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Neural dynamics of motion perception:
Direction fields, apertures,
and resonant grouping

STEPHEN GROSSBERG and ENNIO MINGOLLA
Boston University, Boston, Massachusetts

A neural network model of global motion segmentation by visual cortex is described. Called
the motion boundary contour system (BCS), the model clarifies how ambiguous local movements
on a complex moving shape are actively reorganized into a coherent global motion signal. Unlike
many previous researchers, we analyze how a coherent motion signal is imparted to all regions
of a moving figure, not only to regions at which unambiguous motion signals exist. The model
hereby suggests a solution to the global aperture problem. The motion BCS describes how
preprocessing of motion signals by a motion oriented contrast (MOC) filter is joined to long-range
cooperative grouping mechanisms in a motion cooperative-competitive (MOCC) loop to control
phenomena such as motion capture. The motion BCS is computed in parallel with the static BCS
of Grossberg and Mingolla (1985a, 1985b, 1987). Homologous properties of the motion BCS and
the static BCS, specialized to process motion directions and static orientations, respectively, sup-
port a unified explanation of many data about static form perception and motion form perception
that have heretofore been unexplained or treated separately. Predictions about microscopic com-
putational differences of the parallel cortical streams V1—-MT and V1-V2—~MT are made—
notably, the magnocellular thick stripe and parvocellular interstripe streams. It is shown how
the motion BCS can compute motion directions that may be synthesized from multiple orienta-
tions with opposite directions of contrast. Interactions of model simple cells, complex cells, hyper-
complex cells, and bipole cells are described, with special emphasis given to new functional roles
in direction disambiguation for endstopping at multiple processing stages and to the dynamic

interplay of spatially short-range and long-range interactions.

1. Introduction: Neural Architectures for
Segmenting Static Forms and Moving Forms

In our everyday perceptions, the unity and persistent
identity of objects undergoing motion is so immediate that
we may all too readily take for granted the subtie prob-
lems posed in discriminating such unity within the scin-
tillating mosaic of visual stimulation. In the familiar
example of trying to detect a leopard moving through a
forest canopy, the change in the optic array over time is
a jumble of contrast changes whose local components
point in a variety of directions due to the vagaries of the
motions of rustling leaves and of the occlusions and dis-
occlusions of markings on the leopard’s body. For a
leopard to be spotted (by a visual system) in such con-
texts, a key problem must be solved: How can the locally
ambiguous local motion signals corresponding to the many
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parts of the leopard’s body be reorganized into a coher-
ent object whole with a unitary motion?

Our investigation of the global reorganization of local
motion signals is conducted within a theoretical frame-
work that has alrcady analyzed analogous problems within
the domain of static form perception. This latter theory
has been called FACADE theory, because its visual rep-
resentations are predicted to multiplex together proper-
ties of Form-And-Color-And-DEpth in a model analog
of the prestriate cortical area V4. FACADE theory de-
scribes the neural architecture of two subsystems, the
boundary contour system (BCS) and the feature contour
system (FCS), whose properties are computationally com-
plementary (Grossberg, Mingolla, & Todorovié¢, 1989).
The BCS generates an emergent three-dimensional (3-D)
boundary segmentation of edges, texture, shading, and
sterco information at multiple spatial scales (Grossberg,
1987a, 1987b, 1990; Grossberg & Marshall, 1989; Gross-
berg & Mingolla, 1985a, 1985b, 1987). The FCS com-
pensates for variable illumination conditions and fills in
surface properties of brightness, color, and depth among
multiple spatial scales (Cohen & Grossberg, 1984; Gross-
berg, 1987a, 1987b, 1987c; Grossberg & Mingolla,
1985a; Grossberg & Todorovié, 1988).

This BCS model is now called the static BCS in order
to distinguish it from the motion BCS that is analyzed in

Copyright 1993 Psychonomic Society, Inc.
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the present article. The static BCS models properties of
the visual processing stream that originates at parvocel-
lular cells of the lateral geniculate nuclei (LGN) and passes
through interblob (area V1) and interstripe (area V2) cor-
tical networks on its way to cortical area V4 (Figure 1).
The FCS models the processing stream that originates at
LGN parvocellular cells and passes through blob (area
V1) and thin stripe (area V2) cortical networks on its way
to cortical area V4.
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Figure 1. Schematic diagram of anatomical connections and neu-
ronal selectivities of early visual areas in the macaque monkey. LGN
= lateral geniculate nucleus (parvocellular and magnocellular divi-
sions). Divisions of V1 and V2: blob = cytochrome oxidase blob
regions; interblob = cytochrome oxidase-poor regions surrounding
the blobs; 4B = lamina 4B; thin = thin (narrow) cytochrome oxi-
dase strips; interstripe = cytochrome oxidase-poor regions between
the thin and thick stripes; thick = thick (wide) cytochrome oxidase
strips; V3 = visual area 3; V4 = visual area(s) 4; MT = middle
temporal area. Areas V2, V3, V4, and MT have connections to other
areas not explicitly represented here. Area V3 may also receive pro-
jections from V2 interstripes or thin stripes. Heavy lines indicate
robust primary connections, and thin lines indicate weaker, more
variable connections. Dotted lines represent observed connections
that require additional verification. Icons: rainbow = tuned and/or
opponent wavelength selectivity (incidence at least 40%); angle sym-
bol = orientation selectivity (incidence at least 20%); spectacles =
binocular disparity selectivity and/or strong binocular interactions
(V2) (incidence at least 20%); pointing arrow = direction of mo-
tion selectivity (incidence at least 20%). (From “Concurrent pro-
cessing streams in monkey visual cortex” by E. A. DeYoe and D. C.
van Essen, 1988, Trends in Neuroscience, 11, 219-226. Copyright
1988 by Elsevier Trends Journals. Adapted by permission.)
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Figure 2. The static boundary contour system consists of two main
parts, the static oriented contrast (SOC) filter and the cooperative-
competitive (CC) loop. The SOC filter determines the locally pre-
ferred orientations of contrast differences in the input, while the
CC loop groups, selects, and sharpens contours, both “real” and
“illusory.” (Reprinted, with permission, from Grossberg, 1991.)

