Reports, vol. 3, page 140.				
	Holroyd on Patents, pages 35, 48, and 55. Durnford and East's Term Reports, vol. 8, page 95.				
- 1	Patentees' Manual, page 8.				
	Billing on Patents, pages 20, 22, 23, 26, 27, 28, 29, 31, 32, 48, 82, 89, 90, and 145.				
1	Rolls Chapel Reports, 6th Report, page 160.				
1	Extended by Act of Parliament for 25 years. (See No. 913*.)				
i.	Extended by Act of Parlament for 25 years. (See 150, 570 1)				
918*	Rolls Chapel. Act of Parliament for extending No. 913 for 25 years.				
610.	Rolls Chapel Reports, 6th Report, page 136.				
914	Rolls Chapel.				
	Kotts Chapet.				

Index entry for Watt's separate condenser.

Each patent is associated to a WRI, which we **normalize** by time-period average. More about Woodcroft and patents

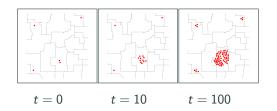

Importance of patent quality and industry

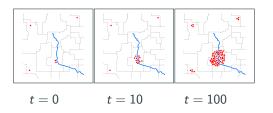
Importance of patent quality and industry

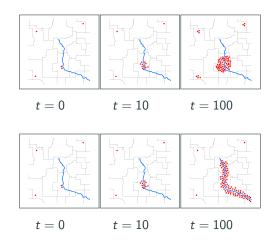


Generic patents.

Importance of patent quality and industry




Generic patents.



High quality patents.

Model and estimation

N agents are spread across L locations according to the occupancy vector $\mathbf{n} = (n_1, \dots, n_L)$.

N agents are spread across L locations according to the occupancy vector $\mathbf{n} = (n_1, \dots, n_L)$. Location are characterized by the generic attractiveness $\mathbf{c} = (c_1, \dots, c_L)$.

N agents are spread across L locations according to the occupancy vector $\mathbf{n} = (n_1, \dots, n_L)$. Location are characterized by the generic attractiveness $\mathbf{c} = (c_1, \dots, c_L)$.

An agent drawn at random retires from location m, while a new agent enters the economy.

N agents are spread across L locations according to the occupancy vector $\mathbf{n} = (n_1, \dots, n_L)$. Location are characterized by the generic attractiveness $\mathbf{c} = (c_1, \dots, c_L)$.

An agent drawn at random retires from location m, while a new agent enters the economy. The new agent selects location I with probability

$$p_l = \frac{c_l}{\sum_{j=1}^L c_j} \ . \tag{1}$$

Linear externalities

Linear externalities

The attractiveness c_l of a location is composed of two terms: one captures the **intrinsic features** of the location and another establishes an **interaction** among agents.

Linear externalities

The attractiveness c_l of a location is composed of two terms: one captures the **intrinsic features** of the location and another establishes an **interaction** among agents. Assuming a linear shape for the latter, one has

$$c_{I} = a_{I} + bn_{I}, \quad a_{I} > 0 \ \forall I, b \geq 0.$$
 (2)

Linear externalities

The attractiveness c_l of a location is composed of two terms: one captures the **intrinsic features** of the location and another establishes an **interaction** among agents. Assuming a linear shape for the latter, one has

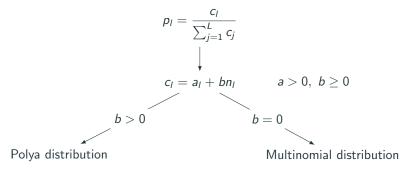
$$c_{I} = a_{I} + bn_{I}, \quad a_{I} > 0 \ \forall I, b \geq 0.$$
 (2)

If b > 0, we refer to the effect of bn_l as **localized externalities**.

The system converges to a different long-run distribution $\pi(\mathbf{n}; \mathbf{a}, b)$ depending on the value of b.

The system converges to a different long-run distribution $\pi(\mathbf{n}; \mathbf{a}, b)$ depending on the value of b.

