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Ramping cells in the rodent medial prefrontal cortex encode
time to past and future events via real Laplace transform
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In interval reproduction tasks, animals must remember the event starting the interval
and anticipate the time of the planned response to terminate the interval. The
interval reproduction task thus allows for studying both memory for the past and
anticipation of the future. We analyzed previously published recordings from the
rodent medial prefrontal cortex [J. Henke et al., eLife 10, e71612 (2021)] during an
interval reproduction task and identified two cell groups by modeling their temporal
receptive fields using hierarchical Bayesian models. The firing in the “past cells” group
peaked at the start of the interval and relaxed exponentially back to baseline. The
firing in the “future cells” group increased exponentially and peaked right before the
planned action at the end of the interval. Contrary to the previous assumption that
timing information in the brain has one or two time scales for a given interval, we
found strong evidence for a continuous distribution of the exponential rate constants
for both past and future cell populations. The real Laplace transformation of time
predicts exponential firing with a continuous distribution of rate constants across the
population. Therefore, the firing pattern of the past cells can be identified with the
Laplace transform of time since the past event while the firing pattern of the future cells
can be identified with the Laplace transform of time until the planned future event.

interval timing | neural dynamics | Laplace transform | motor planning

Imagine singing a favorite song. In the pause before the next line of lyrics, the memory
of the previous line gradually recedes, while the planned time to sing the next line
approaches. As time progresses, the precise moment to begin singing the next line
becomes increasingly clear, culminating at the moment of vocalization. The ability to
prepare and execute an action at a specific moment (i.e. motor planning) often requires us
to track the flow of time internally, which is explicitly tested in interval reproduction tasks
(1–4). In a typical interval reproduction experiment, subjects experience a target duration
and must later reproduce the duration through planned actions (e.g. Fig. 1A). Just like
the pause between two lines in a song, each moment throughout the reproduction phase
is defined relative to a beginning point at t = 0 that recedes into the past as t increases
and an endpoint at t = T . At each moment after t = 0 the endpoint is a distance T − t
from the present, approaching from the future (Fig. 1B).

A number of hypotheses have been proposed to describe how we keep track of the time
of future planned actions internally during tasks such as interval reproduction. Scalar
expectancy theory (SET) proposed that time elapsed is tracked through an accumulator
that counts the pulses generated by an internal clock after the beginning point (5).
While models like SET primarily focus on behavioral data, later models incorporated
neural data observed during timing tasks. There is a large animal recording literature
that reports ramping activity during timing tasks; individual neurons monotonically
increase or decrease their activity as time progresses (1, 4, 6–10). Therefore later theories
implemented a single clock that accumulates the firing activities of a group of cells and
reaches a threshold at the end of an interval (11, 12). More recently, it was proposed
that the changing dynamics of neural population activity, in the form of sequentially
activated cells (13, 14) or neural trajectories in low-dimensional space (6, 15), serves as
an internal timing mechanism. Researchers applied recurrent neural networks (RNNs)
to perform timing tasks (16, 17) and implemented neural-inspired constraints to those
RNNs (18, 19) as a way to gain further insights into the population dynamics required
for internal time tracking. Researchers specifically focused on restricting the dimension
of RNNs by building low-rank RNNs and argued it led to improved generalization to
untrained stimuli (20).

These diverse models all share the underlying assumption that the neural dynamic
changes with a few characteristic time scales across neurons for a given interval. SET
model assumes a single Poisson process as the internal clock (5). Accumulator models
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Fig. 1. (A) Experimental task from ref. 6. On each trial, a gerbil experiences a target stimulus duration, and then reproduces the duration by running on a
treadmill. Here, we limit our analysis to the neural activity during the reproduction phase (adapted from ref. 6). (B) Representation of the target interval in the
reproduction phase. The horizontal line represents objective time, and the diagonal lines represent the target interval, which consists of time lapsed (t) since
the beginning of the interval (blue) and time remaining (T − t, red). The beginning of the interval is in the past while the end of the interval is in the future
during the reproduction phase. (C and D) Time elapsed can be encoded by temporal context cells and time cells. (C) The Top panel shows previously reported
temporal context cells, adapted from ref. 32; the Bottom panel shows time cells, adapted from ref. 31. In both panels, each row illustrates the normalized
firing rate of a cell where yellow indicates high firing rates and blue indicates low firing rates. (D) Illustration of stimulated temporal context cells (Top) and
time cells (Bottom). Time cells fire sequentially with widening receptive fields after an inciting event, resulting in a wide range of peak locations across cells.
By contrast, a group of temporal context cells would reach their peak firing rate shortly after an event and relax back to baseline firing at different rates for
different cells. Therefore, when receptive field peaks are plotted as a function of the relaxation rates in the Left panel, temporal context cells form a narrow
vertical stripe. (E) Hypothetical properties of the neural populations during the reproduction phase with either temporal-context-cell-like representations (Top)
or time-cell-like representations (Bottom). The temporal-context-cell-like representation would result in two vertical lines, one at the beginning and one at the
end of the interval. The time-cell-like presentation would result in a wide range of receptive field peaks. The illustrations are presented symmetrically for easy
visualization. The neural data are analyzed separately for the beginning and the end of an interval.

typically assume that the neurons are noisy exemplars of the
overall rate, and the ramping rate reflects aggregated firing rates
across neurons (12). For low-rank RNN models, the dynamics*

have as many time constants as the rank of the RNN has
eigenvalues (1, 20). In all of those models, the typical time
scale shared by the population only changes for different interval
lengths.

