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Abstract

Many cognitive models, including those for predicting the time of future events,
can be mapped onto a particular form of neural representation in which activ-
ity across a population of neurons is restricted to manifolds that specify the
Laplace transform of functions of continuous variables. These populations coding
Laplace transform are associated with another population that inverts the trans-
form, approximating the original function. This paper presents a neural circuit
that uses continuous attractor dynamics to represent the Laplace transform of a
delta function evolving in time. One population places an edge at any location
along a 1-D array of neurons; another population places a bump at a location cor-
responding to the edge. Together these two populations can estimate a Laplace
transform of delta functions in time along with an approximate inverse trans-
form. Building the circuit so the edge moves at an appropriate speed enables
the network to represent events as a function of log time. Choosing the connec-
tions appropriately within the edge network make the network states map onto
Laplace transform with exponential change as a function of time. In this paper
we model a learned temporal association in which one stimulus predicts another
at some fixed delay T. Shortly after t=0 the first stimulus recedes into the past.
The Laplace Neural Manifold representing the past maintains the Laplace trans-
form exp(-st). Another Laplace Neural Manifold represents the predicted future.
At t=0, the second stimulus is represented a time T in the future. At each
moment between 0 and T, firing over the Laplace transform predicting the future
changes as exp[-s(T -t)]. Despite exponential growth in firing, the circuit is robust
to noise, making it a practical means to implement Laplace Neural Manifolds in
populations of neurons for a variety of cognitive models.
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Many authors have proposed that the evolutionary adaptation of the brain is to predict
the future (Clark, 2013; Friston, 2010; Friston & Kiebel, 2009; Palmer, Marre, Berry,
& Bialek, 2015; Rao & Ballard, 1999). Our ability to predict the future depends on
our ability to remember the past. A growing body of work has demonstrated that the
nervous system of many animals uses a Laplace transform, with real s, to construct
a temporal memory of the recent past (Atanas et al., 2023; Bright et al., 2020; Cao,
Bright, & Howard, 2024; Tsao et al., 2018; Zuo et al., 2023). It has been hypothesized
that populations of neurons representing the Laplace transform of functions of time
(and other variables) are paired with another population that represents the inverse
Laplace transform (Shankar & Howard, 2010). We refer to these paired representations
of a continuous function as a Laplace Neural Manifold.

In addition to memory for the past, it has also been proposed that the brain uses
a real Laplace transform to represent the time of predicted future events (Howard,
Esfahani, Le, & Sederberg, 2023). Some neural evidence suggests that this could be
the case (Affan et al., 2024; Cao et al., 2024, Fig. 1). However, constructing a neu-
ral circuit that represents the Laplace transform of the time of a predicted future
event raises significant computational challenges that do not arise in representing the
remembered past. Similar computational challenges arise in building realistic neural
models for Laplace representations of spatial variables during allocentric navigation ?
and evidence accumulation Howard, Luzardo, and Tiganj (2018), so that a solution
to this problem could have applications in many domains of computational cognitive
neuroscience.

This paper addresses this challenge by demonstrating that continuous attractor
neural networks are well suited to construct and maintain a neural population that
represents the Laplace transform of future events. This proposal relies on two assump-
tions. First, the network is restricted to represent the Laplace transform of delta
functions that can change in their location in time. Specifically, the Laplace trans-
form of a delta function centered at τ is e−sτ . Second, the values of s across the
population are distributed uniformly as a function of log time. That is, sn, the rate
constant for the nth neuron, scales as an for some constant a so that the change in
log s for neighboring neurons is constant across all neurons. This choice for the dis-
tributions is consistent with a large body of work in psychology and neuroscience
(Fechner, 1860/1912; Feigenson, Dehaene, & Spelke, 2004; Gallistel & Gelman, 2000;
Van Essen, Newsome, & Maunsell, 1984) and is consistent with empirical findings for
time constants in at least some brain regions (Cao, Bright, & Howard, 2023; Guo,
Huson, Macosko, & Regehr, 2021). When rate constants s are chosen in this way, when
τ changes to cτ the Laplace transform simply translates across the population of cells
by an amount loga c (Figure 2). For a delta function, translation in time also maps
onto rescaling in time. If we translate in time by taking τ → τ + b, this is equivalent
to rescaling time τ → cτ with c = τ+b

τ . Thus, the time evolution of Laplace transform
of a delta function can be represented as translation across a continuous attractor
network if the rate of translation changes as time passes.

One extremely simple way to compute the Laplace transform of the past is to
construct a bank of leaky integrators each with s chosen from a continuous spectrum.
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Fig. 1 Neural representations of the past (left) and future (right) in the brain. Top:
Laplace transform of future and past in mPFC. Recordings are during an interval reproduction
task in which the animal reproduces an interval of duration T . One group of cells decays exponentially
e−st with time during the reproduction phase (left). These neurons peak at about the same time
but have a continuous spectrum of decay rates. This population codes for the Laplace transform of
a delta function a time t in the past. Another population (right) ramps up as e−s(T−t) during the
reproduction phase with a continuous spectrum of ramp rates. This group codes the Laplace transform
of a delta function a time T − t in the future. Data from Henke, et al., (2021). Analyses by Cao, et
al., (2024). Bottom: Inverse Laplace transform of the past in hippocampus. Hippocampal
time cells (left) fire in sequence following a task relevant stimulus. The sequence is understandable as
an approximation of the inverse Laplace transform of time since the sequence began. After Cao, et
al., 2023. Populations of neurons coding for the inverse of the future (right) would fire in in sequence
approaching the predicted time of occurrence. This population is hypothesized, so the figure is simply
a reflection of the data on the left.
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Fig. 2 Laplace Neural Manifolds representing delta functions can be implemented using
continuous attractor neural networks. Top: Memory of the past and prediction of the future as
a logarithmic timeline. Suppose that x and y are experienced consistently with a lag of T seconds.
As time unfolds (horizontal line) after presentation of x at t = 0, the observer will have a memory
for the past (red, below the line) and prediction of the future (blue above the line). Because of the
logarithmic compression of the timeline, the movement of the remembered/anticipated times do not
change evenly as time passes. Middle: The function e−snt for evenly spaced choices of τ (red curves)
as a function of n ∝ log s. If we assume a log distribution of rate constants, such that sn = soan

and n ∝ log s, then evolving e−snt simply amounts to translation. At time t = 0, the future event
is predicted a time T in the future. At time t < T , the future event is predicted a time T − t in the
future. Evolving e−s(T−t) simply requires moving the edge in the opposite direction (blue curves).
Bottom: A bump that translates as a function of time attached to the edge is understandable as the
inverse transform of the original function over log time convolved with some function of log time that
describes the shape of the bump.