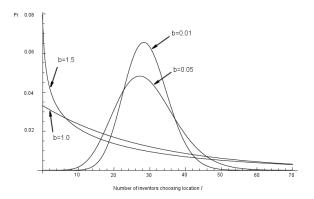
$$p_l = \frac{c_l}{\sum_{j=1}^L c_j}$$


The system converges to a different long-run distribution $\pi(\mathbf{n}; \mathbf{a}, b)$ depending on the value of b.

$$p_{l} = \frac{c_{l}}{\sum_{j=1}^{L} c_{j}}$$

$$\downarrow$$

$$c_{l} = a_{l} + bn_{l} \qquad a > 0, b \ge 0$$


The system converges to a different long-run distribution $\pi(\mathbf{n}; \mathbf{a}, b)$ depending on the value of b.

 $\pi(\mathbf{n}; \mathbf{a}, b) = \frac{N!\Gamma(A/b)}{\Gamma(A/b+N)} \prod_{l=1}^{L} \frac{1}{n_{l}!} \frac{\Gamma(a_{l}/b+n_{l})}{\Gamma(a_{l}/b)}$

 $\pi(\mathbf{n}; \mathbf{a}, b = 0) = N! \prod_{l=1}^{L} \frac{1}{n_{l}!} \left(\frac{a_{l}}{A}\right)^{n_{l}}$

Alternative scenarios

Define $\mathbf{x}_l = (x_l^1, \dots, x_l^H)$ variables that describe the intrinsic attractiveness of locations, so that $a_l = g_l(\boldsymbol{\beta}, \mathbf{x}_l)$ or $\frac{a_l}{b} = g_l(\boldsymbol{\beta}, \mathbf{x}_l)$.

Define $\mathbf{x}_l = (x_l^1, \dots, x_l^H)$ variables that describe the intrinsic attractiveness of locations, so that $a_l = g_l(\boldsymbol{\beta}, \mathbf{x}_l)$ or $\frac{a_l}{b} = g_l(\boldsymbol{\beta}, \mathbf{x}_l)$.

The unknown parameters β can then be estimated by **maximum** likelihood, thus obtaining $\hat{g}_l(\hat{\beta}, \mathbf{x}_l)$.

Define $\mathbf{x}_l = (x_l^1, \dots, x_l^H)$ variables that describe the intrinsic attractiveness of locations, so that $a_l = g_l(\boldsymbol{\beta}, \mathbf{x}_l)$ or $\frac{a_l}{b} = g_l(\boldsymbol{\beta}, \mathbf{x}_l)$.

The unknown parameters β can then be estimated by **maximum** likelihood, thus obtaining $\hat{g}_l(\hat{\beta}, \mathbf{x}_l)$.

Define $\mathbf{x}_l = (x_l^1, \dots, x_l^H)$ variables that describe the intrinsic attractiveness of locations, so that $a_l = g_l(\boldsymbol{\beta}, \mathbf{x}_l)$ or $\frac{a_l}{b} = g_l(\boldsymbol{\beta}, \mathbf{x}_l)$.

The unknown parameters β can then be estimated by **maximum** likelihood, thus obtaining $\hat{g}_l(\hat{\beta}, \mathbf{x}_l)$.

$$p_I = \frac{c_I}{\sum_j^L c_j}$$

Define $\mathbf{x}_l = (x_l^1, \dots, x_l^H)$ variables that describe the intrinsic attractiveness of locations, so that $a_l = g_l(\boldsymbol{\beta}, \mathbf{x}_l)$ or $\frac{a_l}{b} = g_l(\boldsymbol{\beta}, \mathbf{x}_l)$.

The unknown parameters β can then be estimated by **maximum** likelihood, thus obtaining $\hat{g}_l(\hat{\beta}, \mathbf{x}_l)$.

$$p_I = \frac{c_I}{\sum_j^L c_j} = \frac{a_I + bn_I}{\sum_j^L a_j + bn_j}$$

Define $\mathbf{x}_l = (x_l^1, \dots, x_l^H)$ variables that describe the intrinsic attractiveness of locations, so that $a_l = g_l(\boldsymbol{\beta}, \mathbf{x}_l)$ or $\frac{a_l}{b} = g_l(\boldsymbol{\beta}, \mathbf{x}_l)$.