The static BCS provides a new computational rationale
as well as a model of the neural circuits governing classi-
cal cortical cell types, such as simple cells, complex cells,
and hypercomplex cells in the interblob and interstripe
regions of cortical areas V1 and V2. The theory also pre-
dicted a new cell type, the bipole cell (Cohen & Gross-
berg, 1984; Grossberg, 1984; Grossberg & Mingolla,
1985a), whose properties have been supported by neuro-
physiological experiments (Peterhans & von der Heydt,
1989; von der Heydt, Peterhans, & Baumgartner, 1984).
The static BCS model consists of several parallel copies,
such that each copy is activated by a different range of
receptive-field sizes. Each static BCS copy is further sub-
divided into two hierarchically organized systems (Fig-
ure 2): a static oriented contrast filier, or SOC filter, for
preprocessing quasi-static images (the eye never ceases
to jiggle in its orbit), and a cooperative-competitive feed-
back loop, or CC loop, for generating coherent emergent
boundary segmentations of the filtered signals. The SOC
filter contains simple, complex, and hypercomplex cells.
The CC loop contains hypercomplex and bipole cells.
Interactions between the static BCS and FCS model how
a FACADE representation emerges in cortical area V4.
Many heretofore unexplained phenomena about preatten-
tive vision and its attentive modulation have been clari-
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fied by FACADE theory, and its concepts and mechanisms
have been tested by a number of laboratories (Beck, Gra-
ham, & Sutter, 1991; Beck, Rosenfeld, & Ivry, 1990;
Brown & Weisstein, 1988; Buckley, Frisby, & Mayhew,
1989; Dresp, Lorenceau, & Bonnet, 1990; Eskew, 1989;
Eskew, Stromeyer, Picotte, & Kronauer, 1991; Graham,
Beck, & Sutter, 1992; Humphreys, Quinlan, & Riddoch,
1989; Kellman & Shipley, 1991; Meyer & Dougherty,
1987; Mikaelian, Linton, & Phillips, 1990; Nakayama,
Shimojo, & Ramachandran, 1990; Paradiso & Nakayama,
1991; Peterhans & von der Heydt, 1989; Prinzmetal,
1990; Prinzmetal & Boaz, 1989; Ramachandran, 1992;
Shipley & Kellman, 1992; Sutter, Beck, & Graham, 1989;
Takeichi, Shimojo, & Watanabe, 1992; Takeichi, Wata-
nabe, & Shimojo, in press; Todd & Akerstrom, 1987,
Watanabe & Cavanagh, 1991; Watanabe & Sato, 1989;
Watanabe & Takeichi, 1990).

After the development of the static BCS reached a cer-
tain level of clarity, it focused attention on the question:
How do the cortical systems that process static forms and
moving forms differ computationally? Some regions of
visual cortex are specialized for motion processing—
notably, region MT (Albright, Desimone, & Gross, 1984;
Maunsell & van Essen, 1983; Newsome, Gizzi, & Mov-
shon, 1983; Zeki, 1974a, 1974b). However, even the
earliest stages of visual cortical processing, such as sim-
ple cells in V1, require stimuli that change through time
for their maximal activation and are direction-sensitive
(DeValois, Albrecht, & Thorell, 1982; Heggelund, 1981;
Hubel & Wiesel, 1962, 1968, 1977; Tanaka, Lee, &
Creutzfeldt, 1983). Why could not V1 be used as the gate-
way to a single cortical stream that processes all aspects
of form and motion? What computational properties are
achieved by the magnocellular V1—MT cortical stream
that are not achieved by the parallel parvocellular
V1—-V2—-V4 cortical stream?

Analysis of the SOC filter design revealed that one of
its basic propertics made it unsuitable for motion process-
ing. In particular, SOC filter output signals cannot ade-
quately discriminate the direction of motion of a moving
figure. In particular, SOC filter complex cells can respond
equally well to motion in opposite directions, as is also
true of many V1 complex cells in vivo (Foster, Gaska,
Nagler, & Pollen, 1985). Further analysis of how this hap-
pens and how it can be overcome led to a new theory of
biological motion perception that was outlined in Gross-
berg (1987b) and quantitatively specified and analyzed in
Grossberg (1990, 1991) and Grossberg and Rudd (1989a,
1989b, 1992). The results of this analysis suggested that
the motion form perception system shares many design
features with the static form perception system, but that
it has incorporated the minimal differences needed to
achieve sensitivity to both local and global properties of
direction of motion. In fact, Grossberg (1990, 1991) has
suggested that the two systems are parallel subsystems of
a larger, symmetric system design, called form-motion
(FM) symmetry, that is predicted to govern the develop-
ment of visual cortex. This symmetric organization pro-
vides an explanation, for example, of why the opposite
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orientation of vertical is horizontal —a difference of 90°—
whereas the opposite direction of up is down—a differ-
ence of 180°.

Correspondingly, this new theory of biological motion
perception consists of a neural architecture called a mo-
tion boundary contour system, or motion BCS. The mo-
tion BCS consists of several parallel copies, such that each
copy is activated by a different range of receptive-field
sizes, as in the static BCS. Also as in the static BCS, each
motion BCS copy is further subdivided into hierarchically
organized subsystems: a motion oriented contrast filter,
or MOC filter, for preprocessing moving images, and a
motion cooperative-competitive feedback loop, or MOCC
loop, for generating coherent emergent boundary segmen-
tations of the filtered signals. A great conceptual simplifi-
cation is afforded by the fact that variations on a common
BCS design can now be used to explain large data bases
about form and motion perception that have heretofore
been treated as wholly separate. The properties of the
static BCS and the motion BCS suggest a computational
explanation for why parallel parvocellular and magnocel-
lular visual processing streams exist (Figure 1). As noted
above, the static BCS models the parvo — interblob —
interstripe — V4 stream. The motion BCS models the -
magno — 4B — thick stripe — MT stream. Tests of FM
symmetry can be made by comparing static BCS and
motion BCS model properties with neurobiological prop-
erties of these parvocellular and magnocellular streams—
notably, how they support overlapping but distinguishable
combinations of visual properties (Logothetis, Schiller,
Charles, & Hurlbert, 1990; Schiller, Logothetis, &
Charles, 1990).

The computer simulations of motion perception data that
were reported by Grossberg and Rudd (1989a, 1989b,
1992) used a 1-D version of the MOC filter. Evidence
for this MOC filter includes its ability to explain many
classical and recent data about short- and long-range mo-
tion properties, and about cortical cell properties, that have
not yet been explained by alternative models. Grossberg
and Rudd (1989a) have also shown how the main proper-
ties of other motion perception models can be assimilated
into different parts of the motion BCS design. The present
article simulates data that require a 2-D version of the
MOC filter. In addition, we outline how outputs from the
2-D MOC filter input to a 2-D version of the MOCC loop.
To motivate these results, we first discuss key motion seg-
mentation and grouping phenomena, including the aper-
ture problem, barberpole illusion, and motion capture.
Then we discuss how these phenomena suggest the exis-
tence of a MOCC loop that is analogous to the static CC
loop of Grossberg and Mingolla (1985a, 1985b, 1987)
but is specialized to process moving images. We then pro-
vide a self-contained description of the MOC filter of
Grossberg and Rudd (1989a, 1992) and show how the
MOC filter model can be extended to effectively process
2-D moving images. These extensions include hypothe-
ses concerning the role of endstopped simple cells, the
spatial layout of simple-cell receptive fields, and compe-
tition among signals sensitive to different directions of
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motion. We illustrate these concepts through computer
simulations that study how the motion BCS responds to
changes in the bounding orientations, shapes, and motion
directions of an object. These results are used to explain
data about the aperture problem, barberpole illusion, and
motion capture.

A central theme of both the static BCS and the motion
BCS is that a specialized multistage filter inputs to a
specialized grouping network. In the SOC filter (Fig-
ure 2), oriented simple cells filter outputs from the model
LGN. The simple cell outputs are, in turn, rectificd and
combined at complex cells. The complex cell outputs are
filtered again to generate inputs to the hypercomplex cells.
Such a double-filter model has subsequently been used
by a number of investigators to fit psychophysical data
about texture segmentation (Beck et al., 1991; Beck et al.,
1990; Graham et al., in press; Sutter et al., 1989).