The dynamics for each integrator obey

dF

dt
= −sF + f(t). (1)

Let us use the notation ft(τ) to refer the past leading up to the present at time t with
τ =∞ referring to the distant past. The solution of Equation 1 is

Ft(s) =

∫ ∞
0

e−sτft(τ)dτ (2)

from which we can see that Eq. 1, with continuous values of s across neurons describes
a population that codes for the real Laplace transform of the past. If at some moment
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in time, the past consists only of a delta function at one moment τ in the past, then
Ft(s) = e−sτ . Suppose that the stimulus is experienced at t = 0. As time passes,
the stimulus will be τ = t in the past and each neuron will decay exponentially as
e−st. Now consider a population of neurons coding for the Laplace transform of a
future event. Let us suppose that at t = 0 the event is predicted T seconds in the
future. At any moment 0 < t < T , the firing rate across the population represents
a time τ = T − t. As a function of time, the firing rate for neurons representing the
time of a future event should be e−s(T−t). For this population, firing should ramp up
exponentially as a function of time with a continuous spectrum of s. Naturally the
exponential growth cannot continue indefinitely so at time t = T we should observe a
discontinuous change as either the predicted stimulus is observed or the prediction is
violated.

The leaky integrators in Equation 1 could be implemented neurobiologically using
one of many possible mechanisms to affect the functional time constant of individual
neurons. Potential mechanisms include slow intrinsic currents (Fransén, Tahvildari,
Egorov, Hasselmo, & Alonso, 2006; Tiganj, Hasselmo, & Howard, 2015), network recur-
rence (Dahmen, Grün, Diesmann, & Helias, 2019; Stern, Istrate, & Mazzucato, 2023),
or synaptic mechanisms with a diversity of time constants (Barri, Wiechert, Jazayeri,
& DiGregorio, 2022; Guo et al., 2021; Yoshida, Fransén, & Hasselmo, 2008). In prin-
ciple one could adapt Equation 1 to code for the future by initializing the population
to e−sT then updating with Equation 1 but with positive s. However, this approach is
unacceptable. Exponential growth implies that the population would be unstable in
the presence of any amount of noise.

1 Continuous attractor model for Laplace/inverse
representations

The primary contribution of this paper is demonstrating that continuous attractor
networks can be used to evolve Ft(s) in time if two conditions are met. First, at any
particular moment we only need to represent the Laplace transform of a delta function.
Second, the values of sn are in a geometric series. If these two conditions are met, then
evolving Ft(s) in time amounts to translating an edge of differential activation across
the population. Continuous attractor neural networks are well-suited to this problem.

To see why these conditions are sufficient, consider how the solution to Equation 1
changes between time t and t+ ∆t (Figure 2). In general, Ft+∆t(s) = e−s∆tFt(s). Let
the population code a delta function a time τ in the past so that Ft(sn) = e−snτ .
Now, Ft+∆t(sn+∆n) = e−sn+∆n(τ+∆t); if we want the time evolution to be a simple
translation by ∆n, we require that sn+∆n

sn
= τ

τ+∆t . If ∆n is a constant as a function
of n, then we can say that the activity has translated across the population with
the passage of time. ∆n is a constant iff the s are in geometric series. Note that
the magnitude of the translation along n depends not only on ∆t, but on τ as well.
Defining the ratio between adjacent s as a = sn+1

sn
, we find that ∆n = loga

τ
τ+∆t .

The continuous attractor network proposed here consists of two populations. The
population that represents the Laplace transform is an attractor network with interac-
tions that favor neighbors in the same state of activation and the two ends of the array
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clamped to different values. This network exhibits a stable “edge” at any point along
the array. With appropriate choice of interactions this network maps precisely onto
the Laplace transform of a delta function with values of the rate constant chosen in a
geometric series. The “edge attractor” network representing the Laplace transform is
coupled to a “bump” network that takes as input the derivative of the edge attractor
network, placing the bump at a location that corresponds to the location of the edge.
With appropriate feedback coupling between the networks, the bump network pushes
the edge along at a pace that enables the location of the edge to be mapped onto log τ .

Consider the activity of an individual cell at a particular location in the middle in
the bump network. Initially, the cell’s firing is low. As the bump approaches the cell’s
location, its firing increases. As the bump moves past the cell’s location its firing rate
decreases again. As the bump moves monotonically from one end of the network to
the other, each cell is activated in this way at a time that depends on their location
in the network and the rate at which the bump moves. These sequentially activated
cells have behavior that resembles that of “time cells” (Figure 1, bottom left). Time
cells were initially reported in hippocampus (Cao et al., 2023; MacDonald, Lepage,
Eden, & Eichenbaum, 2011; Pastalkova, Itskov, Amarasingham, & Buzsaki, 2008) and
subsequently reported in many other brain regions (Jin, Fujii, & Graybiel, 2009; Mello,
Soares, & Paton, 2015; Tiganj, Cromer, Roy, Miller, & Howard, 2018). If time cells
result from movement of a bump of activity across a continuous attractor network then
there is no mechanistic obstacle to constructing “future time cells” (Figure 1, bottom
right) by simply having the bump travel in the opposite direction. These “future time
cells” have not been characterized in the hippocampus (although spatial predictive
sequences have been observed (Ferbinteanu & Shapiro, 2003; Gauthier & Tank, 2018;
Sarel, Finkelstein, Las, & Ulanovsky, 2017)). There is some evidence for predictive
sequences in other brain regions, including cerebellum (Wagner, Kim, Savall, Schnitzer,
& Luo, 2017), although the empirical story is not nearly as clear as for standard time
cells.