The unknown parameters β can then be estimated by **maximum** likelihood, thus obtaining $\hat{g}_l(\hat{\beta}, \mathbf{x}_l)$.

$$p_{I} = \frac{c_{I}}{\sum_{j}^{L} c_{j}} = \frac{a_{I} + bn_{I}}{\sum_{j}^{L} a_{j} + bn_{j}} = \frac{\frac{a_{I}}{b} + n_{I}}{\sum_{j}^{L} \frac{a_{j}}{b} + bn_{j}}$$

Define $\mathbf{x}_l = (x_l^1, \dots, x_l^H)$ variables that describe the intrinsic attractiveness of locations, so that $a_l = g_l(\beta, \mathbf{x}_l)$ or $\frac{a_l}{b} = g_l(\beta, \mathbf{x}_l)$.

The unknown parameters β can then be estimated by **maximum** likelihood, thus obtaining $\hat{g}_l(\hat{\beta}, \mathbf{x}_l)$.

Hence, proceeding by substitution:

$$p_{I} = \frac{c_{I}}{\sum_{j}^{L} c_{j}} = \frac{a_{I} + bn_{I}}{\sum_{j}^{L} a_{j} + bn_{j}} = \frac{\frac{a_{I}}{b} + n_{I}}{\sum_{j}^{L} \frac{a_{j}}{b} + bn_{j}} = \frac{\hat{g}_{I}(\hat{\beta}, \mathbf{x}_{I}) + n_{I}}{\hat{G} + N}$$

where $G = \sum_{l} g_{l}(\beta, \mathbf{x}_{l})$.

The marginal elasticity associated to an intrinsic advantage:

$$\frac{\partial p}{\partial \log x^h} = \sum_{l=1}^L \frac{\partial p_l}{\partial \log x_l^h} .$$

The marginal elasticity associated to an intrinsic advantage:

$$\frac{\partial p}{\partial \log x^h} = \sum_{l=1}^L \frac{\partial p_l}{\partial \log x_l^h} .$$

The marginal elasticity associated to localization externalities:

$$\frac{\partial p}{\partial \log n} = \sum_{l=1}^{L} \frac{\partial p_l}{\partial \log n_l} .$$

The marginal elasticity associated to an intrinsic advantage:

$$\frac{\partial p}{\partial \log x^h} = \sum_{l=1}^L \frac{\partial p_l}{\partial \log x_l^h} .$$

The marginal elasticity associated to localization externalities:

$$\frac{\partial p}{\partial \log n} = \sum_{l=1}^{L} \frac{\partial p_l}{\partial \log n_l} .$$

Since p_l is bounded from above, we compute the effects on the transformation $q_l = -\log(1 - p_l)$.

Model selection

Model selection

The two **models can be compared** with the Akaike Information Criterion corrected by finite sample size:

Model selection

The two **models can be compared** with the Akaike Information Criterion corrected by finite sample size:

AICc =
$$2k - 2\ln(\ell) + \frac{2k(k+1)}{L-k-1}$$
,

where L is the sample size, k is the number of parameters in each model, and ℓ is the maximized value of the likelihood function.

Results and discussion

We use a Cobb-Douglas specification:

We use a Cobb-Douglas specification:

$$\log g(\beta, x_{l}) = \beta_{1} \log(\text{Population}) + \\ \beta_{2} \log(\text{Urbanization}) + \\ \beta_{3} \log(\text{Coal output}) + \\ \beta_{4} \log(\text{Top 1\% inventors}) + \\ \beta_{5} \log(\text{Core KAls}) + \\ \beta_{6} \log(\text{Distance from London}).$$
(3)

We use a Cobb-Douglas specification:

$$\begin{split} \log g(\beta,x_{l}) = & \beta_{1} \log(\mathsf{Population}) + \\ & \beta_{2} \log(\mathsf{Urbanization}) + \\ & \beta_{3} \log(\mathsf{Coal output}) + \\ & \beta_{4} \log(\mathsf{Top 1\% inventors}) + \\ & \beta_{5} \log(\mathsf{Core KAls}) + \\ & \beta_{6} \log(\mathsf{Distance from London}) \; . \end{split}$$

Except for high-quality inventors, all controls are **lagged** to minimize concerns on simultaneity. Also, controls are standardized, so as to guarantee full comparability.