In the case of the MOC filter, and more generally the
motion BCS, this multistage filtering process sheds new
light on a long-standing problem in the motion percep-
tion literature. As shown in Section 6 below, the MOC
filter possesses analogs of both a short-range motion filter
and a long-range motion filter. It should not, however,
be concluded from this distinction that the MOC filter pro-

poses separate short-range and long-range motion systems, -

as many authors have previously proposed (Anstis, 1980,
1986; Braddick, 1980). Quite the contrary is true. The
distinction between short- and long-range spatial filters
clarifics computationally how distinct short-range and
long-range motion properties can occur, but these prop-
erties emerge in the MOC filter as part of a unitary motion
processing system. Thus, the MOC filter of Grossberg
and Rudd (1989a), and our refinement thereof, sheds new
light on the recent conclusion that the weight of ex-
perimental evidence indeed supports the idea that a uni-
tary motion system exists (Bischof & DiLollo, 1990;
Cavanagh & Mather, 1989; Cleary & Braddick, 1990;
Sperling, 1989).

In particular, properties of the MOC filter and the
MOCC loop mechanistically clarify the conclusion of
Cavanagh and Mather (1989) that ‘‘the observed differ-

ences forming the basis of the claims for two motion pro- -

cesses may be more easily attributed to differences in the
stimuli used in traditional short-range and long-range
experiments than to differences between two motion pro-
cesses’” (p.105). Cavanagh and Mather instcad distinguish
between first- and second-order stimuli, the former de-
fined by displacement of luminance and color differences,
and the latter defined by displacement of statistical prop-
erties of texture, motion, or binocular disparity with mean
luminance and color held fixed. The motion BCS can pro-
cess both types of stimuli in a way consistent with data
of Cavanagh and Mather showing that ‘‘both first- and
second-order motion processes . . . require access to ap-
proximately the same amount of a grating cycle to deter-
mine the direction of stimulus motion™’ (p. 119). Many
of the other perceptual propertics observed in response
to first- and second-order stimuli are also consistent with
the analyses of Grossberg and Rudd (1989a, 1992) and

those offered below, particularly the differences in per-
ceptual properties caused by the short-range filter, the
long-range filter, and the MOCC loop across multiple spa-
tial scales.

The hypercomplex cells of the static BCS interact to
activate higher order hypercomplex cells. In this inter-
action, similarly oriented hypercomplex cells cooperate,
but dissimilarly oriented hypercomplex cells compete,
with competition maximal between perpendicular orien-
tations (Grossberg & Mingolla, 1987). The cooperating
hypercomplex cells tend to perform a vector average of
their input orientations. The higher order hypercomplex
cells, in turn, input to bipole cells whose feedback helps
to choose the emergent boundary segmentation that forms
the best compromise among the image constraints that sur-
vive the filtering process.

The motion BCS has a similar organization, although
it is specialized to deal with motion directions rather than
static orientations. It is shown below how several differ-
ently oriented responses may be pooled to generate a stable
estimate of motion direction. Orientational sensitivity of
the motion-direction cells is not entirely lost in this pro-
cess, much as motion-sensitive cells in MT preserve some
orientational sensitivity (Albright et al., 1984). Thus,
when we speak of directional sensitivity below, we do not
imply an absence of orientational tuning.

Given this caveat, we can say that the motion BCS has
homologs of all the processing stages of the static BCS.
In particular, there is a double filter, followed by direc-
tion averaging and competition stages, followed by a feed-
back network for generating emergent segmentations of
motion form. The term motion form is used, rather than
motion, because the motion BCS is not a ‘‘motion’’ pro-
cessing system. It is a system for generating emergent seg-
mentations that are sensitive to coherent properties of the
directions of motion of moving forms. These similarities
between the static BCS and motion BCS segmentation sys-
tems clarify neurophysiological data showing a consid-
erable degree of functional overlap between the response
capabilities of the parvocellular and magnocellular pro-
cessing streams, including the ability of both systems to
process coarse form, coarse stereo, slow motion, and
flicker at high contrast (Logothetis et al., 1990; Schiller
et al., 1990). The nced for a separate motion segmentation
system can best be understood by analyzing the types of
processing ambiguities and errors that can occur without it.

2. Global Segmentation and Grouping:
From Locally Ambiguous Motion Signals
to Coherent Object Motion Signals A
The aperture problem describes the percept whereby
a straight edge or grating viewed through a circular aper-
ture appears to be moving perpendicular to its orienta-
tion of contrast regardless of its true motion direction
(Wallach, 1976). While this description of the aperture
problem is at the molar perceptual level, any early visual
cell with a localized receptive field, whether concentric
or elongated, experiences its own ‘‘aperture problem,”’
to the extent that its estimate of motion direction is a
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(b)

(a)

Figure 3. (a) This ‘“velocity space” construction, adapted from
Adelson and Movshon (1982), illustrates that the motion of a given
point on a moving edge could be along any of the trajectories whose
arrows end on the dashed line. (b) A complementary way to view
this direction ambiguity is to consider that iocal motion signals from
a straight edge are strongest in the perpendicular direction, whiie
covering a range of possible directions. (From “Phenomenal coher-
ence of moving visual patterns” by E. H. Adelson and J. A. Mov-
shen, 1982, Nature, 300, 523-525. Copyright 1982 by Macmillan
Magazines Limited. Reprinted by permission.)

spatiotemporally weighted function of changes in local
stimulation only. In their discussion of ‘‘velocity space,’’
Adelson and Movshon (1982) introduced diagrams simi-
lar to Figure 3a to illustrate the ambiguity of local mo-
tion direction and speed from information confined to an
aperture. In this figure, the length of arrows codes possi-
ble trajectories of the point A that would be consistent with
the measured change of contrast over time of the cell in
question. For this reason, it is sometimes said that such
a cell is sensitive to only the normal component of veloc-
ity. A complementary way of thinking about this situation
is illustrated in Figure 3b, in which the length of arrows
is roughly proportional to the cell’s ‘‘prior probability
distribution™ for interpreting changing stimulation as
occurring in one of several directions. The direction per-
pendicular to the cell’s receptive field’s orientation is lo-
cally preferred. In this conception, a cell with an oriented
receptive field, such as a simple cell, may be stimulated
by a moving edge that is not perfectly aligned with its
receptive field’s dark-to-light contrast axis. However, it
is assumed that within a hypercolumn of cells that are
tuned to similar position, spatial frequency, contrast, and
temporal parameters but vary in preferred orientation
(Hubel & Wiesel, 1977), some other cell whose preferred
orientation was more nearly aligned with the moving edge
would generate a stronger signal than would the cell in
question. Thus, the distribution of local motion signals
across cells tuned to all orientations at a given position
would favor the direction perpendicular to the orienta-
tion of the edge.