1.1 Overview of the circuit model

To generate the Laplace transform of a delta function using neurons with logarithmi-
cally distributed rate constants we require 1) a continuous attractor neural network
with an edge attractor with the correct shape and 2) translation of the edge over the
network in time with a speed dn̄/dt proportional to 1/τ . Inverting the transform can
be accomplished with another continuous attractor neural network that places a bump
of activity in an analogous location as the edge. Because the location of the edge is
understandable as log time, so too the bump also translates as a function of log time.
Because the bump should have the same shape at any moment in the past, neurons
in the bump network will naturally inherit scale-invariant properties observed for hip-
pocampal time cells (Cao, Bladon, Charczynski, Hasselmo, & Howard, 2022). Because
the bump has the same location as the edge, the pattern over the bump network is
understandable as the original function over log time, convolved with a function of
log time that describes the shape of the bump. In this sense, the state over the bump
network approximates the inverse Laplace transform, but as a function of logarithmic
time.
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We want an edge attractor to approximate L{f}(s) for delta functions f(t − τ),
with real values of s sampled along a log scale. Our strategy will be to use two sets
of neurons (Fig. 3) labeled by index n. We will treat n as continuous and align the
two populations with one another. We will design the connections within and between
these two sets of neurons x(n) and y(n) so that their stable states are simply related to
the Laplace transform of f and the inverse transform respectively. This paper builds
a minimal circuit to accomplish these goals and does not attempt a computationally
optimal nor biologically detailed model.

The real Laplace transform of a delta function at a point on the positive line
takes values between zero and one. The continuous attractor neural network x(n)
goes from −xmax to xmax. We provide external input to clamp the two edges of the
network at n = 1 and n = N to these extreme values. Ferromagnetic interactions
between units within x(n) encourage neighboring units to have the same activation.
These ferromagnetic interactions are implemented by connections wr; the weights on
the connections between units within x depend only on their distance in the network,
n−n′. If the parameters of the network are chosen such that it resembles a ferromagnet
at low temperature, then somewhere between the ends of the network, there should
be a transition between maximal and minimal values. This boundary, or edge, can be
at any location along the network as long as the range of the local interactions is far
from the ends n = 1 and n = N . The requirement that the neurons code real Laplace
transform requires a specific shape of the edge, which in turn requires a specific form
for connection weights.

In this paper we adopt a minimal approach to the bump network. Rather than
recurrent connections within y(n) we simply take input to neurons in y(n) to be large
if there is an edge in the neighborhood of each n.

The input to y(n) from x(n) is provided by wd, which simply computes the deriva-
tive of x(n) in the neighborhood of n. Again, the connections between x(n) and y(n′)
depend only on n− n′. The bump then provides feedback to the x(n) via connections
v(n), causing the edge to move over time. By choosing v(n) to depend on n appro-
priately we can control the rate at which the edge moves at different points along the
network.

1.2 Continuous attractor neural network with edge solutions

To define the neural dynamics, we use a simple neural firing rate model:

dx(n)

dt
= −x(n) + I(n) +

∑
n′

wr(n− n′)h
[
x(n′)

σr

]
+ wf (n− n′)h

[
y(n′)

σh

]
+ ξ (3)

dy(n)

dt
= −y(n) +

∑
n′

wd(n− n′)h
[
x(n′)

σh

]
+ ξ. (4)

Here x and y represent instantaneous relative neural firing rates. I(n) consists of a
large negative input current −i applied from n = 1 to ni and large positive input
current +i applied at the other end of the network from n = N to N − ni, which
sets boundary conditions so that the edge has an orientation with small n neurons
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Fig. 3 Schematic of network setup. The edge attractor is distributed over one set of units x(n),
utilizing recurrent connections wr within this set of units. Another set of units y(n) supports a bump.
Connections wd from x provide input to y. These connections estimate the derivative with respect
to n. Connections from x to y, wf , move the location of the edge as a function of time. Because the
strengths of these connections are a function of n, the velocity of the edge v depends on the location
of the edge.

saturated at −xmax and large n neurons saturated at +xmax. The kernel wr defines
connections among x neurons with varying n and determines the shape of the edge.
The kernel wd defines connections from x to y, and is set to implement an effective
derivative of x(n) being represented in y(n). The kernel wf defines feedback from y
neurons to x neurons. The nonlinear function h = tanh defines the mapping from
neural state to synaptic current, with width σr among x neurons, and σh for all other
synaptic connections. Uncorrelated Gaussian noise is represented by ξ, parameterized
such that variance is added at a rate σ2

ξ .
In simulations, we initialize the neural states to a stationary state x∗(n), y∗(n),

found numerically by setting feedback wf and noise σξ to zero, with the edge and bump
set initially at location n̄0. Translation equivariance of wr, wd, and wf implies that
the edge can smoothly translate to any location n̄ along the network. In implementing
cognitive functions, one might imagine using input to set the initial location of the
edge. Once the network is in a stable edge state, this input can be removed.

1.3 Mapping edge solutions to the real Laplace transform

We desire that there be a mapping from neuron index n to the Laplace variable
s, s(n). At any moment, the Laplace transform of a delta function at time τ gives
F (n) = e−s(n)τ . Therefore, if the network has successfully represented Laplace trans-
form of a delta function, we should be able to observe a particular unit as time evolves
and see exponential changes in firing with rate constant s(n). To ensure the time evo-
lution of the network is simply translation of the edge, we require that s(n) ∝ an for
some constant a. Equivalently, we require n = loga

s
s(n=1) , so that the s(n) form a

logarithmic time scale for location of the edge. Thus we set the size of the scale factor
between s of neighboring neurons to be a, with a < 1. In the limit that a→ 1, we get
a continuum limit in which neighboring neurons represent infinitesimally distinct s.