Recent work on memory for the past has shown robust
evidence that neural activity shows an effectively continuous set
of time constants across neurons (Fig. 1 C and D). “Time cells”
fire sequentially during a delay following an event (21, 22). Time
cells have been widely reported in the hippocampus (21–24), but
have also been reported in the medial entorhinal cortex (25), the

*On the manifold defined by the low-rank recurrence matrix.

prefrontal cortex (23, 26, 27), and striatum (28, 29). The peak
times of time cells smoothly tile the delay interval; as the sequence
advances time cells fire for progressively longer durations (30, 31).
Time cells thus exhibit a continuous distribution of characteristic
time constants. “Temporal context cells” (Fig. 1C,Top) also show
a continuous distribution of time constants. Temporal context
cells all respond shortly after some event, and relax their firing
back to baseline at a variety of different rates (32–34). Rather than
conveying information about how long ago an event happened
via a continuous set of peak times (Fig. 1 D, Bottom), temporal
context cells show a continuity of relaxation time constants
(Fig. 1 D, Top).

The effectively continuous time constants in these two types
of neural dynamics have similar properties. Within a time
cell population, the density of peak times decreases linearly as
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time progresses, while the size of the corresponding temporal
receptive windows linearly increases. Consequently, the time
of the triggering event is represented on a logarithmic time
scale (31). The time constants of temporal context cells also
overrepresent short time scales and have a smooth distribution
with a long tail. Populations of temporal context cells are well
described via exponential relaxation, e−st with a broad range of
real s (32, 33). Thus one can identify the firing of a population
of temporal context cells with the real Laplace transform of the
time since the triggering event was experienced (35).

To characterize the temporal information represented in a
reproduction task using previously established methods for past
time (31, 32), we analyzed recently published recordings (6) from
the gerbil medial prefrontal cortex (mPFC) as they performed an
interval reproduction task (Fig.1A). During the measurement
phase, the animals were presented with the target interval length
T , sampled randomly from a set ranging from 3 to 7.5 s. During
the reproduction phase, they would time their running to match
the target interval length. We restricted our analyses to the
reproduction phase to investigate the temporal representation of
the past action (beginning of the interval) and the future action

(projected end of the interval). We observed separate groups of
units that represent either time since the beginning of the delay
or time until the end of the delay. These two groups contained
qualitatively similar properties in their respective representations:
Both are characterized by a narrow range of peak values and a
wide range of time constants, resembling the previously observed
temporal context cells (32). Finally, we show that time in these
groups is coded continuously, ruling out the possibility that time
is represented via a small number of time scales.

Results

A total of 1,766 mPFC cells were recorded (6). We first identified
cells with reliable temporal receptive fields using previously
established methods (32). The method revealed two groups of
temporal-responsive cells: cells with temporal receptive fields
preferentially peaking shortly after the start of the interval (331
cells see Fig. 2A) and cells with temporal receptive fields prefer-
entially peaking shortly before the end of the interval (391 cells;
see Fig. 2B). We refer to these populations as past cells and future
cells respectively. These two groups can also be appreciated from

Fig. 2. (A) Heatmap of past cells during reproduction for each stimulus interval. Each row represents the normalized firing of a cell, linearly rescaled and
averaged over all trials under the same stimulus length (marked for each column). Yellow indicates high firing and dark blue represents zero firing rate. Cells
are sorted by the corresponding estimated time constant � during the 5.25 s interval. (B) Same as in (A), but for the future cells. (C) Two example cells and
model fits from the past cells. On the Top panels of each cell, we plot the raster anchored at the beginning of each trial (marked zero) and sorted based on the
reproduced interval length (indicated with gray shade). On the Bottom panels, we plot the average firing rate of the cell after its activity for every trial linearly
rescaled to a 5.25 s interval with a gray line. The color shade in the raster plot marks the estimated receptive field for each trial and the colored line represents
the estimated receptive field at 5.25 s from the model. (D) Same as in (C), but for the future cells and the raster plot is anchored at the end of each trial (marked
zero).
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A B C

D E F

Fig. 3. (A–C) mPFC cells tile the reproduced interval with a broad range of time constants from either the start or the end of the interval. (A) Normalized firing
rate of past cells. Cells are sorted based on time constant � and plotted in the same way as figures in Fig. 2, except averaged over all the trials where every trial
was linearly rescaled to 5.25 s. (B) Receptive field peaks � plotted as a function of estimated time constants � for both past cells (blue) and future cells (red).
For past cells, peak location � was calculated from the start of the interval (blue), and for future cells, � was calculated from the end of the interval (red). (C)
Normalized firing rate of future cells. Plotted in the same way as (A). (D) The cumulative density function (CDF) of time constants plotted on a log scale for past
cells. Each point represents a cell in the group. (E) Distribution of peak firing locations, estimated without any modeling assumptions, relative to the start (Top)
and the end (Bottom) of intervals. Blue represents the past cells and red represents the future cells. Note that past cells peak times cluster toward the beginning
of the interval whereas future cells peak times cluster toward the end of the interval. (F ) Same as (D) but for future cells.

Fig. 3 in the previous report of the dataset (6). We proceed to
analyze the 722 temporal responsive cells with three hierarchical
Bayesian models. We applied the best fitting model from the three
to the remaining 1,044 cells and found those cells exhibit similar
patterns to the temporal responsive cells (SI Appendix, section 1).