The barberpole illusion (Wallach, 1976) shows that
these local preferences can be readily overridden by global
factors related to the forms within which stationary and
moving segments of a display are located (Figure 4). This
iltusion indicates that, to the extent that locally unambig-
uous motion signals exist at line ends or corners, those
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unambiguous signals can somehow enforce an interpre-
tation of motion direction consistent with their own
throughout the length of a contour bounded by those ends
or corners (Figure 5). Clearly, some long-range group-
ing process subsequent to the early generation of local
motion signals is at work. This process appears to cooper-
atively ‘‘choose and sharpen’’ within relatively large
domains of ambiguous signals on the basis of relatively
localized, but unambiguous, signals. We will illustrate be-
low how this is achieved by the MOCC loop.

N
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local signals :\
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-~ overall percept

Figure 4. In the barberpole illusion, a striped pattern is perceived
as moving in the direction of elongation of a rectangular frame (or
aperture). Local motion signals, indicated by thin arrows at only
one location within each rectangle, are generated throughout the
interior lengths of each diagonal line. As indicated in Figure 2b, these
local motion signals express both ambiguity and preference regarding
direction of motion. Despite the large area covered by the ambigu-
ous and diagonal-motion-preferring local signals, the resulting per-
cept is horizontal or vertical, depending on the configuration of a
visible frame (or aperture).
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Figure 5. A closer look at the barberpole illusion reveals that for
sufficiently large displays, whose length-to-width ratio is not too far
from unity, the overall motion percept may vary across different
areas of the display. The perceived motion near the lower left and
upper right corners of the rectangie may be diagonal, while hori-
zontal motion is seen through the bulk of the dispiay. Unambigu-
ous motion signals are generated in the region where each diagonal
line meets the horizontal and vertical contours of the rectangle.
(These unambiguous signals are diagrammed outside the rectangle
for clarity.) Evidently, such unambiguous signals exert an influence
on the percept that is disproportionate to their areal extent, since
the overall percept throughout a diagonal line tends to be a resul-
tant (horizontal plus vertical to diagonal or horizontal pius horizontal
to horizontal) of those signals.
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Stimulus: Coherent percept:

Figure 6. Williams and Sekuler (1984) found evidence for cooper-
ativity in motion perception using an ingenious variant of the ran-
dom dot cinematogram paradigm. The local motions of individual
dots support a percept of coherent global motion, as well as the per-
ception of individual dot trajectories. See text for details. (Reprinted
with permission from Vision Research, 24, D. Williams and R. Seku-
lar, “Coherent global motion percepts from stochastic local motions,”
Copyright 1984 by Pergamon Press Ltd.)

Cooperativity among motion signals was also studied
by Lappin and Bell (1976) and Williams and Sekuler
(1984), using displays such as that described in Figure 6.
Random dot cinematograms were displayed in which suc-
cessive displacements of dots over frames were not
uniform across all dots, but rather were sampled from a
rectangular distribution of possible directions. On any
frame, each dot’s displacement was independent of both
its own history of displacements and of the displacement
of other dots in that frame. For appropriate parameter
choices, observers reported perceiving a coherent global
motion in the direction of the mean of sampled local dot
motions, as well as perceiving the individual motions of
each dot. Williams and Sekuler also reported hysteresis
effects, whereby the percept of coherent motion persisted
while motion distribution parameters were altered from
a relatively narrow range, which easily supported the co-
herent percept, to a wider range, for which coherent mo-
tion was not ordinarily seen if presented initially. Thus,
cooperativity among motion signals involves averaging
of directional information and hysteresis, as well as sharp-
ening and choice.

Ramachandran (1981) and Ramachandran and Inada
(1985) provided additional evidence for cooperation
among motion signals in a phenomena termed motion cap-
ture. As described in Figure 7, strong and unambiguous
motion signals can actively reorganize motion signals in
ambiguous regions where there are no locally preferred
motion directions. From this perspective, the barberpole
illusion can be analyzed as displaying its own form of
‘‘motion capture,’’ as indicated in Figure 8. That is, sig-
nals from the ambiguous interior region of the diagonal
line segment are being ‘‘captured’’ by signals from the
unambiguous ends. This enhancement of horizontal
signals in the interior region is accompanied by the sup-
pression of diagonal and vertical signals. Long-range
cooperation is thus accompanied by short-range compe-

tition in order to enforce a clear choice of percept all along
the line. As noted below, this cooperative-competitive
interaction is modeled by a MOCC loop whose processes
are analogous to that of the static CC Loop.

The phenomenal coherence of moving plaid patterns can
also be analyzed in terms of the cooperative-competitive

Framel |° °.'. *t. ...

Frame 2 R

Figure 7. Ramachandran and Inada (1985) describe a study by
Ramachandran (1981) in which a two-frame apparent-motion dis-
play contains unambiguous and ambiguous regions. For appropri-
ate displacement, flash duration, and interstimulus intervals, the
outer rectangular contour provides strong and unambiguous signals
for rightward motion. Since the interior region contains random dots
whose distributions are uncorrelated between frames, local signals
are generate in all directions within the interior. Notwithstanding,
the percept is described as being one of rightward motion for both
the rectangular contour and the interior dots. (Reprinted by per-
mission from Spatial Vision, 1(1), §7-67. Copyright 1985 by VSP,
The Netherlands.)

(a)

LOCAL SIGNALS GLOBAL PERCEPT

unambiguous
ambiguous

unambiguous

(b)

Figure 8. (a) By focusing on the distribution of motion signals on
a single diagonal line, as indicated in the barberpole illusion, the
phenomenon can be analyzed as a form of motion capture. (b) The
unambiguous signals from the line ends help to enhance signals of
like direction (cooperation) and suppress signals of different direc-
tions (competition) within the interior of the line segment.
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Figure 9. (a) As described by Adelson and Movshon (1982), under
appropriate conditions of velocity, contrast, and spatial frequency,
2 moving plaid pattern consisting of a superposition of two oriented
gratings will exhibit a coherent, rigid motion in a direction not per-
ceived when either grating is displayed alone. (b) The phenomenal
coherence of such plaids can be analyzed as another example of
motion capture, insofar as unambiguous signals from regions of in-
tersection can dominate and reorganize the signals coming from seg-
ments of only one component of the plaid. See text for details. (From
“Phenomenal coherence of moving visual patterns” by E. H. Adel-
son and J. A. Movshon, 1982, Nature, 300, 523-525. Copyright 1982
by Macmillan Magazines Limited.)

interactions of the motion BCS. As indicated in Figure 9,
under appropriate conditions of velocity, contrast, and
spatial frequency content, observers often report ex-
periencing coherent and rigid motion of the entire pat-
tern in a direction consistent with the ‘‘velocity space’’
interpretation (Figure 3a) of each component’s possible
motions (Adelson & Movshon, 1982). Movshon, Adel-
son, Gizzi, and Newsome (1985) reviewed several lines
of evidence for rejecting the hypothesis that the visual sys-
tem merely tracks ‘‘features’’ formed by local maxima
in luminance at the component intersections. In one ex-
periment, ‘‘one-dimensional’’ noise, consisting of paral-
lel stripes of varying widths, was superimposed on plaid
patterns, at times in the orientation parallel to one of the
component gratings and at times in the orientation per-
pendicular to the coherent plaid motion. They measured
threshold elevation for detection of coherent motion and
found that noise within about 20° of one of the compo-
nent orientations was much more efficacious in masking
the resulting percept than was noise that was perpendicu-
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lar to the direction of plaid motion. They concluded that
*‘the mechanisms responsible for the phenomenal coher-
ence of moving plaids belong to a pathway which, at some
point, passes through a state of orientation selective spa-
tial analysis'* (p. 130). In another experiment, they also
measured the effects of adaptation on coherence, using
a factorial design with which single gratings or plaids were
used as both adaptation and test stimuli. The strongest
adaptation effects were found in the conditions where iden-
tical component orientations appeared in both adaptation
and test stimuli, again implicating an orientation-specific
site of early processing.