The dynamics defined by Equation 3 produce x varying between−xmax and +xmax.
The Laplace transform of a delta function with τ > 0 should vary between 0 and 1,
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so we define

F (s) =
1

2

[
x(s)

xmax
+ 1

]
. (5)

To get the stable states as a function of n to be identified with Laplace transform of
a delta function, we need the edge to have the right shape and for the edge to move
at the proper speed. Given that those problems have been solved (see below), the
activity over y(n) will map onto the inverse Laplace transform as long as the bump
is located at an analogous n and does not change shape as the edge moves along n. If
these conditions are met, then the bump state is understandable as the convolution
of the delta function f as a function of log τ and some function of log τ that describes
the shape of the bump over n.

1.4 Setting the interaction kernels

We will first set aside the problem of defining wr, which sets the equilibrium shape of
the edge, and merely assume that x(n) is monotonically increasing in n, with an edge
location defined as the (interpolated) n̄ at which x(n̄) = 0. To get such an edge state
to move, we will first approximate the derivative of x with respect to n in the states
of the y neurons, then use y(n) to drive the edge at the desired speed.

1.4.1 Forming a bump in y

First, we want y(n) to represent a (discrete) derivative of x(n):

y(n)→ 1

2
[x (n+ 1)− x (n− 1)] . (6)

In equilibrium assuming constant input and neglecting noise, from Eq. 4,

y(n)→
∑
n′

wd (n− n′)h [x (n′) /σh] . (7)

If we set the scale of the nonlinearity σh large enough, then h [x (n′)/σh] ≈ x(n′)/σh,
and we can implement the derivative simply by setting

wd(n− n′) =
σh
2

[δ (n− n′ − 1)− δ (n− n′ + 1)] . (8)

1.4.2 Moving the edge to form a logarithmic time scale

With neural states y(n) representing the derivative of the edge as a function of n
(Eq. 6), this can be rescaled and applied as an input to the x neurons to move the edge.
We then define wf to feed y back to x with a scaling factor v that can depend on n:

wf (n− n′) = −σhv(n) δ(n− n′). (9)
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A constant feedback strength v(n) = vc moves the edge with constant speed dn̄
dt = vc.

To see this, consider solving for the input necessary to move an equilibrium edge
with shape x∗(n) a small distance ∆n̄ in time ∆t. Since there is a continuous set of
steady state edges with shape x∗(n), the needed change in x as a function of n is

∆x = x∗(n −∆n̄) − x∗(n) ≈ −∆n̄dx
∗(n)
dn . Then near equilibrium the necessary input

term added to dx
dt to produce motion with speed vc = ∆n̄

∆t is −vc dx
∗(n)
dn . Finally, with

y(n) ≈ dx∗(n)/dn, h[y(n′)/σh] ≈ σhdx∗(n)/dn, so we need wf = −σhvcδ(n− n′).
Instead of having the edge move with constant speed, we want n̄ to grow

logarithmically in time:

n̄(t) = n̄0 + loga
t

t0
, (10)

corresponding to edge speed
dn̄

dt
=

1

ln a

1

t
. (11)

As a function of n̄, this corresponds to

dn̄

dt
=

1

ln a

1

t0
a−(n̄−n̄0) (12)

because t(n̄) = t0a
(n̄−n̄0).

If we make the assumption that the bump is sufficiently localized in n such that
we can replace variations in v(n) along the bump with the value at the edge location
v(n̄), then we get the desired speed by setting

v(n) = v0 a
−(n−n̄0) (13)

where we have replaced n̄ by n in the desired dn̄
dt and set the initial speed v0 = 1

t0
1

ln a .
In our simulations, we must limit the size of v to avoid an instability that arises

due to the feedback loop from edge to bump to edge neurons. We therefore limit v to
a predefined vmax. This does not affect the edge motion as long as the range of n over
which the limitation acts does not significantly overlap the edge locations.

1.4.3 Reversing velocity of the edge and bump to represent events
as a function of future time

To change the direction in which the edge moves, we can simply flip the sign of the
desired velocity v(n). Note that the dependence of the initial velocity v0 on t0 means
that the edge moves in the correct direction when t0 > 0 corresponds to representing
past events, with the edge moving toward larger n, and t0 < 0 corresponds to rep-
resenting future events, with the edge moving toward smaller n. If at time t = 0 the
future event is predicted at future time T , then at time 0 < t < T , the x(n) corre-
sponds to Laplace transform of a delta function at τ = T − t. In parallel, the network
representing the past represents a delta function at τ = t.

In our example simulations, we demonstrate the representation of an event in the
past (at τ = 0) that is going further in the past by setting t0 = 25 and letting time
t run forward to t = 175. We demonstrate the representation of an event predicted
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to happen in the future (also at τ = 0) by setting t0 = −175 and letting time t run
forward to t = −25.