Using hierarchical Bayesian models, we tested three hypotheses
for the temporal receptive field assumption. For all three models
we estimated temporal receptive fields for the past cells as a
function of time since the start of the interval; for the future cells,
we estimated the temporal receptive fields as a function of time
until the end of the studied interval, T − t. The Gaussian model
describes each temporal receptive field via a � and � for each
cell. The exponentially modified Gaussian (ex-Gaussian) model
additionally allows a skew to the temporal receptive field of each
cell by adding a time constant �. The exponential model is the
same as the ex-Gaussian model but with the � fixed across cells
to a small value (100 ms). Additional details about the models
can be found in Materials and Methods.

The model fits were evaluated with Watanabe–Akaike infor-
mation criterion (36). The exponential model provided a much
better quantitative account of the data compared to Gaussian
(ΔWAIC = 3.36 × 1010) and full ex-Gaussian (ΔWAIC =
2.55 × 1010). The difference is highly significant as it is more
than 15 times the SE. Within the population, the majority of
cells (647/722) are better fit by an exponential time field than
by a Gaussian field according to the log likelihood results. The

log likelihood results and example cells fits from the exponential
model and the Gaussian model can be found in SI Appendix,
Fig. S2. Unless otherwise noted, all results for model parameters
are from the exponential model. The fact that the exponential
receptive fields fit the data better than Gaussian or ex-Gaussian
argues against the hypothesis of sequential time-cell-like firing,
which is reasonably well described by Gaussian receptive fields
with � and � covarying across cells (31).

The exponential model estimates temporal receptive fields with
two key parameters: 1) the peak parameter � and 2) the time
constant parameter �, which indicates the time it takes for the
cell to regress 63% back to its baseline firing. Time-cell-like
sequential activation would result in a wide range of estimated
peak locations � as the sequence continuously tiles the delay
(Fig. 1 E, Bottom). Temporal context cell populations would
have a narrow range of peak locations � but a wide range of time
constants � that continuously tile the delay (Fig. 1 E, Top).

To account for the changing temporal receptive fields for
different interval lengths, we set the time constant � for T =
5.25 s as the baseline and fit the firing pattern at each trial directly
by assuming that the time constant for each trial, �i may change
according to the reproduced interval length Ti. Specifically, we
assumed �i = �(1 + �Ti−5.25

5.25 ), where � determines how much
each cell rescales its temporal receptive field according to interval
lengths. When � = 0, the cell codes for absolute time and
does not change its temporal receptive field for different interval

4 of 10 https://doi.org/10.1073/pnas.2404169121 pnas.org
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lengths while � = 1 means the cell linearly rescales its time con-
stant for the interval lengths. In addition, the peak firing rate was
estimated with a parameter a1, which estimates the “threshold”
of the future cells just before the end of each interval. We report
the results of � and a1 parameters in SI Appendix, section 4.

Example fits from the Exponential model are shown in Fig. 2
C and D. Additional example fits can be found in SI Appendix,
Fig. S3. While the model successfully captured the firing pattern
for the majority of cells, it missed some irregularities in a small
subset of cells, such as dual peaks. SI Appendix, Fig. S3C includes
examples of cells that were poorly fit by the exponential model.

The Temporal Receptive Fields ofmPFC Cells Are Characterized
byaNarrowRangeofPeakLocationsandaBroadRangeofTime
Constants. Fig. 3A summarizes the temporal response properties
of the 331 past cells. To facilitate inspection of the overall firing
pattern of each cell across all intervals, we linearly rescaled cell
activities for each trial to 5.25 s and plotted the averaged activity
for one cell in each row. The figure demonstrates that almost all
the cells reached peak firing shortly after the start of an interval but
different cells relax back to baseline firing at different rates within
the interval. Fig. 3C summarizes the temporal response properties
of the 391 future cells. Almost all the future cells reached peak
firing shortly before the end of the interval. Different cells ramped
up their activity at different rates within the interval, mirroring
the pattern for past cells. Distributions of peak locations �
and time constants � estimated through formal modeling of
individual cells from the two groups confirmed these qualitative
observations (Fig. 3B). We reported and performed subsequent
statistical analysis on the most frequent observations from the
posterior distribution.
The Peaks of Past Cells Cluster at the Start of the Interval. As can
be appreciated from Fig. 3B, the estimated peak locations � for
past cells were distributed over a narrow range of small values (me-
dian = 0.01 s, interquartile range = 0 to 0.10 s, 90th percentile
= 0.40 s). Indeed most of the past cells reached peak firing rate
shortly after the beginning of the interval (303/331 cells peaked
within 0.5 s). This pattern was true within each animal: For the
76 cells from animal 1, the median of estimated peak locations
was 0.07 s with 90th percentile = 1.01 s; for the 156 cells from
animal 2, the median of estimated peak locations was 0.01 s with
90th percentile = 0.39 s; for the 99 cells from animal 3, the me-
dian of estimated peak locations was 0.01 s with 90th percentile
= 0.19 s. In addition to model parameters, we directly calculated
the peak locations from the spike train data, defined as the highest
firing rate within 100 ms intervals (Fig. 3E, blue). To aggregate
across all trials, we aligned the trials either with the beginning
(Top), or the end (Bottom) of the reproduced intervals. Consistent
with the estimated peak parameters, the peak firing bins for the
past cells clustered at the beginning of the interval (median =
0.3 s with 90th percentile = 1.4 s). This provides strong evidence
against the hypothesis that time elapsed since the start of the
interval is coded by a group of sequentially firing cells that tile
the interval as one would expect for a population of time cells.
The Time Constants of Past Cells Are Distributed Over a Broad
Range. Contrary to the narrow range for �, the estimated time
constants � for the past cells resulted in a wide range of values
(median = 2.25 s, interquartile range = 0.59 to 4.00 s, 90th
percentile = 6.31 s; see Fig. 3B). This pattern was observed
for each animal: For the 76 cells from animal 1, the median of
estimated time constant was 1.92 s with interquartile range from
0.63 to 3.60 s; for the 156 cells from animal 2, the median of
estimated time constant was 2.07 s with interquartile range from
0.53 to 3.57 s; for the 99 cells from animal 3, the median of