The velocity space interpretation of these data does not
always predict the same result as the vector averaging of
motion directions that occurs at the direction pooling
stages of the motion BCS (Sections 1 and 11). In addi-
tion, motion BCS computations also suggest that the pro-
cessing stages for generating coherent motion directions
and their interactions over time occur prior to the pro-
cessing stages that compute velocity signals as such. The
distinction between velocity space and vector averaging
was experimentally investigated by Mingolla, Todd, and
Norman (1992), who examined how ambiguous velocity
measures along smooth contours are spatially integrated
to obtain a globally coherent perception of motion. Ob-
servers viewed displays containing a large number of aper-
tures, with each aperture containing one or more contours
whose orientations and velocities could be independently
specified. The total pattern of the contour trajectories
across individual apertures was manipulated to produce
globally coherent motions, such as rotations, expansions,
or translations. When the displays contained only straight
contours extending to the circumferences of the apertures,
observers’ reports of global motion direction were biased
whenever the sampling of contour orientations was asym-
metric relative to the direction of motion. Performance
was improved by the presence of identifiable features,
such as line ends or crossings, whose trajectories could
be tracked over time. The reports of these observers were
consistent with the motion BCS prediction. In particular,
a pooling process computes a vector average of the ve-
locity components normal to contour orientation, rather
than the intersection of constraints that define velocity
space. Wilson (1991) has reported related data and a
model for pooling motion signals of different directions
that is similar to the motion BCS, including its double-
filter and vector averaging stages.

It will be shown in subsequent sections how the mo-
tion BCS model is capable of deriving unambiguous mo-
tion signals at plaid intersections in a way that survives
the Movshon et al. (1985) arguments against feature track-
ing, while providing an alternative explanation of plaid
motion using the same model that has been used to explain
many other motion perception data. All of thesc motion
data point to the need for interactions among long-range
cooperation and short-range competition within networks
capable of enhancing, suppressing, linking, and completing
motion signals using feedback signals capable of hysteresis.



250 GROSSBERG AND MINGOLLA
Static CC Loop:
. ' similar orientations
bipole: COOPERATE
[
+ +
+
e
hypercomplex .
P P COMPETE

with less favored orientations

Figure 10. In the static cooperative-competitive feedback loop (CC
loop) signals of like orientation (here horizontal) initiated from
“bottom-up” input data arrive at two locations separated by some
distance (indicated by the horizontal bar above the word hyper-
complex and the corresponding bar at the lower right). Coopera-
tive bipole cells, identified with projections of V2 cells, can, if they
receive sufficient stimulation on both sides of their receptive field
centers, send positive feedback to cells of like orientation in the hyper-
complex layer. There, cells of differing orientation and like position
compete with each other to determine the most favorable orienta-
tion at each location. Because of the long-range feedback, local orien-
tational preferences are modulated to be consistent with contextual
data. While, in this example, the completion is collinear, the “fig-
ure eight” shape of the bipole cell indicates that completion can be
curvilinear, so long as a consistent co-occurrence of oriented sig-
nals favors interpolation at the bipole center. See Figure 31 and
Equations A13-A21 of the Appendix of Grossberg and Mingolla
(1985b) for a detailed explanation of static bipole cells.

3. Coherent and Resonant Completion:
Static and Motion CC Loops

Static BCS mechanisms combine long-range coopera-
tion with short-range competition among orientationally
tuned cells within the static CC loop feedback network
(Figures 2 and 10). Since publication of the CC loop equa-
tions in Grossberg and Mingolla (1985a, 1985b, 1987),
increasing physiological evidence for the model has been
reported. In particular, Peterhans and von der Heydt
(1989) have recently reported evidence for cooperative
linking interactions in cortical area V2. Gray, Konig, En-
gel, and Singer (1989) and Eckhorn et al. (1988) have
reported resonant interactions involving rapid phase lock-
ing of spike trains of V2 cells with nonoverlapping recep-
tive fields, which is also a property of the long-range
cooperative interactions that occur within the CC loop
(Grossberg & Somers, 1991, 1992).

Given that the static CC loop can enhance consistent
signals and suppress inconsistent or ambiguous signals
from orientationally tuned cells, and given that in vivo
early orientationally tuned cells, such as simple cells, are
sensitive to motion, the question naturally arose whether
motion segmentation could be accomplished by the static
CC loop. Our daily experiences with the dynamic geom-

etry of form perception for static and moving contours
suggest that this is not true. As illustrated in Figure 11,
a static form system is more concerned with orientation
of static contours, while a motion form system is more
concerned with direction of moving contours. This dis-
tinction must be made with care, however, since both
in the neurobiological data concerning these systems
(Schiller et al., 1990) and in our modeling of their prop-
erties both here and elsewhere (Grossberg, 1987a, 1991;
Grossberg & Mingolla, 1985b; Grossberg & Rudd,
1989a, -1992), cells in the static form system exhibit
preferred movement directions and cells in the motion
form system exhibit preferred image orientations, albeit
not with the selectivity of cells in the static form system.
Such multiplexing of properties does not support the popu-
lar hypothesis (Livingstone & Hubel, 1987) that the visual
system is decomposed into modules that are devoted to
processing a single visual property, such as orientation,
motion, stereo, or color. A rigorously defined computa-
tional theory is needed to articulate how such multiplexing
occurs and what functional properties are accomplished
by its use. It will be shown below, for example, that keep-
ing track of direction as well as orientation requires an
additional degree of freedom, since a segment of a given
orientation may be moving in any of several directions,
and a given direction of motion can be observed for image
contrasts that are moving with any of several orientations.
This is just another way of stating the aperture problem.