For illustration purposes, let us focus on the Polya case, where it is defined $G = \sum_{l} \frac{a_{l}}{b}$.

For illustration purposes, let us focus on the Polya case, where it is defined $G = \sum_l \frac{a_l}{b}$.

Given specification (3), the resulting marginal elasticity associated to the intrinsic feature x^h reads

$$\frac{\partial q}{\partial \log x^h} = \sum_{l=1}^{L} \frac{\partial q_l}{\partial \log x_l^h} = \beta^h \frac{G}{N+G} . \tag{4}$$

For illustration purposes, let us focus on the Polya case, where it is defined $G = \sum_l \frac{a_l}{b}$.

Given specification (3), the resulting marginal elasticity associated to the intrinsic feature x^h reads

$$\frac{\partial q}{\partial \log x^h} = \sum_{l=1}^{L} \frac{\partial q_l}{\partial \log x_l^h} = \beta^h \frac{G}{N+G} . \tag{4}$$

On the other hand, the marginal elasticity associated to localization externalities reads

$$\frac{\partial q}{\partial \log n} = \sum_{l=1}^{L} \frac{\partial q_l}{\partial \log n_l} = \frac{L}{N+G} . \tag{5}$$

Preliminary result on model selection

Preliminary result on model selection

The Polya model systematically outperforms the Multinomial model even after **discounting for parametric numerosity**.

Preliminary result on model selection

The Polya model systematically outperforms the Multinomial model even after **discounting for parametric numerosity**. Hence, an explanation of the spatial distribution of inventors cannot do without localized externalities.

Preliminary result on model selection

The Polya model systematically outperforms the Multinomial model even after **discounting for parametric numerosity**. Hence, an explanation of the spatial distribution of inventors cannot do without localized externalities.

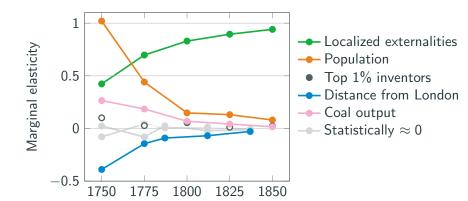
But how strong are they relative to other drivers?

In the aggregate: a basic result

In the aggregate: a basic result

Marginal elasticities as obtained from the spatial distribution of all patent inventors active between 1698-1850. Controls are in year 1697 except for Top 1% inventors, which is simultaneous to the inventors spatial distribution.

In the aggregate: a basic result


Marginal elasticities as obtained from the spatial distribution of all patent inventors active between 1698–1850. Controls are in year 1697 except for Top 1% inventors, which is simultaneous to the inventors spatial distribution.

Driver	Marginal elasticity	
Population	1.10e-02**	
Urbanization	3.14e - 04	
Coal output	5.89e - 03**	
Top 1% inventors	2.69e - 03**	
Core KAIs	$1.03e - 03^*$	
Distance from London	-5.10e-03**	
Localized externalities (n)	9.87e-01**	

Note: ** indicates a 99% confidence level.

At different time periods: important variations over time

At different time periods: important variations over time

At industry level: further insights

At industry level: further insights

Marginal elasticities as obtained from the spatial distribution of all patent inventors active in the textiles and steam engines industry between 1826–1850. Controls are in year 1825 except for Top 1% inventors, which is simultaneous to the inventors spatial distribution. Also, the first available data for industry-level employment is in 1841.

At industry level: further insights

Marginal elasticities as obtained from the spatial distribution of all patent inventors active in the textiles and steam engines industry between 1826–1850. Controls are in year 1825 except for Top 1% inventors, which is simultaneous to the inventors spatial distribution. Also, the first available data for industry-level employment is in 1841.

Driver	Textiles	Engines (steam)
Population	-8.89e - 03	3.33e - 01*
Urbanization	6.53e - 02**	-1.16e-02
Coal output	2.02e - 02	-2.57e - 02
Top 1% inventors	$2.56e - 02^*$	$8.25e - 02^*$
Core KAIs	-3.58e - 03	1.39e - 02
Distance from London	-2.88e - 02	-5.93e - 02
Industry-level employment	9.57e - 02**	6.37e - 01**
Localized externalities (n)	9.13e-01**	5.35e - 01**

Note: The symbol ** indicates a 99% confidence level.