estimated peak locations was 3.54 s with interquartile range from
0.93 to 5.28 s. In fact, the estimated � for some cells reached
the far end of the parameter search boundary (0.01 to 10 s),
suggesting the time constants for those cells could include values
beyond 10 s. We eliminated cells with � > 9 s (16/331 cells were
excluded) when evaluating the correlation between � and � with
Bayesian Kendall’s test. For cells where an accurate � value can
be measured, we found evidence in favor of the null hypothesis
(Kendall’s � = 0.069, BF01 = 2.5), indicating that there was no
systematic relationship between � and � for past cells.
The Peaks of Future Cells Cluster Closely Near the End of the
Interval. Similarly to the peak location of the past cells, the
estimated peak locations for future cells (Right side of Fig. 3B)
were distributed over a narrow range of values shortly before the
end of the interval (median = −0.02 s, interquartile range =
−0.01 to −0.13 s, 90th percentile = −0.47 s). 354/391 future
cells reached peak firing within −0.5 s of interval length T .
This pattern was true within each animal: For the 67 cells from
animal 1, the median of estimated peak locations is −0.01 s
with 90th percentile = −0.12 s; for the 194 cells from animal
2, the median of estimated peak locations is −0.02 s with 90th
percentile =−0.66 s; for the 130 cells from animal 3, the median
of estimated peak locations is −0.05 s with 90th percentile =
−0.39 s. Fig. 3E plots the peak firing bins for the future cells
in red. The peak firing bins for the future cells clustered near
the end of the interval (median = −0.3 s with 90th percentile
= −1.1 s). This provides strong evidence against the hypothesis
that time remaining before the end of the interval is coded by a
group of sequentially firing cells that tile the interval.
The Time Constants of Future Cells Were Distributed Over a Broad
Range. Just like past cells, we observed a wide range of time
constants � for future cells: the median of this group was 1.03 s
with interquartile range between 0.26 s and 3.00 s and the 90th
percentile was 5.39 s (Fig. 3B). This pattern was true within
each animal: For the 67 cells from animal 1, the median of the
estimated time constant was 1.52 s with interquartile range from
0.0.51 to 2.71 s; for the 194 cells from animal 2, the median of
estimated time constant was 0.60 s with interquartile range from
0.29 to 2.87 s; for the 130 cells from animal 3, the median of
estimated peak locations was 1.70 s with interquartile range from
0.18 s to 4.19 s. Similarly to past cells, there were a few future
cells with time constant � near the far end of the boundary
for the future cells (10/391 cells were excluded), and were
eliminated from the subsequent Bayesian Kendall’s correlation
test. We found no evidence supporting a correlation between the
� and � using the Bayesian Kendall test (Kendall’s � = 0.06,
BF01 = 3.44) for cells where an accurate � value can be measured.

Both Time Elapsed and Time Remaining Show Continuous Time
Constants. It is of tremendous theoretical importance to know
whether the time constants of past cells and future cells are
continuous or if they have a characteristic time scale. Visual
inspection of the time constants for both past cells and future cells
suggests that time constants are distributed smoothly over the
parameter space (Fig. 3B). To formally test this observation, we
fit the observed time constants with two types of commonly used
distributions: normal distribution and power-law distribution.
The normal distribution is characterized by its expected value �
plus noise � distributed symmetrically around the expected value.
While the distribution is defined from−∞ to∞, the probability
of observing a value that is two � from the mean is low (<5%).
Power-law distribution assumes the probability of observing x
follows p(x) ∝ x−� , suggesting that there is a high concen-
tration of small values while larger values become less frequent
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monotonically. The distribution is characterized by its long tail
where the probability of an atypical observation, no matter how
far away from the concentrated small values, never asymptotes
to zero. The size of the tail is determined by �, where a smaller
� indicates a larger portion of the observations falls under the
tail. Because the long tail will continuously add more area under
the density function for those less frequent but still possible (in
the statistical sense) observations, power-law is only defined as
a distribution between a minimum value and a maximum value
for � < 2. In our case, a power-law distributed time constant
means larger time constants gradually and continuously become
less frequent without a clear cut-off point or distinct clusters
within the bounds. Therefore one could not separate power-law
distribution with a characteristic value plus noise like the normal
distribution.

The time constants from the past cells and future cells were
fitted separately. The fit was evaluated based on WAIC (36). We
found that the power-law distribution provided a significantly
better fit than the single normal distribution for both the
past cells (WAIC for power law = 1,257, WAIC for normal
distribution = 1,565) and the future cells (WAIC for power law
= 1,133, WAIC for normal distribution = 1,819). The difference
between power law and normal distribution is significant as it is
about 10 times the SE for both groups. We further tested whether
time constants should be quantified with a mixture of two normal
distributions and found the fit improved marginally from the fit
of a single normal distribution, but was still significantly lower
than the power law fit for both the past cells (WAIC for mixed
normal distributions = 1,345) and the future cells (WAIC for
mixed normal distributions = 1,435). This is striking as the
mixed normal distribution has five free parameters while the
power law distribution only has one free parameter, the shape
parameter �. These results provided strong quantitative evidence
against the hypothesis that there exists one or few typical time
scales in the population. When the power-law exponent � = 1,
the density function becomes p(x) ∝ x−1, where x are distributed
according to log scales. We found the mean of the posterior of
the exponent for past cells was 0.76 with a 95% credible interval
[0.68, 0.84]. The mean of the posterior of exponent for future
cells was 1.05 with 95% credible interval [0.97, 1.12]. Both of
the posteriors are close to 1, suggesting that the time constants
were distributed close to logarithmic compression. When plotted
against a log scale, logarithmically distributed observations would
form a straight line (31). We plot the cumulative density function
(CDF) on a log scale for the past cells (Fig. 3D) and the future
cells (Fig. 3E). The curve for future cells at least is close to being
straight, consistent with a power-law exponent of one.