1.5 Setting the shape of the edge to ensure time course of
each unit in x(n) is exponential

Finally, we set the edge shape by solving for the form of interactions wr among x
neurons. Note that an edge of any shape that moves with speed ∝ 1/t corresponds to
x decaying in time for a given n at a rate s(n) that decreases geometrically with n:

s(n) =
1

t0 a(n−n̄0)
. (14)

Here we set the constant prefactor by stipulating that s(n = n̄(t)) = t−1 for all t.
Specifically, the neuron corresponding to the starting location n = n̄0 has rate constant
s = t−1

0 . The shape of the decay of a given neuron’s state with respect to time will be
some function

x(t, n) = F [s(n) t] . (15)

F(s t) will be set by the shape of the edge as a function of n, which is in turn controlled
by wr. For x(n) to correctly represent the Laplace transform F (s) when rescaled as in
Eq. 5, we want the state of individual neurons to decrease exponentially as a function
of time. As a function of t and n, we want the output to be

e−As(n) t = exp

[
−A t

t0
a−(n−n̄0)

]
, (16)

with a constant A that we set to A = ln 2 to fix the edge location n̄ = n̄0 at time t = t0.
At a fixed time t with corresponding edge location n̄ (setting t = t0 and n̄ = n̄0), this
corresponds to a desired functional shape of

Fd(n, n̄) = exp
[
−Aa−(n−n̄)

]
. (17)

In terms of neural states, we need, from Equation 5

xd(n, n̄)

xmax
= 2Fd(n, n̄)− 1. (18)

The equilibrium shape of the edge as a function of n is the solution of

x∗(n) =
∑
n′

wr(n− n′)h [x∗ (n′) /σr] . (19)

using Eq. 3 and neglecting terms corresponding to feedback, noise, and inputs at the
boundaries. We then want to solve Eq. 19 for wr given x∗(n) = xd(n) as in Eq. 18.
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N 100
n0 50
σh 20
σr 0.5
a e0.25

xmax 2
vmax 1
i 100
ni 5
∆t 10−1

σ2
ξ 10−3

δn 0.1256
Table 1
Simulation
parameters.

Note that, in the limit σr → 0, the tanh nonlinearity becomes a step function. In
this limit, and assuming x∗(n) has a single zero crossing at n̄, Eq. 19 produces

x∗(n+ 1)− x∗(n) = −2wr(n− n̄). (20)

Thus we can get the desired edge shape by setting the interaction kernel proportional
to the derivative of the desired edge shape with respect to n (Amari, 1977):

wr(n− n′) ∝ −
dFd(n, n

′)

dn
∝ a−(n−n′)Fd(n, n

′). (21)

The overall scale factor of the interaction kernel sets the scale of the equilibrium neural
states, xmax. To set xmax precisely in the discrete case, we numerically normalize the
interaction kernel, resulting in

wr(∆n) = xmax
w̃r(∆n)∑
∆n w̃r(∆n)

, (22)

where we define ∆n = n− n′ and

w̃r(∆n) = a−∆n exp [−Aa−∆n]. (23)

As can be seen from Eq. 23, these weights are asymmetric (they are not even in ∆n).
The network will give an edge for many choices of weights; this expression, coupled
with the velocity of the edge as specified in Eq. 13, gives exponential decay in time.

1.5.1 Simulation methods

Here we illustrate properties of the continuous attractor neural network model with
simulations, integrating the dynamics using a simple Euler timestep ∆t. In our sim-
ulation, setting σr = 0, i.e., using a step function nonlinearity instead of tanh, does
successfully create the desired edge shape, but the infinitely sharp interactions effec-
tively pin the edge to the lattice, not allowing the edge to move smoothly along n.

12



That is, the continuous nature of the attractor states is interfered with by the dis-
creteness of the lattice. To mitigate this effect while still keeping close to the desired
edge shape, we reduce σr as much as possible before pinning becomes strong. We find
that σr = 0.5 is a good compromise, and that values between 0.15 and 0.5 produce
relatively indistinguishable results.

A second complication due to discretization comes from the fact that setting wr
using the above logic, which assumes continuity, on discrete lattices leads to an edge
that moves slowly over time even with zero input feedback. To fix this, we numerically
solve for an offset value δn that produces zero change in the edge’s location after one
application of the offset interaction kernel wr(n−n′+δn). Given our other simulation
values, we find δn = 0.1256.

2 Results

Figure 4 shows the activity over the network at different evenly-spaced moments in
time. At t = 0, a stimulus that predicts a future event at time T is presented. At
time t > 0 neurons in the x(n) mapping onto the Laplace transform of the past
represent a time τ = t in the past; neurons in the x(n) mapping onto Laplace trans-
form of the future represent a time τ = T − t in the future. The simulation of the
continuous attractor network exhibits the desired properties and gives results closely
analogous to Figure 2. With the passage of time the edge/bump changes its position
but retains its shape. When τ is bigger, the edge/bump complex is further from n = 1.
As time passes, the edge/bump representing the past moves more slowly whereas the
edge/bump representing the future moves more rapidly.

Rather than looking at the pattern of activity across the population at different
points in time, Figure 5 describes activity of the edge network as a function of time.
First, as can be seen from the top row, the location of the edge, operationalized as
the value of n where activity passes through zero, moves as desired (Equation 10) for
both representations of the past (left) and the future (right). This is a consequence
of the choice for v(n). Second, following the time course of individual units in the
edge network, we find exponential firing as a function of time with a rate constant
controlled by s(n). The bottom panel shows the time course of individual cells rescaled
by each cell’s value of s. It is clear that individual cells follow the same time course
up to a scaling factor. This is a consequence of the logarithmic rate at which the edge
progesses. The inset plots the firing as a function of time on a logarithmic scale. The
nearly straight lines are consistent with an exponential time course, allowing a mapping
between the activity of x(n) and the real Laplace transform. Units participating in
the representation of the future (right) grow exponentially.

Because the representation of the time of future events requires exponential growth,
tt would be impossible to construct an estimate of the Laplace transform of the time of
future events using independent leaky integrators as in Equation 1. With independent
neurons, even a small amount of noise would be rapidly amplified so that the pattern
of activity can no longer reliably code for the time until the predicted event. Figure 6
repeats the simulation in Figure 5 but in the presence of noise. As can be seen from
visual inspection, the noise in the network is stable over time. The location of the edge
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Fig. 4 Simulated dynamics of continuous attractor neural network model for Laplace
transform of events in the past and the future. Layout is as in Figure 2. Top: Activation x(n)
over the network at four different time points. Bottom: Activation y(n) at the same time points. Left:
Networks representing the past e−sτ at evenly-spaced τ . Note that the edges become closer together
as events recede into the past. Right: Networks representing the future e−s(T−τ) at evenly-spaced
τ . Note that the edges become more widely separated as the event approaches from the future. Here
noise σ2

ξ = 0, with other simulation parameters listed in Table 1

still moves as desired and the time course of individual neurons still follows exponential
functions albeit with fluctuations around the mean. Critically, neurons representing
the time until predicted future events grow smoothly even in the presence of noise.