- "The mass of farmers learned from their neighbors".
 - Macdonald (1979), on Northumberland farmers.

- "The mass of farmers learned from their neighbors".
 - Macdonald (1979), on Northumberland farmers.
- "[...] Engineering firms had to be technically competent, but it was vital to be connected into a local network of technical and commercial information".
 - Cookson (1997), on Yorkshire textile engineers.

- "The mass of farmers learned from their neighbors".
 - Macdonald (1979), on Northumberland farmers.
- "[...] Engineering firms had to be technically competent, but it was vital to be connected into a local network of technical and commercial information".
 - Cookson (1997), on Yorkshire textile engineers.
- "The productive system as a whole mattered in fostering technical progress. Mutual interaction of producers and users widened the pool of talent available, and deepened competitive strength. The complexity of interactions and accumulated skills restricted the degree to which such knowledge could be portable to new regions".
 - Von Tunzelmann (1994).

Our work establishes the importance of localization externalities in driving inventor location during the British Industrial Revolution.

Our work establishes the importance of localization externalities in driving inventor location during the British Industrial Revolution.

In this sense, it contributes to some debates in the economics of innovation:

Our work establishes the importance of localization externalities in driving inventor location during the British Industrial Revolution.

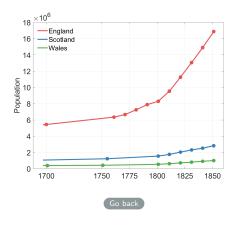
In this sense, it contributes to some debates in the economics of innovation:

• Codified knowledge vs. Tacit knowledge.

Our work establishes the importance of localization externalities in driving inventor location during the British Industrial Revolution.

In this sense, it contributes to some debates in the economics of innovation:

- Codified knowledge vs. Tacit knowledge.
- Scientific approach vs. Artisan know-how.


Our work establishes the importance of localization externalities in driving inventor location during the British Industrial Revolution.

In this sense, it contributes to some debates in the economics of innovation:

- Codified knowledge vs. Tacit knowledge.
- Scientific approach vs. Artisan know-how.
- "Elite" vs "Democratic" invention.

More on population estimates

A consistency check at the macro-regional scale

More on Woodcroft and patents

Patent data: pros, cons, and value added

Cons:

- Not all inventions are patented.
- Patented inventions differ in quality.

Pros:

- Comprehensive data.
- Possibility to make quantitative analysis.

The valued added of the present patent dataset is to have a reliable indicator of **patent quality** (Woodcroft Reference Index, WRI).

Bennet Woodcroft

Bennet Woodcroft, 1803-1879

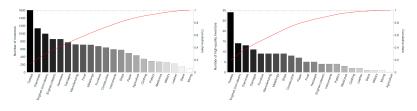
- Inventor; Professor of "Machinery"; Patent agent; Historian of technology.
- Owner of a rich personal technical library which was the initial seed for the Patent Office Library.
- Advocate of patents as "information systems".
- Appointed in 1852 as Assistant to the Commissioners of Patents.
- He took care of the publication of the first official patent indexes Alphabetical, Chronological, Reference, Subject Indexes (1850-1860).

Publications referenced in the Woodcroft Index

Technical books and engineering journals

Mechanics Magazine, Heberts Encyclopedia, Artizan, Engineer and Architect Journal, etc.

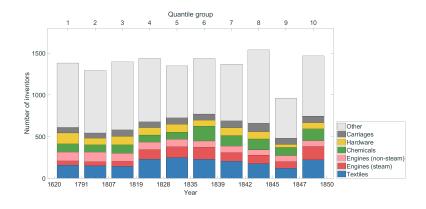
Legal commentaries on patent law and cases


Webster, Carpmael, etc.

 Journals showcasing developments in science and technology (they published "judicious selections" of patent specifications)

Repertory of Arts, London Journal of Arts and Sciences, Register of Arts and Sciences, Inventors Advocate and Patentees Recorder, etc.

Patent count and cumulative share by industry



Generic patents.

High quality patents.

Patent count by industry over time