It is worth noting that the present study is not well suited to
estimate the precise value of �. As demonstrated in SI Appendix,
section 4, a large portion of the population rescale the temporal
receptive field with the length of reproduced interval. While our
model controlled for the rescaling with additional parameters, it
is possible that there is residual trade-off between the estimated �
and the rescale parameter �, especially for small �. An experiment
with a fixed reproduction interval would allow for a more accurate
estimation of �.

Discussion

We analyzed previously published recordings from mPFC during
an interval reproduction task (6) using hierarchical Bayesian
models to estimate the temporal receptive fields of individual
cells and the populations. Consistent with previous research on
interval timing (4, 11), we observed cells preferentially reach

peak firing either when the animal started running, denoted as
past cells, or when the animal was about to stop, denoted as
future cells. Consistent with previous work (7), we saw strong
evidence against a time-cell-like sequential temporal represen-
tation in mPFC cells in these data. We observed exponentially
decaying temporal receptive fields for past cells and exponentially
ramping temporal receptive fields for future cells. Critically, both
populations showed a continuous distribution of time constants
over a wide range. The firing pattern of the past cells resembled
temporal context cells from the entorhinal cortex (32, 33); future
cells behave like a mirror image of the past cells. The pattern
of firing of temporal context cells resembles the real Laplace
transform of the time since the interval began (34). Whereas the
population of past cells codes for the Laplace transform of the
time since a past event, the population of future cells codes for the
Laplace transform of the time until a future event. Together the
two groups form a continuous timeline encoded in the Laplace
domain, as predicted by theory (37).

There are several limitations to the present study. First,
it should be made clear the results presented in this paper
do not straightforwardly generalize to the measurement phase
data. We applied an ex-Gaussian model to analyze these data
and, despite our best efforts, identified no clear pattern nor
systematic relationship between the parameters of neurons in the
measurement phase and the reproduction phase. It is possible that
the measurement data encode stimulus intervals at the population
level, as suggested in the original study (6), or that the information
about the duration of the measurement phase is stored in
another brain area, such as the medial temporal lobe. Second, the
present study is not well-suited to distinguish subtleties between
hypotheses, such as whether the neural population represents the
interval as a whole or represents the temporal information in
relation to a past event and a planned future action separately.
Additionally, it is difficult to determine whether the animal was
planning for timed future actions or replaying the memory of the
stored interval during the measurement phase. These variables
are highly correlated in this study. An experiment where the
reproduced interval could be dissociated from the trained interval
in memory, perhaps by instructing animals to produce not the
interval T , but some factor of the interval, would allow these two
variables to be dissociated (15).

Laplace Transform As a Basis Set for Neural Computation.
The results observed here add to a growing body of work
showing exponential receptive fields with a continuity of time
constants in a broad range of brain regions serving different
functions. Previous work has shown memory for past events with
exponential receptive fields with a variety of time constants in
the entorhinal cortex (32) and precuneus (34), regions believed
to be important in episodic memory encoding and retrieval.
The future cells observed here resemble neurons in the frontal
motor cortex during the waiting period before execution of
a planned lick (38). Dopamine neurons in the midbrain are
believed to be important for learning associations between past
events and predicted future rewards (39). Recent evidence shows
that the firing of dopamine neurons during presentation of a
cue codes for the time of future outcomes (40, 41). As the time
�o between a cue and an outcome is increased, the firing of
dopamine neurons in response to the cue decreases exponentially
as e−s�o . Critically, researchers observed an effectively continuous
distribution of rate constants s across different dopamine neurons.
This is just as would be expected if the firing of dopamine
neurons expressed the time of future outcomes via real Laplace
transform (37, 41–43).

6 of 10 https://doi.org/10.1073/pnas.2404169121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
B

O
ST

O
N

 U
N

IV
E

R
SI

T
Y

 B
U

M
C

, A
L

U
M

N
I 

M
E

D
IC

A
L

 L
IB

R
A

R
Y

" 
on

 S
ep

te
m

be
r 

10
, 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

12
8.

19
7.

28
.1

69
.

https://www.pnas.org/lookup/doi/10.1073/pnas.2404169121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2404169121#supplementary-materials


The present study is thus part of a larger literature showing
evidence for real Laplace transform of the time of past events and
the time of predicted future events. Why would the brain commit
to this coding scheme for the time of events in such diverse
brain regions and tasks? One answer is that Laplace transform
provides a temporal basis set to represent functions of time.
All possible functions over time can in principle be represented
as linear combinations of exponential functions with different
time constants. Moreover, properties of the Laplace transform
that make it useful in the engineering curriculum—efficient
formulae for data-independent operators, turning differential
equations into algebraic equations—may also be useful for neural
computation (44).

