The Crafting of Intellectual Property Implications for Trolls, Litigation, and Innovation

Josh Feng¹ and Xavier Jaravel²

¹Harvard University

²LSE

BU IP Day 2017

It is critically important that the USPTO issues patents that are both correct and clear. [It] can help stimulate future innovation without resorting to needless high-cost court proceedings.

Michelle Lee, USPTO Director

Research Questions

- How much does the patent system affect innovation?
 - -> Patents: a mix of idea and legal construction
 - -> Examiners are involved in construction process
 - An understudied channel
 - -> Lee: examination quality affects both litigation and innovation
 - If effects are big: USPTO as a policy lever (vs. statutory reform)
- How responsive are non-practicing entities (NPEs) to the legal construction of patents?
 - Accusation: purchasers and enforcers of weak patents ("needless court proceedings")
 - -> Do they purchase patents granted by a specific set of examiners?
 - -> If so, do these examiners tend to grant weak patents?

Research Questions

- How much does the patent system affect innovation?
 - -> Patents: a mix of idea and legal construction
 - -> Examiners are involved in construction process
 - An understudied channel
 - -> Lee: examination quality affects both litigation and innovation
 - If effects are big: USPTO as a policy lever (vs. statutory reform)
- How responsive are non-practicing entities (NPEs) to the legal construction of patents?
 - -> Accusation: purchasers and enforcers of weak patents ("needless court proceedings")
 - -> Do they purchase patents granted by a specific set of examiners?
 - -> If so, do these examiners tend to grant weak patents?

Research Design and Findings

- **Research design**: use variation across examiners in post-grant outcomes to quantify the impact of legal construction
 - -> Leverage quasi-random assignment for causal interpretation
 - Refinements: IT-only, docket instrument, random last digit units
 - -> Focus on pool of granted patents
 - Control for selection on idea quality in order to isolate legal construction variation
 - -> Use shrinkage methodology to deal with rare and noisy outcomes
- Findings
 - -> Examiners have large causal effects on important outcomes
 - NPE purchase, litigation, late-term private value, future patenting
 - -> NPE purchase, litigation very sensitive to legal construction
 - Purchase from lenient examiners who force fewer additions to claims
 - -> Lenient, high-NPE examiners grant more weak patents
 - Patents more likely to be re-issued, instituted in inter-partes review

Related Literature

- Effect of patent system on innovation
 - -> Patent laws: Nordhaus (1969); Klemperer (1990); Gilbert and Shapiro (1990); Sakakibara and Branstetter (2001); Moser (2006); Lerner (2009)
 - -> Patent grants: Williams and Sampat (2016); Farre-Mensa, Hegde and Ljungqvist (2017); Righi and Simcoe (2017)
 - -> Patent scope: Kuhn, Roin and Thompson (2016), Kuhn (2016)
 - -> This paper: effect of patent examination process
- NPEs and innovation
 - -> Growing literature: Allison, Lemley and Walker (2009); Bessen and Meurer (2014); Tucker (2014); Cohen, Gurun and Kominers (2015)
 - -> This paper: effect of patent examiners on NPE activities

Simple Relationships - Examiners and NPEs

Examiners and Renewals

Feng, Jaravel (Harvard/LSE)

Road Map

Estimation of Examiner Effects on Post-Grant Outcomes

- Methodology
- Results
- Random Assignment and Selection

NPE Behavior

- Which examiners drive the effect?
- Weak Patents and Additional NPE Behavior

Data

Data Overview

- Core sample
 - -> USPTO PatEx plus data on claims examiner blocking actions
 - Frakes and Wasserman; Juristat
 - -> 1.27 million non-continuation granted patents from 2001 to 2012
 - 2/3 continuation applications assigned to same examiner
 - -> 11,401 patent examiners in 643 art units
 - Average tenure: 7 years
 - Average applications reviewed per year: 16
- Subsequent outcomes
 - -> 20% of sample is **purchased** by non-NPEs
 - -> 1% of sample is **purchased** by NPEs
 - -> 0.65% of sample is litigated by non-NPEs