(a) (b)

- -— — -—
- - -— -—
- — -— -—
- - -— -—
———— —— —
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—— —— —— —
—— —— —— —

(c) (d)

Figure 11. As indicated by such static rebound phenomena as the
Mackay effect, in which prolonged fixation on a pattern of radial
line segments (a) results in an aftereffect of perceived circular con-
tours (b), the opposite of a static orientation signal is a signal of per-
pendicular orientation. The waterfall illusion, in which prolonged
adaptation to motion signals as from a waterfall (c} is followed by
the sensation of upward motion when one looks at a neutral scene
(d), indicates that the opposite of a motion direction signal is not
90° but 180° from that signal.
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The striking similarity of cooperative and competitive
grouping requirements for both static and moving images,
together with the existence of different geometries for
static and motion perception, suggested that parallel ver-
sions of the CC loop exist within a static BCS and a mo-
tion BCS. This taxonomy of *‘static’’ and ‘‘motion’’ CC
loops does not, however, imply logical exclusivity of func-
tion, any more than the existence of distinct systems im-
plies that they compute independent visual properties.
When a contour moves, the static CC loop may operate
to determine the best coherent orientations of the mov-
ing contour, at the same time that the motion CC loop
determines the best coherent directions of that contour,
without denying that each CC loop is capable of process-
ing aspects of both form and motion and that both CC
loops interact to form a final unitary percept. However,
the better calibration of orientational tuning and orienta-
tionally based stereo matching by the static BCS is
suggested to help select directionally based boundary seg-
mentations of the motion BCS that are processing image
data at correctly calibrated depths (Grossberg, 1991). This
interaction has been predicted to occur via the V1 —-V2—
MT pathway (see Section 15).

The proposed function of the V1-V2—MT pathway
does not imply that computations within the motion form
system are themselves incapable of estimating properties
of depth. It is known from neurophysiological experiments
(Logothetis et al., 1990; Schiller et al., 1990} and psycho-
physical experiments (Julesz, 1971; Prazdny, 1985, 1986)
that depth may be derived from motion cues in the ab-
sence of normal cues about static form. Correspondingly,
it has been suggested that the final stages of the MOC
filter become binocular in a manner homologous to that
used by the binocular complex cells in the parvocellular
processing stream of area V1 (Grossberg & Rudd, 1989a,
1992), but can only carry out binocular matches using its
larger directionally tuned receptive fields. The VI —-V2
—MT link is suggested to join the two types of binocular
computation in a way that exploits the best propertics of
each. To the present time, modeling of how the static BCS
generates 3-D segmentations capable of supporting figure-
ground pop-out (Grossberg, 1987b, 1992, in press; Gross-
berg & Marshall, 1989) has proceeded considerably beyond
a corresponding analysis of 3-D segmentation by the mo-
tion BCS. The computational similarities between the two
systems promise to accelerate progress on understanding
binocular processing within the motion BCS as well.

4. Many Orientations Can Move
in the Same Direction

We begin our development of the monocular motion
BCS by suggesting how the cooperative bipole cells of
the motion CC loop differ from their homologs in the static
CC loop of Figure 10. In analyzing the properties of static
bipole cells, certain images by John Kennedy proved in-
valuable (Kennedy, 1979). As shown in Figure 12, static
bipole cells are capable of choosing orientations that are
not locally preferred for generating positive feedback to
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(a)

Figure 12. (a) This illusory contour display, adapted from Kennedy
(1979), indicates that boundary completion in the static CC loop can
choose orientations that are not locally preferred if giobal organiza-
tional factors are sufficiently powerful. (b) The locally preferred
directions at the bottom ends of the two top curves of (a) are per-
pendicular to the ends of the curves and thus tilted off the horizon-
tal. (c) Cooperation among signals that are horizontal enhances and
completes horizontal signals (cooperation) while suppressing non-
horizontal signals (competition) along the illusory contour. (Kennedy,
J. M., Subjective contours, contrast, and assimilation. In C. F. No-
dine and D. F. Fisher (Eds.), Perception and pictorial representa-
tion. Copyright 1979 by Praeger Publishers, an imprint of Green-
wood Publishing Group, Inc., Westport, CT. Adapted by
permission.)

cooperatively link and complete static boundaries. Each
bipole cell can generate an output signal only if both of
its oriented receptive fields receive large enough inputs
from cells with similarly oriented receptive fields. These
input cells at the previous processing level consist of for-
mal analogs of hypercomplex cells (Figure 2). The output
signals from the bipole cells feed back to the hypercom-
plex cells (Figure 10), where they bias the competition
among the hypercomplex cells toward the orientations and
positions that are most favored by the bipole cells.
The MOCC loop must, however, cope with an addi-
tional degree of freedom, since it considers direction as
well as orientation. Thus, motion bipole cells are or-
ganized in a fashion that differs somewhat from that of
their static analogs. As indicated in Figure 13, motion bi-
pole cells are postulated to exist in families sensitive to
motion signals of different directions but whose sources
are arrayed in patterns of similar orientation. Expressed
differently, while some motion bipole cells are assumed
to favor the direction of motion perpendicular to the orien-
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(a)

(b) (c)

Figure 13. As with static bipole cells, motion bipoles are sensitive
to bottom-up direction signals from motion hypercomplex cells (in-
dicated by thin arrows), which send excitatory signals to each lobe
of the bipole cell. If sufficient excitatory activity is sensed in both
lobes, the bipole sends feedback signals of like direction (indicated
by thick arrows) to the hypercomplex iayer. While analogous to their
static counterparts, motion bipole cells are fundamentaily differ-
ent, insofar as they must cope with the additional degree of free-
dom imposed by the simultaneous determination of a globally con-
sistent motion direction over many possible contour orientations.
Thus, families of bipole cells are presumed to exist, such that cells
whose major axes are the same (diagonal in the present case) can
be maximally sensitive to motion signals of different directions, rang-
ing from (a) vertical to (b) diagonal (perpendicular to the major axis)
to (c) horizontal for the three bipoles shown here.

tation induced by the elongated axis of their two lobes
(Figure 13b), others have a similar spatial layout but dif-
ferent preferred directions of motion (Figures 13a and 13c).

As in the static CC loop, each bipole cell of the MOCC
loop can generate an output signal only if borh of its recep-
tive fields receive large enough inputs from cells that are
sensitive to a similar direction of motion. These input cells
at the previous processing level consist of formal analogs
of hypercomplex cells. The output signals from the bi-
pole cells feed back to the hypercomplex cells, where they
bias the competition among the hypercomplex cells toward
the directions and positions that are most favored by the
bipole cells. .

It is intuitively clear that this is just the sort of cooper-
ative feedback, propagated inward between pairs, or
larger numbers, of flanking inducers, that is needed to
explain phenomena such as the barberpole illusion (Fig-
ures 4 and 5) and motion capture (Figures 6-8). Our anal-
ysis elevates this intuition into a computationally precise
theory. As a result, both orientationally sensitive group-
ing during static form perception and directionally sensi-
tive grouping during motion form perception are predicted
to utilize bipole cells. The explanatory power of this ho-
mology strengthens the case that both the static BCS and

the motion BCS architectures model variations of a com-
mon cortical design.