Constructing Laplace Transform of the Past and Future with
Recurrent Neural Networks. The results presented here present
two challenges for RNNs that have been extensively studied
as a model of brain dynamics supporting cognition. First, the
effectively continuous time constants of neurons in the network
present a substantial challenge for low-rank RNNs. Second,
although the Laplace transform of functions of time can readily
be generated using diagonal RNNs, the roughly exponential
growth of the future cells present a substantial challenge for these
high-rank RNNs. Finally, we review recent work proposing a
continuous attractor neural network that is able to describe these
dynamics.
Challenges for low-rank RNNs. Low-rank RNNs have been pro-
posed as models for timed behavior . The recurrent matrix of low-
rank RNNs is composed of a few randomly chosen eigenvectors.
The assumption of low-rank recurrence allows the mathematical
properties of the network to be thoroughly understood (20).
However, the eigenvalue spectrum of an RNN controls the
number of distinct time constants it can exhibit. We observed an
effectively continuous distribution of time constants for both past
cells and future cells. The empirical observation of an effectively
continuous distribution of time constants is difficult to reconcile
with low-rank recurrence.

The linear dimensionality of a population with a continu-
ous distribution of time constants is in principle unbounded.
Consider the spanning dimension for a population of past cells
measured from the moment after the population peaks out
to time t. The spanning dimension to time t should go like∫ t

0 p(�)d� where p(�) is the probability of observing a time
constant �. If p(�) were uniform—which is clearly falsified by
the results in the current paper—the spanning dimension would
go up linearly with t. If the time constants were distributed on a
logarithmic scale p(�) ∼ �−1, then the spanning dimension
would increase like log t, a decelerating function that grows
without bound. Studying neural data from working memory
experiments in monkeys, Cueva and colleagues observed that the
dimensionality spanned by neural population indeed increased
sublinearly with recording time (18). The present paper suggests
that, rather than saturating at the rank of recurrent matrix, the
dimensionality spanned by the neural population should grow
without bound as the recording duration increases (42).
Diagonal RNNs for laplace transform are falsified by exponential
growth. It is straightforward to write down an RNN that gives out
a population of exponentially decaying cells with a continuous
spectrum of time constants as a solution (45). For instance, a
population of past cells could be simply constructed from a
recurrent connection with dx

dt = −Rx + f (t), where x(t) is
the recurrent state and f (t) is the external input at time t. If
R is a diagonal matrix with the appropriate values of s along

the diagonal, then one obtains a continuous eigenvalue spectrum
and x(s, t) =

∫ t
−∞

e−st
′

f (t ′)dt ′, the Laplace transform of the
past leading up to the present. There are a number of ways to
implement slow time constants within neurons (46, 47) and
via network effects (48), so this diagonal RNN is a reasonable
computational model to construct Laplace transform of the past.

However, diagonal RNNs are ill-suited to describe exponential
growth as required by the future cells described in this paper. Even
tiny amounts of noise in the initial state would be amplified by
exponential growth. After a short period of time, the pattern
of activation across different cells would no longer be reliable or
coherent. Exponential growth with a spectrum of time constants,
i.e., the future cells observed in this paper, requires something
more subtle than a linear RNN.
Continuous attractor networks for Laplace transforms of delta
functions. The results of the present paper suggest that memory
for the past and predictions of the future are both described as
Laplace transform of a delta function at a particular point in time.
That is, at time t into the delay, the function representing the
time at which the reproduction phase starts is a delta function at
time t in the past. If f (�) = �(�− t), then the Laplace transform
of f isL

{
f
}
(s) = e−st , resulting in exponential decay as the start

of the reproduction phase recedes further into the past. Similarly,
a firing rate of e−s(T−t) across neurons is what one would expect
from the (real) Laplace transform of a delta function at timeT−t
in the future.

If a neural network does not need to represent the Laplace
transform of every possible function, but simply to represent
the Laplace transform of a delta function, then the problem is
much more constrained. If the goal is to generate a logarithmic
distribution of time constants, as observed empirically in time
cells in the hippocampus (31) and consistent with the value of
� observed for the future cells in this paper (Fig. 3F ), then the
network exhibits translation equivariance, making it a strong
candidate for continuous attractor neural networks.

Fig. 4 illustrates the basic insight. Suppose that the values of s
in the population are distributed logarithmically, such that sn, the
value of s for the nth cell, obeys n ∝ log sn

so . Imagine that we can
observe the activity of all the neurons simultaneously and plot
them as a function of n. Now, e−snt as a function of n appears
as an edge for any particular value of t > 0 (within bounds
specified by the minimum and maximum values of s). Changing
the value of t simply shifts the location of the edge. Because of
the logarithmic distribution of time constants, the rate at which
the edge moves depends on its current location.

Continuous attractor neural networks (CANNs), such as those
believed to map onto the head direction circuit in Drosophila
(49), excel at allowing a particular shape of activation to translate
smoothly along a network. The Laplace transform of a delta
function in time requires a CANN with 1) an edge (of a particular
shape) as a solution 2) the rate at which the edge moves depends
on its location. In this case, the primary distinction between
representing the past and the future is the direction and rate at
which the edge moves. A recent paper (50) developed a minimal
CANN to represent the Laplace transform of delta functions.