Road Map

Estimation of Examiner Effects on Post-Grant Outcomes Methodology

- Results
- Random Assignment and Selection

NPE Behavior

- Which examiners drive the effect?
- Weak Patents and Additional NPE Behavior

Estimating Examiner Effects on Post-Grant Outcomes

- Quasi-random assignment → interpret post-grant outcome differences as caused by examiners
 - -> Address potential threats later (Righi and Simcoe 2017)
- Why not compare raw average outcomes across examiners?
 - -> NPE and litigation outcomes are rare
 - -> Simple approach overstates magnitudes
 - e.g. 8 times too large for NPE
- Solution: look for persistent differences across examiners
 - Bayesian shrinkage methodology
 - Shrink raw averages by a signal to noise ratio
- End up with estimates of the right magnitude (split sample)

Extracting Residuals

$$m{\mathcal{T}}_{ijt} = m{X}_ieta + m{a}_{ut} + m{v}_{ijt}$$

 $m{v}_{ijt} = \mu_j + \epsilon_{ijt}$

- *i* indexes the patent, *j* the examiner, *u* the art unit
- Data variables
 - T: outcome (e.g. NPE purchase, litigated, 103 blocking action)
 - a_{ut}: art unit-year fixed effect (random assignment level)
 - X_i: observable application characteristics (assignee, applicant history, number of claims at application)
- Other variables
 - μ_j : examiner causal effect
 - $-\epsilon_{ijt}$: idiosyncratic noise

Shrinkage Using the Residuals

Aggregate residuals at examiner x year level:

$$\bar{\mathbf{v}}_{jt} = \frac{1}{n_{jt}} \sum_{i} \mathbf{v}_{ijt} \left(= \mu_j + \frac{1}{n_{jt}} \sum_{i} \epsilon_{ijt} \right)$$

Compute correlation of residuals across years (variance of examiner effect distribution):

$$\hat{\sigma}_{\mu}^{2} = cov(\bar{v}_{jt}, \bar{v}_{j(t+1)})$$

For each examiner: shrink raw average residual by signal-to-noise ratio to recover estimate with same scale as μ_i:

ExaminerEffect
$$_j = ar{ extsf{v}}_j rac{\hat{\sigma}_{\mu}^2}{Var(ar{ extsf{v}}_j)}$$

Road Map

Estimation of Examiner Effects on Post-Grant Outcomes

- Methodology
- Results
- Random Assignment and Selection

NPE Behavior

- Which examiners drive the effect?
- Weak Patents and Additional NPE Behavior

Causal Examiner Effects on Post-Grant Outcomes

Outcome	$\hat{\sigma}_{\mu}$ /Baseline Rate
NPE Purchase	50.97%
	[33.7%, 60.7%]
Non-NPE Litigation	62.1%
	[42.62%, 71.99%]
Non-NPE Purchase	14.01%
	[10.70%, 14.47%]

Causal Examiner Effects on Post-Grant Outcomes

Outcome	$\hat{\sigma}_{\mu}$ /Baseline Rate
Payment of 4th-Year Maintenance Fees	3.69%
Payment of 8th-Year Maintenance Fees	6.46%
Payment of 12th-Year Maintenance Fees	9.02%
Log patents by Assignee (within 5 years)	13.03%

Causal Examiner Effects on Post-Grant Outcomes

Outcome	$\hat{\sigma}_{\mu}$ /Baseline Rate
Log Total Citations	24.07%
External Patent Citations (0-3 years)	18.56%
Internal Patent Citations (0-3 years)	21.84%

Results Recap

- Largest examiner causal effects on legal-related outcomes
 - -> NPE purchase, litigation, inter-partes review filing
 - -> Focus of our second research question
- Smaller but sizable effects for innovation outcomes
 - -> Citations, future patenting
 - -> Late-term private value more sensitive than early-term

Road Map

Estimation of Examiner Effects on Post-Grant Outcomes

- Methodology
- Results
- Random Assignment and Selection

NPE Behavior

- Which examiners drive the effect?
- Weak Patents and Additional NPE Behavior

Random Assignment Issues

- Previous research: random assignment mechanisms
 - -> Taking from the top of the pile
 - -> Random by last digit
- Worry: specialization even within art units
 - -> New evidence from Righi and Simcoe (2017)
 - -> Specialization of examiners