The properties of the edge/bump networks in this paper are thus sufficient to
describe the basic properties of time-sensitive neurons observed in the brain. Figure 7
plots the results of the same simulation in Figure 6 using the same conventions as
used to show the neural data in Figure 1. In this plot, units are sorted as a function of
n on the horizontal axis and the relative firing rate of each neuron is shown via color
as a function of time. Neurons in x resemble the firing of exponentially decaying and
ramping neurons in the mammalian brain (Cao et al., 2024). Neurons in y coding for
the past (lower left) fire sequentially with a characteristic hook that resembles “time
cells” observed in the hippocampus and other brain regions (Cao et al., 2022). The
bump in the network associated with the future (lower right) provides a mirror image
of the time cells. These hypothesized “future time cells” have more cells firing near
the time of the predicted event and with narrower temporal receptive fields.

3 Discussion

This paper developed a simple continuous attractor neural network with stable states
that form an edge at any position along a line of neurons. This attractor neural
network is coupled to another set of units that express a bump at a location that
aligns with the edge. The speed at which the edge moves is controlled by feedback
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Fig. 5 Simulated dynamics of the continuous attractor neural network circuit model
aligns with the theoretical properties of Laplace transform of the past and the future.
Top: The location of the edge/bump as a function of τ moves as desired by the theory. Middle:
Individual neurons in x decay/ramp exponentially in time, as required for the Laplace transform of
a delta function. Bottom: Individual neurons in x decay/ramp according to the same function. The
time dynamics of individual neurons in x differ only in their time scale. In this figure, noise σ2

ξ = 0.

from the bump neurons to the edge neurons. By allowing these connections to change
as a function of position along the line, the edge moves at different speeds. Because we
chose the velocity to be proportional to inverse time, the location of the edge/bump
at any moment can be understood as the logarithm of elapsed time. Because the edge
attractor has recurrent dynamics, this network is robust to noise. By changing the
sign of the feedback signal we can allow the edge/bump to move in either direction.

The choices made in constructing the neural network were made to allow a mapping
of the population x(n) onto L{ft}(s) where ft is a delta function t seconds in the past
and s(n) ∝ an. This implies that the bump is interpretable as an approximation of
the original function f projected onto log time. The bump is just f convolved with
some function over log time describing the shape of the bump. While the precise shape
of the connections within and between each layer affect the shape of this function,
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Fig. 6 Circuit model for Laplace transform is robust to noise. Layout analogous to Figure 5.
Here, the noise parameter σ2

ξ was increased from 0 to 10−3.

the interpretation of y(n) as an approximation of the original function projected on
log time depends only on the translation-equivariance of the stable states of x(n) and
the rate at which the edge moves as a function of time. This work allows a precise
connection between abstract cognitive models using a Laplace Neural Manifold and
circuit-level attractor neural network models.

This framework is sufficiently general to represent both memory for the past—
delta functions f that move further from zero as time passes—and the future—delta
functions f that approach zero as time passes. The function v(n) controls the speed
at which the edge/bump moves across the network. To represent the future the edge
moves in the opposite direction and the sign of v(n) is reversed. This results in units
in x(n) that ramp upwards exponentially in time with a variety of time constants
(Figure 5). It would be extremely challenging to build a network with this property
with independent units, as in Equation 1.
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Fig. 7 Dynamics are similar to those observed in the brain. Layout is analogous to Figure 1.
Top: The firing rate of each cell in an edge attractor network x(n) as a function of time sorted on
location in the network n. On the left, the edge moves from small n to large n with v(n) positive.
On the right, the edge moves from large n to small n with v(n) negative. The cells in these networks
emulate neurons coding for the Laplace transform of the past and the Laplace transform of the future
respectively. Bottom: The activity of neurons in the bump network y(n) as a function of time for the
corresponding edge attractors. The neurons in these networks emulate time cells coding for the past
(left) and hypothesized “future time cells” (right).

3.1 Limitations of this approach

Our attractor network acts as a good approximator of a Laplace transform within a
certain limited regime. In particular, the approximation breaks down at small times
|t−τ |, near the singularity at t = τ , due to the network’s inability to support arbitrarily
large time derivatives. In our setup, we limit the magnitude of v(n) to vmax, meaning
that the edge velocity approaches a constant at t→ τ instead of diverging as in Eq. 11.
This could correspond to a limitation in the ability to represent times in the very near
past or future. At the other extreme, the approximation also breaks down at large
|t− τ | because noise overwhelms the signal of small time derivatives. At large enough
|t − τ |, the edge would cease to move at the desired slow speed and would instead
diffuse randomly. This could correspond to an inability to represent times in the very
distant past or future.

3.2 Extensions of this approach

The present paper describes a minimal circuit to build the Laplace transform for
remembered past and predicted future times. There are many possible elaborations
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that would enhance its biological realism, computational stability, and application to
a wider range of cognitive problems.

3.2.1 Symmetric weights; Alternatives to Laplace transform

In a continuous attractor network, recurrent excitatory connections are typically cho-
sen to be symmetric as a function of distance within the network. In this paper we
chose the weights wr to give a shape of the edge that results in each unit’s activa-
tion evolving in time as an exponential function. This choice required weights that are
not precisely symmetric as a function of distance within the network (Eq. 22). Dif-
ferent weights would have resulted in a different-shaped edge and the time course of
the individual neurons would no longer follow an exponential function. Although the
activity over that network would no longer be directly related to the Laplace trans-
form it would still be effective as a working memory representation over a logarithmic
timeline.