Future Time Cells Can Be Constructed from Future Temporal
Context Cells. While we observed a Laplace domain timeline in
the present study, it is entirely possible, expected even, that other
brain regions maintain sequentially coded information about the
time of future events, i.e., “future time cells.” Indeed, there is
some evidence for such a phenomenon. Previous researchers
observed highly sequential dynamics in the dorsolateral striatum
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A

B

Fig. 4. (A) The interval begins at t = 0 and ends at t = T . During this period the memory for the beginning of the interval recedes from the present toward the
past and the expectation of the end of the interval approaches from the future closer to the present. (B) The plots on the Left show e−st for several choices of t
as a function of log s. The plots on the Right show function e−s(T−t) for several choices of t as a function of − log s. The value of t is communicated by the shade
of the line, corresponding to the moments in (A) Note that the shape of the pattern of activity over neurons does not change, for either the past or the future.
Thus a continuous attractor network would be able to account for these results. This is only possible if time constants are evenly distributed on a log scale.
Although the difference between the values of t is the same, the distances between adjacent edges are not the same. This is because s is on a logarithmic scale.
Note that whereas the distance between successive lines becomes progressively smaller as the edge recedes into the past, the distance between successive
lines becomes progressively larger as the future approaches.

while mice performed a two-interval timing task (14). Recording
from the cerebellum, Wagner and colleagues observed sequen-
tially activated cells tile time until an anticipated outcome (51).
In the hippocampus and related regions, neuroscientists have
found sequential codes that appear to tile distance in physical
space leading to a goal location (52, 53).

Future cells observed here could be used directly to construct
future time cells, cells that fire in sequence coding for the time
until a planned event. Work on temporal coding of past events
provides a strong analogy for this. It has been shown that temporal
context cells, exponentially decaying cells with a continuous
spectrum of time constants, can be used to generate time cells,
sequentially activated cells with a continuous spectrum of peak
times (54–56). The CANN described above greatly simplifies the
task of inverting the Laplace transform. If the Laplace transform
of a delta function is described as an edge across a network (Fig. 4),
then the inverse transform is well-described by a bump that moves
with the edge (50). More broadly, whatever neural circuit takes
temporal context cells in the entorhinal cortex to time cells in
the hippocampus (assuming for the sake of argument that these
phenomena are causally related), would generate future time cells
if given the future cells observed here as input.

Materials and Methods

Because we took previously published recording data, the specific details about
the data acquisition can be found in the original publication (6). In the section
below we describe the computational analysis applied to the data in detail.

Data Analysis. The goal of these analyses is to identify parameters that best
describe the properties of time fields of temporally responsive cells at both
the trial and population levels. First, we identify and characterize temporally

responsive cells using previously established methods (27, 32). Then we apply
Bayesian models to capture the temporal properties across trials and of the
population.
Selecting temporally responsive cells as input to hierarchical bayesian
model. In order to initially identify temporally responsive cells, spikes were
first analyzed in Matlab 2016a using a custom maximum likelihood script. This
approach has previously been used to identify both time cells and temporal
context cells (27, 32). Fits were restricted to spikes that occurred during the
reproduction phase. We fit the spike trains to five models. The first model was
a constant firing model, which indicates a lack of temporal responsiveness. The
constant firing model,

MCON(t; ao) = ao [1]

contained a single parameter ao, allowed to range between 10−7 and 1, which
predicted a constant probability of firing a spike at time t.

We then considered an exponentially modified Gaussian model, which
describes the firing field as a convolution of an exponential distribution and
a Gaussian distribution. This model was fit to both time elapsed since the start
of the reproduction phase and time remaining until the end of the reproduction
phase. The exponentially modified Gaussian model for time since the start of
the reproduction phase,

MEMG(t; ao, a1, �,�, �) = ao +
a1
2
e

(
2�+ �2

� −2t
)

2� erfc

� + �2

� − t
√

2�


[2]

contained the parameters t, which tracked time since the start of the reproduction
interval, ao (allowed to range between 10−7 and 0.5) describes the baseline
firing rate, a1 (allowed to range between 10−7 and 0.5) describes the amplitude
of the temporal field, � (allowed to range between 0 and the average midpoint
across reproduced intervals for a given cell) describes the temporal receptive
field peak location of the cell, � (allowed to range between 0.01 and 0.5)
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describes the variability of the peak, � (allowed to range between 0.1 and 16)
describes the time constant of the exponential decay in firing, and erfc is the
complementary error function.

In addition, we also considered an exponentially modified Gaussian model
that modulated the exponential time constant by the length of the reproduced
interval. This reproduction length modulated model replaced � with �i, such
that �i = � Ti

5.25 , where �i linearly rescale with reproduced interval length
Ti. Parameters fit by the model spanned the same ranges as in the prior
exponentially modified Gaussian model.

We also fit the exponentially modified Gaussian model for time until the end
of the reproduction phase, replacing t with T − t, with models including both
with � and �i. All parameters fit by the maximum likelihood models for the end
of the delay spanned the same ranges as the parameters in prior models.

We evaluated the models for each neuron using a likelihood ratio test and
counted the number of neurons that were better fit by an ex-Gaussian model at
the 0.05 level, Bonferroni-corrected by the total number of neurons. We further
required that both even and odd trials for a neuron were significantly fit by the
same model, and that those fits had a Pearson’s correlation coefficient greater
than 0.4. In the event that multiple ex-Gaussian models met these requirements
for a given cell, we selected the model with the best log-likelihood. Therefore
the temporal responsive cells are further categorized into cells best fit with an
ex-Gaussian model with time elapsed (t, the “past cells”), and cells best fit with
an ex-Gaussian model with time remaining (T − t, “future cells”).
Hierarchical Bayesian models describe temporal receptive field across
trials. We fit hierarchical Bayesian models inspired by the results from the
maximum likelihood methods, with additional parameters estimated at the
trial level so cells that code for absolute time and cells that rescale with
different reproduced intervals can be captured with the same model. We fit
three hierarchical Bayesian models: full ex-Gaussian, exponential, and Gaussian.
Because ex-Gaussian contains both exponential and Gaussian models, we first
describe the full ex-Gaussian model and detail the other two models after. A
graphic diagram of the Bayesian model we reported in the main section can be
found in Fig. 5