Workarounds

- Focus on IT (tech centers 21, 24, 26)
 - -> Righi and Simcoe (2017): specialization in other areas
 - -> Recover similar results
- Busy-ness instrument
 - -> Exploit variation in busy-ness of lenient examiners
 - \rightarrow Examiners with recent disposed applications \rightarrow more likely to be assigned docketed application
 - -> Instrument leniency with busy-ness weighted leniency across all examiners
 - -> Recover similar relationships between outcomes and leniency
- Identify units that randomize by last digit
 - -> Chi-square statistic by examiner and last digit
 - -> About 1/3 of applications in units that have p-value < 0.01

IT Only

Workarounds

- Focus on IT (tech centers 21, 24, 26)
 - -> Righi and Simcoe (2017): specialization in other areas
 - -> Recover similar results
- Busy-ness instrument
 - -> Exploit variation in busy-ness of lenient examiners
 - $\rightarrow\,$ Examiners with recent disposed applications $\rightarrow\,$ more likely to be assigned docketed application
 - -> Instrument leniency with busy-ness weighted leniency across all examiners
 - -> Recover similar relationships between outcomes and leniency
- Identify units that randomize by last digit
 - -> Chi-square statistic by examiner and last digit
 - -> About 1/3 of applications in units that have p-value < 0.01

Random Assignment and Selection

Busy-ness Instrument

Workarounds

- Focus on IT (tech centers 21, 24, 26)
 - -> Righi and Simcoe (2017): specialization in other areas
 - -> Recover similar results
- Busy-ness instrument
 - -> Exploit variation in busy-ness of lenient examiners
 - \rightarrow Examiners with recent disposed applications \rightarrow more likely to be assigned docketed application
 - -> Instrument leniency with busy-ness weighted leniency across all examiners
 - -> Recover similar relationships between outcomes and leniency
- Identify units that randomize by last digit
 - -> Chi-square statistic by examiner and last digit
 - -> About 1/3 of applications in units that have p-value < 0.01</p>

Random Last Digit Unit Analysis

• Examiners' signal SDs are similar in subsample of art units that randomize by last digit

Outcome	$\hat{\sigma}_{\mu}$ /Baseline Rate	Original
NPE Purchase	38.16%	50.97%
Non-NPE Litigation	41.85%	62.10%
Non-NPE Purchase	14.52%	14.01%

Selection

- Additional concern: examiners selecting based on quality of idea
 Variation is not about differences in legal construction
- Workaround
 - -> Control flexibly for grant rate in outcome regression
 - Compare examiners with same grant rate
 - Assumption: idea quality is vertical (grant same ideas)
 - Remaining difference is due to legal construction differences
 - Similarly large differences in examiner effects remain
 - -> Address remaining variation in selection (given grant rate)
 - Add additional controls: similar application, similar examiner
 - Inventor, assignee, and application characteristics at filing
- Alternative: Heckman correction (non-linear)

Addressing Extensive Margin Selection Effects

 Examiners' signal SDs are similar when controlling for (leave-one-out) examiner grant rate

Outcome	$\hat{\sigma}_{\mu}$ /Baseline Rate	Original
NPE Purchase	62.64%	50.97%
Non-NPE Litigation	63.06%	62.10%
Non-NPE Purchase	14.31%	14.01%

Road Map

Estimation of Examiner Effects on Post-Grant Outcomes

- Methodology
- Results
- Random Assignment and Selection
- NPE Behavior
 - Which examiners drive the effect?
 - Weak Patents and Additional NPE Behavior

How Do High-NPE Examiners Behave?