5. Joining Sensitivity to Direction of Motion
with Insensitivity to Direction of Contrast

In order to design a MOCC loop, its hypercomplex cells
need to be sensitive to a prescribed direction of motion.
These cells may be excited by image contours with dif-
ferent orientations, all moving in the same direction within
a prescribed region of perceptual space. The MOC filter
thus coritains cells that derive their sensitivity to direction
of motion by pooling outputs from cells that are maximally
sensitive to several different orientations. Typically, orien-
tations that are nearly perpendicular to the preferred mo-
tion direction are pooled, as is also observed in MT cells
(Albright et al., 1984). Thus, a cell that prefers motion
to the right pools signals from oriented cells that prefer
vertical, or almost vertical, image contrasts. In order to
synthesize directional sensitivity from several different
orientations, the MOC filter needs to have a circuit de-
sign somewhat different from that of the SOC filter. The
reason for this modification is that complex cells of the
SOC filter (Figure 2) are insensitive to direction of mo-
tion as well as to direction of contrast, in the sense that
(say) a vertically oriented SOC filter complex cell can re-
spond to vertically oriented dark-light and light-dark con-
tours moving either to the left or to the right. Complex
cells in the parvocellular stream of V1 exhibit similar re-
sponse properties (Foster et al., 1985; Pollen, Gaska, &
Jacobsen, 1989). In this sense, the SOC filter cannot be
used to selectively process the direction of motion of a
moving figure. This deficiency arises from the way in
which the SOC filter becomes insensitive to direction of
contrast at its complex-cell level. Insensitivity to direc-
tion of contrast of the SOC filter’s complex cells enables
the static CC loop (Figure 10) to generate boundary seg-
mentations along scenic contrast reversals.

The simple cells at the first BCS level are, however,
sensitive to direction of contrast (Figure 2). The activi-
ties of like-oriented simple cells that are sensitive to op-
posite directions of contrast are rectified before they
generate outputs to their target complex cells. Because
the complex cells pool outputs from both directions of
contrast, they are themselves insensitive to direction of.
contrast. Inspection of the simple-cell to complex-cell
interaction in Figure 2 shows how a vertically oriented
complex cell can respond to a dark-light or light-dark
vertical edge moving to the right or to the left. Thus, the
process whereby complex cells become insensitive to
direction of contrast renders them insensitive to direction
of motion in the SOC filter. :

The main design problem leading to a MOC filter is
to make the minimal changes in the SOC filter that are
needed to model an oriented, contrast-sensitive filter
whose outputs are insensitive to direction of contrast—a
property that is just as important for segmenting moving
images as for segmenting static images—yet is also sen-
sitive to direction of motion—a property that is certainly
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Figure 14. The motion oriented contrast (MOC) filter: Level 1
registers the input pattern. Level 2 consists of sustained response
cells with oriented receptive fields that are sensitive to direction of
contrast. Level 3 consists of transient response cells with unoriented
receptive fields that are sensitive to direction of change in the total
cell input. Level 4 cells combine sustained cell and transient cell
signals to become sensitive to direction of motion and sensitive to
direction of contrast. Level 5 cells combine with Level 4 cells to be-
come sensitive to direction of motion and insensitive to direction of
contrast, (Reprinted, by permission, from Grossberg, 1991.)

essential in a motion perception system. Along the way,
the MOC filter introduces an extra degree of computa-
tional freedom that achieves several important properties
in one stroke: sensitivity to direction of motion, long-range
motion interactions, and binocularity (Grossberg & Rudd,
1989a, 1992).

6. The Grossberg-Rudd MOC Filter

A MOC filter is mathematically defined in Grossberg
and Rudd (1989a, 1992). Its five processing stages are
qualitatively summarized in Figure 14 and described
below. This MOC filter was used to carry out 1-D simu-
lations of motion data. After summarizing the Grossberg-
Rudd model, we describe the refinements that are needed
to disambiguate orientation and direction using 2-D mov-
ing figures. It should be emphasized that variations on
these processing stages can be envisaged that give rise
to similar computational properties. The types and order-
ing of the processing stages and their interactions are
needed to explain the full body of data to which they have
been applied. Model variations with similar properties will
be noted at several places in the following exposition.

Level 1: Preprocess input pattern. The image is
preprocessed before activating the filter. For example,
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it is passed through a shunting on-center off-surround net
to compensate for variable illumination, or to *‘‘discount
the illuminant’’ (Grossberg & Todorovi¢, 1988).

Level 2: Sustained cell short-range filter. Four oper-
ations occur here, as illustrated in Figure 15.

1. Space-average: Inputs are processed by individual
sustained cells with oriented receptive fields.

2. Rectify: The output signal from a sustained cell grows
with its activity above a signal threshold.

3. Short-range spatial filter: A spatially aligned array
of sustained cells with like direction of contrast pool their
output signals to activate the next cell level. The breadth
of spatial pooling plays the role of the short-range mo-
tion limit Dnax (Braddick, 1974). Several copies of this
short-range filter exist, one for each copy of the motion
BCS. Each copy corresponds to a different range of
receptive-field sizes. The breadth of spatial pooling within
each copy scales with the size of the simple-cell recep-
tive fields. Thus, Dpy,, within the MOC filter is not in-
dependent of the spatial frequency content of the image,
as is also true in vivo (Anderson & Burr, 1987; Burr,
Ross, & Morrone, 1986, Nakayama & Silverman, 1984,
1985) and is not a universal constant. In addition, the
direction in which individual oriented cells are spatially
pooled may not be perpendicular to the oriented axis of
the sustained cell receptive field. The target cells are thus
sensitive to a movement direction that may not be per-
pendicular to the simple cell’s preferred orientation.

4. Time-average: The target cell time-averages the
directionally sensitive inputs that it receives from the
short-range spatial filter. This operation has properties
akin to the ‘‘visual inertia’’ during apparent motion that
was reported by Anstis and Ramachandran (1987).

Level 3: Transient cell filter. In parallel with the sus-
tained cell filter, a transient cell filter reacts to input incre-
ments (on-cells) and decrements (off-cells) with positive
outputs (Figure 16). This filter also uses four operations.

1. Space-average: This is accomplished by a receptive
field that sums inputs over its entire range.

2. Time-average: This sum is time-averaged to gener-
ate a gradual growth and decay of total activation.

time-daverage

@ o
}) rectify { X
(a) (b)

Figure 15. The sustained cell short-range filter combines several
spatially contiguous receptive fields of like orientation via a spatial
filter with a fixed directional preference. The orientation perpen-
dicular to the direction is preferred, but nonorthogonal orientations
can also be grouped in a prescribed direction. (Reprinted, with per-
mission, from Grossberg, 1991.)
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Figure 16. The transient cell filter consists of on-cells that react
to input increments and off-cells that react to input decrements.
(Reprinted, by permission, from Grossberg, 1991.)

3. Transient detector: The on-cells are activated when
the time-average increases. The off-cells are activated
when the time-average decreases.

4. Rectify: The output signal from a transient cell grows
with its activity above a signal threshold.

Level 4: Sustained-transient gating yields direction-
of-motion sensitivity and direction-of-contrast sensi-
tivity. Maximal activation of a Level 2 sustained cell filter
is caused by image contrasts moving in either of two direc-
tions that differ by 180°. Multiplicative gating of each
Level 2 sustained cell output with a Level 3 transient cell
on-cell or off-cell removes this ambiguity (Figure 17). For
example, consider a sustained cell output from vertically

Q@ &
[N
JURS

transient sustained

Figure 17. Sustained-transient gating generates cells that are sen-
sitive to direction of motion as well as to direction of contrast.
(Reprinted, by permission, from Grossberg, 1991.)

oriented light-dark receptive fields that are joined together
in the horizontal direction by the short-range spatial filter.
Such a sustained cell output is maximized by a light-dark
image contrast moving to the right or to the left. Multi-
plying this Level 2 output with a Level 3 transient on-cell
output generates a Level 4 cell that responds maximally
to motion to the right. Multiplying it with a Level 3 tran-
sient off-cell output generates a Level 4 cell that responds
maximally to motion to the left.