The Appendix shows results analogous to Figures 4 and 5 computed with a network
identical to the one in the main text except that the connections wr are chosen to be a
symmetric function of the distance between units in x, as is more typical in continuous
attractor neural networks. The edge still moves in such a way that the location of the
edge n̄ changes with log time. This is a consequence of the velocity controlled by v(n).
With symmetric wr, the time courses of individual units are still rescaled versions of
one another (mapping onto a single scaling function as in Eq. 15) with a time constant
that goes like 1/sn (Figure 5 bottom). This means that the activity across x(n) can
still be understood as an integral transform of the delta function f .

The symmetric edge model described in the Appendix would be very difficult to
distinguish empirically from the model that maps onto the Laplace transform described
in the main text. The symmetric model results in y(n) being understandable as a
representation of the delta function f as a function of log time, although convolved
with a slightly different bump shape. Cognitive models of retrieval time in working
memory tasks rely on this logarithmic timeline moreso than the shape of the bump of
activity (Howard, Shankar, Aue, & Criss, 2015; Tiganj, Tang, & Howard, 2021). The
distribution of time constants that would be estimated from units in x(n) with the
symmetric model is identical to the distribution estimated from the Laplace model.

3.2.2 Including recurrent bump dynamics

A great deal of theoretical (Amari, 1977; Redish & Touretzky, 1997; Zhang, 1996)
and empirical (Kim, Rouault, Druckmann, & Jayaraman, 2017; Taube, 1998) work
has studied the properties of continuous bump attractor neural networks for use in
neuroscience and psychology (Schöner & Spencer, 2016). In these networks, recurrent
excitatory connections within a population of neurons fall off as a function of distance
within the network. In addition, some form of inhibition, perhaps divisive normaliza-
tion or global inhibition, places an upper limit on the activity of the network. These
two constraints mean that the network can support stable states that take the form of
“bumps” of activity across the population. Because the strength of the excitatory con-
nections between neurons depends only on distance in the network, the stable bump
can be localized at effectively continuous locations.
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The activity over y(n) showed bumps of activity. However, these did not depend
on recurrent connections between the units in y but were inherited from input from
the x(n) via connections wd, which computes the derivative of x(n) with respect to n.
Inclusion of recurrent weights within y(n) would not have had a major impact on the
properties of this network. We would expect such a network to be more resistant to
noise as recurrent weights within both x and y would tend to stabilize the network.
Because the bump attractor would be stable at all locations, inputs from x(n) that
estimate the derivative should place the bump attractor in the appropriate location.
Although the shape of the bump would certainly change depending on the form of the
recurrent weights within units in y, as long as the location of the bump coincides with
the edge, activity over y(n) is interpretable as the original function f over log time
convolved with some function describing the shape of the bump attractor.

3.2.3 Dynamic control of edge/bump location

The speed at which the edge/bump complex moves in this model is controlled by
v(n). Choosing v(n) to be exponentially decreasing in n allows the location of the
edge/bump to be interpretable as log time. Suppose, however, that it were possible
to modulate all of the connections by a time varying external signal, something like
v(n) ∝ α(t). If α(t) = 0 the edge/bump would stop moving, regardless of its location.
If α(t) > 0, then when it is bigger the edge/bump moves faster. If α(t) is controlled
by the time rate of change of some external variable such that α(t) = dz

dt , then the
edge/bump moves like loga z.

This property is extremely useful in computational neuroscience. For instance, the
place code in the hippocampus and related regions is believed to result from integra-
tion of velocity signals. In the context of spatial navigation, neurons participating in
an edge attractor driven by spatial velocity would behave like “border cells” (Camp-
bell et al., 2018; Solstad, Boccara, Kropff, Moser, & Moser, 2008). Critically, the edge
attractor model proposed here predicts that border cells should have a continuous
distribution of space constants controlling the width of their spatial receptive fields.
Cells participating in the bump attractor would behave in one dimension as boundary
vector cells (Barry et al., 2006; Lever, Burton, Jeewajee, O’Keefe, & Burgess, 2009;
Sheehan, Charczynski, Fordyce, Hasselmo, & Howard, 2021); in two dimensions con-
junctions of boundary vector cells would have properties like canonical hippocampal
place cells (Burgess & O’Keefe, 1996).

Similarly, cognitive and neural models of decision-making accumulate evidence over
macroscopic periods of time (Gold & Shadlen, 2007; Ratcliff, 1978). At each moment,
evidence accumulator models keep track of the distance in an abstract space to decision
bounds. When the distance to one of the bounds reaches zero, a behavioral decision is
made. In this case, the velocity signal α(t) is the evidence available at each moment t
(Howard et al., 2018). Neurons in x(n) participating in evidence accumulation should
behave more or less like classical evidence accumulation cells ramping until a threshold
when a decision is made (Hanes & Schall, 1996; Shadlen & Newsome, 2001). Different
units in x(n) state ramp at different rates depending on their value of n, exhibiting
different “evidence constants.” Neurons participating in the bump during evidence
accumulation should have receptive fields at different locations along the evidence axis,
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not unlike observations in rodent cortex (Koay, Charles, Thiberge, Brody, & Tank,
2022; Morcos & Harvey, 2016).