NPEs buy disproportionately from a specific set of examiners

 Use prosecution behaviors of high NPE effect examiners to understand nature of NPE-purchased patents

-> Note: not causal

- Methodology
 - Compute leave-one-out examiner effects for various prosecution behaviors
 - -> Predict patent outcomes using these measures (\hat{E}_j)

$$NPE_{ijt} = \beta \hat{E}_j + \epsilon_{ijt}$$

Examiner Prosecution Behavior

- Examiner blocking action usage by type:
 - 101: not patentable subject matter, lacking utility
 - 102: not novel
 - 103(a): obvious
 - 112(a): unclear technological disclosure
 - 112(b): unclear claims language
- Claims text changes between application and grant
 - Edits in response to examiner blocking action critiques

NPE Purchase and 103(a) Usage

Formal Analysis - Pairwise Correlations

	NPE Purchase	Non-NPE Lit.
103(a) -	-0.099***	-0.039**
Obviousness	(0.023)	(0.017)
112(b) -	-0.047**	-0.040**
Unclear claims	(0.023)	(0.018)
∆ Words/Claim	-0.148***	-0.061***
	(0.021)	(0.016)
N	1,269,623	

* p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01

Addressing Extensive Margin Selection Effects

34

Summary

- Main finding: examiners with high NPE and non-NPE litigation effects are "lenient":
 - Use specific blocking actions less often: 103(a), 112(b)
- Why might these patents be useful to NPEs?
 - -> Obviousness: higher likelihood others take this step when developing products
 - -> Vague claims language: many possible interpretations which can be used flexibly to read on subsequent technology
- Remaining questions
 - -> Are they buying weak patents?
 - -> Can other NPE purchasing mechanisms explain the data?

Road Map

Estimation of Examiner Effects on Post-Grant Outcomes

- Methodology
- Results
- Random Assignment and Selection

NPE Behavior

- Which examiners drive the effect?
- Weak Patents and Additional NPE Behavior

Weak Patents

- Definition: patents that may well be invalid, but require conclusive litigation to find out
 - -> NPEs accused of asserting weak patents
- Ideal data
 - -> Have courts rule on all granted patents
- Our evidence
 - -> Examiner errors: re-issuance filings
 - 35 U.S.C. 251: ask for re-issuance if patent deemed wholly or partly inoperative or invalid through error
 - Much higher rate for lenient examiners
 - -> Inter-partes review institution (conditional on filing)
 - Lenient examiners more likely to have patents challenged
 - AND found to be likely invalid conditional on filing

Examiner Errors

Invalidity Rulings

Targeted Purchases

- NPEs also target patents within firm portfolios
 - -> Results hold after controlling for assignee fixed effects
- Rules out purchasing behavior based solely on characteristics of original firm
 - -> Supply-driven: NPEs buy whole portfolios during fire sales
 - Struggling firms hold weaker IP
 - -> NPEs buy based on firm attribute: e.g. small firms or individuals
 - Lenient examiners grant more small entity patents
- Another possible form of targeting: buy patents on the best ideas in the pool of weak patents
 - -> Use an independent signal of idea quality: EPO decisions

EPO Evidence

Table: NPE Purchase vs. EPO Decision

	(1)	(2)	(3)	(4)
EPO Grant	-0.461***	-0.211***	-0.199**	-0.023
	(0.056)	(0.057)	(0.059)	(0.063)
Artunit-Year F.E.	No	Yes	Yes	Yes
Examiner F.E.	No	No	Yes	Yes
Assignee F.E.	No	No	No	Yes
N	218,867	218,867	217,491	197,919

EPO Evidence

	NPE Purchase	Non-NPE Purch.	Non-NPE Lit.
EPO Grant	-0.2144**	0.0037	-0.0831
	(0.1001)	(0.0133)	(0.1074)
Examiner F.E.		Yes	
Assignee F.E.		Yes	
Artunit-Year F.E.		Yes	
N		109,383	

Sample: patents of examiners with above median NPE Effect

Conclusion

Core results

- -> Examiners have sizable causal effects on the nature and subsequent usage of patents
- -> Biggest impacts on legal outcomes, but general effects on private value and follow-on innovation

NPE behavior

- -> Highly dependent on examiner behavior
- -> Likely to be selectively purchasing weaker patents

Addressing Extensive Margin Selection Effects

 Examiners' signal SDs are similar when controlling for (leave-one-out) examiner allowance effect, and inventor's and assignee's past applications, grants and citations

Outcome	$\hat{\sigma}_{\mu}$ /Baseline Rate	Original
NPE Purchase	75.94%	50.97%
Non-NPE Litigation	90.32%	62.10%
Non-NPE Purchase	17.04%	14.01%