For cells categorized as past cells by the maximum likelihood methods, we
assume a Poisson process binned at 10 ms is applied to evaluate the latent
model MEMG. The model is largely the same as Eq. 2 except that both time
constant � parameter and amplitude of time field a1 are estimated for each
trial i:

Fig. 5. Illustration of the hierarchical Bayesian model. Each node represents
a variable in the model; the filled node represents the observed number of
spikes in each time bin (10 ms) and open nodes represent latent variables.
Arrows represent relationships between variables and plates indicate
whether the variable is estimated at the trial level, or cell level.

MEMG(t; ao, a1, �,�, �i) = ao +
a1i
2
e

(
2�+ �2

�i
−2t

)
2�i erfc

� + �2

�i − t
√

2�


[3]

The trial level time constant �i is modified according to the time constant �
(allowed to range between 0.1 to 10) at 5.25 s with an additional free parameter
� and the interval length Ti:

�i = �
(

1 + �
Ti − 5.25

5.25

)
, [4]

where � quantifies how much and in which directions time constant �i changes
relative to the change of the produced interval length from the baseline
estimation � when the interval is 5.25 s. A positive � indicates the cell increases
its time constant for longer intervals while a negative � indicates the opposite. It
is obvious that a � close to zero means the cell code for absolute time and does
not change its time constant for different intervals. Another value of interest is
when � = 1. In this case the time constant �i linearly rescales with the interval:
For example, if the interval is doubled (Ti = 10.5 s), the corresponding�i would
also be twice the � . When the absolute value of � is smaller than 1, it means
�i changes relatively less compared to the change in the interval length. � are
allowed to take any value as far as the resulted �i from Eq. 4 is positive for the
temporal receptive field estimation.

Another trial-level parameter a1i is allowed to vary freely across trials.
The only constraint was applied indirectly through marginal probability
withtheassumptionthata1i issampledfromanormaldistributionforagivencell.
The Gaussian width� is allowed to range between 0 and 3. For cells categorized
as future cells, we applied the same model as Eq. 3 except replace time elapsed
t with time remaining Ti − t for each trial. For the past cells the peak time �
is allowed to range between 0 to 3 s from the start of each trial; for the future
cells the peak time� is allowed to range between 0 to 3 s to the end of each trial.

Exponential and Gaussian models. We constrained certain parameters in
the full ex-Gaussian model to test alternative assumptions about receptive fields.
For exponential fields, we fixed the Gaussian � at 0.1; everything else remains
the same from the model described above. For Gaussian fields, we fitted a
Gaussian curve, which is equivalent to fixing the time constant � at 0. Just like
the model described above, the Gaussian � is calculated from the beginning
of interval for past cells and from the end of interval for future cells. To add
additional flexibility to the Gaussian model, enabling it to fit individual trial
data similarly to the full ex-Gaussian model, we assume that � can rescale with
interval length in the same way as time constant parameter � in the ex-Gaussian
model: �i = �

(
1 + � Ti−5.25

5.25

)
. � here can be interpreted the same way as

the rescale parameter in Eq. 4. We also considered a linear ramp model with
a threshold. However, because exponential functions ex are well approximated
by linear functions 1 + x for small x, it is in practice difficult to distinguish
exponential functions from linear functions with the amount of trial variability
in spike train data, especially for this task.

The posterior distributions of estimated parameters were generated through
the rStan package (57) with 4 independent Markov-Chain-Monte-Carlo (MCMC)
chains (5,200 warm-up iterations and 50 post warm-up samples in each of the
MCMC chains). This procedure returns posteriors of the likelihood of the data as
well as posteriors for the parameters of the model.
Evaluating the time constants population with Bayesian models. We com-
pared three models (power-law distribution, single normal distribution, and a
mixture of two normal distributions) to describe the time constants population
for the past cellsthe future cellsseparately, after the hierarchical Bayesian models
described above were applied to quantify the temporal receptive field for each
cell. The distribution parameters were estimated through rStan package with
eight independent MCMC chains (4,000 warm-up iterations and 4,000 post
warm-up samples in each of the MCMC chains).

Power-law distribution. The probability density function of Power law
distribution can be derived within the range [min, max] of time constants �:

p(�) = �−�/C, [5]
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where

C =

∫ max

min
�−� d� [6]

is the area under the density function over [min, max].
When � 6= 1, the result of the integration is

C =
max1−�

− min1−�

1− �
[7]

When � = 1, the result is

C = ln(max)− ln(min) [8]

When fitting the Power-law model, we adopt a straightforward approach by
setting the upper and lower bound of the power-law to be the same as the
parameter space of � .

Normal distribution. In the second model, we quantify the time constants
with a single normal distribution:

p(�) =
1

�
√

2�
exp

(
−

1
2

(
� − �
�

)2
)
, [9]

where � is the estimated stereotypical time constant for the population.
Mixture of two normal distributions. The third model we tested is a mixture

model of two normal distributions with the probability of � sampled from the
first normal distribution to be �1 and the probability of the second normal
distribution to be 1− �1:

p(�) = �1normal(�|�1, �1) + (1− �1)normal(�|�2, �2) [10]

Data, Materials, and Software Availability. Analysis code data have been
deposited in Open Science Framework (58).
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