3.3 Cognitive models using edge/bump attractors

In many physical systems a coarse-grained description of the problem gives rise to
different physics than a finer-grained description. In this sense the levels of descrip-
tion each require their own models (Anderson, 1972). Ideally, each of the levels should
seamlessly connect to one another. The major challenge of computational cognitive
neuroscience is mapping neural circuits onto cognitive models. Cognitive models pro-
vide a low-dimensional description of behavior; if neural circuits can be mapped
directly onto cognitive models, then this provides a link from that circuit model to the
behavior of the organism. For instance, the diffusion model (Ratcliff, 1978) describes
the degrees of freedom necessary to provide a more or less complete description of
behavior in many evidence accumulation tasks. Insofar as that is true, to the extent
an RNN or an attractor model can be mapped onto the diffusion model (Daniels,
Flack, & Krakauer, 2017) it can describe all the relevant behavior, but may or may
not accurately describe neural-level mechanisms. The flexibility of Laplace/inverse
representations for cognitive models of a wide range of behavioral tasks (Howard et
al., 2018, 2015; Tiganj et al., 2021) suggests that the circuit developed here could be
adapted for many cognitive operations. The Laplace Neural Manifold also provides
an alternative hypothesis for constraining neural mechanisms, which makes distinct
predictions about the mapping onto neural data.

Most of contemporary computational neuroscience starts from neural circuits and
attempts to map onto behavior as an emergent property. The present approach—
mapping cognitive models specified as Laplace transform and inverse onto neural
circuits—is conceptually distinct. Rather than starting from neural circuits that seem
biologically reasonable, this paper starts with a hypothesis for the collective behavior
of neurons and then constructs a neural circuit to satisfy those requirements. Because
the form of representation is motivated by constraints from cognition, the mapping
onto cognitive models is assured.

3.3.1 Neural models for evidence accumulation

The traditional way of interpreting the diffusion model is that each neuron in a pop-
ulation provides a noisy estimate of the decision variable (Zandbelt, Purcell, Palmeri,
Logan, & Schall, 2014). This then suggests a dynamical system view where the two
options in the decision are associated with mutually exclusive attractors (Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006; Wang, 2008). Distance to bound can then
be derived by a linear projection of the network state along the vector connecting the
two attractors. This approach makes several empirical predictions that are distinct
from the present edge/bump system. Most notably, there is no natural way to map
this idea onto the observation of decision-related sequences. Conversely, circuit mod-
els that create decision-related sequences do not provide an account for why in other
brain regions and/or behavioral tasks, monotonic decision-related ramps are observed
(Brown et al., 2023). Starting from the assumption that the decision variable is mapped
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onto a Laplace Neural Manifold naturally generates both of these two functional cell
types. Neurons in x(n) should show classical ramping behavior as a function of the
decision variable; neurons in y(n) should show sequential activation as a function of
the decision variable.

Rather than voting for the time since an item was experienced—or the time until
a planned action is executed or a decision variable etc— with their firing rates, in
this view, neurons collectively represent information. This collective encoding differs
from homogeneous voting when decomposing the unique and redundant contributions
of individual neurons (Daniels, Ellison, Krakauer, & Flack, 2016). Specifically, each
neuron in x(n) spends most of its time in a high state of activation or a low state
of activation, providing information about whether τ (or T − τ) is greater or lesser
than 1/sn. Although the total activation across x(n) is correlated with log τ , more
precise information about time can be read off by observing the pattern across the
entire population. Similarly, individual neurons in y(n) provide information about the
number τ by means of the location of the bump; the average firing rate over the
network is not correlated with τ .

The Laplace manifold mechanism also differs from fixed-point attractor models
of decision making in the origin of slow variables (Khona & Fiete, 2022; Langdon,
Genkin, & Engel, 2023). Models that represent a binary decision using two attractors
must tune one collective variable to a critical point in order to produce critical slowing
down that allows for evidence accumulation at a slower timescale than intrinsic neural
dynamics (Daniels et al., 2017; Wang, 2002). The Laplace manifold mechanism instead
has built-in slow dynamics from the continuous symmetry of the attractor, which
requires tuning of all N neurons.

3.3.2 Data-independent operators for cognitive computation

Finally, we note that properties of the Laplace transform make it well-suited to
describe data-independent operators for manipulating information (Howard & Has-
selmo, 2020; Howard et al., 2015). The network x(n) represents the Laplace transform
of a delta function—essentially a single continuous number—on a logarithmically-
compressed number line. There is a great deal of evidence that the nonverbal number
system is also logarithmically-compressed (Dehaene & Brannon, 2011; Gallistel & Gel-
man, 2000; Nieder & Dehaene, 2009). If we could construct neural operators to, say,
add and subtract any arbitrary pair of numbers, this would be extremely powerful
for cognitive computation (Fodor & Pylyshyn, 1988; Gallistel & King, 2011). If it
were possible to combine information from two networks representing numbers with
the representation used by x(n), it would be straightforward to write out networks
for addition and subtraction. For instance, note that if we have two delta functions f
and g centered at locations a and b, then the convolution f ∗ g is centered at a + b.
Thus, adding two numbers amounts to convolving the two delta functions. The Laplace
transform is extremely efficient for computing convolutions due to the fact that the
transform of the convolution of two functions is simply the pointwise product of the
two transforms. In this way neural circuits for numerical cognition can be constructed
by elaborating the edge/bump attractor network developed here.
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Fig. A1 The motion of symmetric edges. Layout analogous to Figure 4. However, this uses
the symmetric recurrent weight kernel in Eq. A1 instead of Eq. 23.

A1 Appendix

A1.1 Using a symmetric edge

Using a recurrent weight kernel wr(n − n′) that is symmetric (even in ∆n = n − n′)
produces symmetric edge shapes. As discussed in the Methods, such a setup will
still produce an edge that moves with the desired speed, with dynamics of individual
neurons that are still simply rescaled in time. Yet the symmetric case does not produce
a representation of the Laplace transform, as the state of individual neurons does not
depend exponentially on time.

To demonstrate this case explicitly, we simulate the dynamics using a Gaussian
kernel:

wr(∆n) = J exp(−∆n/σ2
k). (A1)

The resulting dynamics are shown in Figs. A1 and A2, using J = 22, σk = 1 and other
parameters as in Table 1.

29



Fig. A2 Symmetric case reproduces time scaling properties except for exponential
decay. Layout analogous to Figure 5. However, this uses the symmetric recurrent weight kernel in
Eq. A1 instead of Eq. 23.
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