Multiplying a sustained cell with a transient cell is the
main operation of the Marr and Ullman (1981) motion
detector. Despite this point of similarity, Grossberg and
Rudd (1989a) described six basic differences between the
MOC filter and the Marr-Uliman model. For example,
none of the operations, such as short-range spatial filter-
ing, time-averaging, and rectification, occurs in the Marr-
Ullman model. In addition, the rationale of the MOC
filter—to design a filter that is sensitive to direction of
motion and insensitive to direction of contrast—is not part
of the Marr-Ullman model. This difference is fundamen-
tal. The Marr-Ullman model is a product of the *‘indepen-
dent modules’’ perspective. The MOC filter’s insensitivity
to direction of contrast can only be formulated within the
framework of a design principle that we have called
BCS/FCS complementarity (Grossberg et al., 1989): One
cannot understand why a boundary filter’s output needs
to be insensitive to direction of contrast unless there ex-
ists a complementary ‘‘seeing’’ system, the Feature Con-
tour System, that is sensitive to direction of contrast.

The remaining processing levels of the MOC filter are
also not part of the Marr-Ullman model. In particular,
the cell outputs from Level 4 are sensitive to direction
of contrast. Level 5 consists of cells that pool outputs from
Level 4 cells that are sensitive to the same direction of
motion but to opposite directions of contrast, as described
below.

Level S: Long-range spatial filter and competition.
Outputs from Level 4 cells sensitive to the same direc-
tion of motion but opposite directions of contrast activate
individual Level 5 cells via a long-range spatial filter that
is Gaussianly distributed across space (Figure 18). This
long-range filter groups together Level 4 cell outputs with
the same directional preference but different preferred cell
orientations and directions of contrast at Level 3. Thus,
the long-range filter provides the extra degree of freedom
that enables Level § cells to function as ‘‘direction’’ cells,
rather than as ‘‘orientation’’ cells.

The long-range spatial filter broadcasts each Level 4
signal over a wide spatial range in Level 5. Competitive,
or lateral inhibitory, interactions within Level 5 contrast-
enhance this input pattern to generate spatially sharp
Level 5 responses. A winner-take-all competitive network
(Grossberg, 1973, 1982) can transform even a very broad
input pattern into a focal activation at the position that
receives the maximal input. The winner-take-all assump-
tion is a limiting case of how competition can restore
positional localization. More generally, this competitive
process partially contrast-enhances (*‘leader-take-most’’)
its input pattern to generate a motion signal whose breadth
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Figure 18. The long-range spatial filter combines sustained-
transient cells with the same preference for direction of motion, in-
cluding cells whose sustained cell inputs are sensitive to opposite
directions of contrast and to different orientations. (Reprinted, by
permission, from Grossberg, 1991.)

across space increases with the breadth of its inducing pat-
tern. A contrast-enhancing competitive interaction has also
been modeled at the complex cell level of the SOC filter
(Grossberg, 1987b; Grossberg & Marshall, 1989).

The Level 5 cells of the MOC filter are, in other re-
spects too, computationally homologous to SOC filter
complex cells. In particular, Grossberg and Rudd (1989a,
1992) have hypothesized that MOC filter cells become
binocular no later than Level 5 in order to explain data
about interocular transfer of apparent motion. This inter-
action could, in principle, occur as a result of either short-
range spatial filtering or long-range spatial filtering.
Binocular short-range filtering would enable sharper spa-
tial and orientational matches to occur in response to dy-
namic stereo displays than would long-range filtering. In
either case, no later than Level 5 of the MOC filter, its
model cells possess the properties of directional, binocu-
lar, and orientational tuning that are found in lamina 4B
cortical cells of the magnocellular processing stream
(Figure 1).

As noted above, similarities also occur between the
computational processes at higher levels of the motion
BCS and static BCS. Do analogous parallels occur in vivo?
In particular, the model hypercomplex cells and bipole
cells of the static BCS may be compared with known cor-
tical cell types in the interstripe region of area V2 and
(possibly) beyond. If the motion BCS corresponds to a
similar cortical organization, then the model hyper-
complex cells and bipole cells of the motion BCS should
have cortical analogs in the thick stripe region of area V2
and (possibly) beyond. An open question concerns whether
Level 5 motion complex cells have cortical homologs in
lamina 4B of area V1 or in the thick stripes of area V2.
Since the model predicts the types and ordering of corti-
cal processing, once the long-range filter is neurobiolog-
ically characterized, the final stage of the MOC filter can
be precisely identified. Then the predicted hypercomplex
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cells and bipole cells should occur at subsequent cortical
levels, in a prescribed order.

7. Pooling Orientations and Directions of
Contrast to Compute 2-D Directions of Motion

The Grossberg-Rudd model was used to explain and
simulate motion data that exhibit a natural 1-D symmetry—
for example, apparent motion between collinear groups
of flashes. The model needs further development to ex-
plain data concerning the motion of 2-D shapes, since such
shapes may move in directions that may or may not be
perpendicular to the orientations of their boundaries. The
type of new issues that arise in the 2-D case are illustrated
by the following example. Consider the lower right corner
of a homogeneous rectangular form of relatively high lu-
minance that is moving diagonally upward and to the right
on a homogeneous background of relatively low luminance
(Figure 19). Both the regions of horizontal and vertical
contrast near the corner provide signals to the MOC filter,
provided that the sustained cells of Level 2 (Figures 14
and 15) are spatially laid out as indicated in Figure 20.
Here, the direction of motion is diagonal to the orienta-
tional preference of the individual sustained cells. These
vertically and horizontally oriented cells contribute to the
total signal that codes movement in the diagonally upward
direction. So too do cells whose orientation is perpendic-
ular to the diagonal direction. On the other hand, cells
whose orientation is collinear with the direction of mo-
tion should not be included.

Accordingly, each motion detector is assumed to receive
weighted inputs from all sustained-transient cells whose
orientations differ from the preferred direction of motion
by no more than 90°, and whose preferred positions lie
within a prescribed distance from the preferred position
of the motion detector. As indicated in Figure 21, the
long-range filter (Level 5, Figures 14 and 18) can simul-
taneously accept motion signals from both the horizontal
and the vertical edges of the moving corner, despite the
gating of one set of signals by transient ‘‘luminance-

Figure 19. The lower right corner of a horizontally oriented rect-
angular region of homogeneous high luminance moves diagonally
upward and to the right over a background of homogeneous low
luminance. In region A, a dark-to-light (luminance increasing over
time) transition occurs at a vertical edge, while, in region B, a light-
to-dark (luminance decreasing over time) transition occurs at a hor-
izontal edge.
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Figure 20. Over three successive time steps, the contours of the
rectangle occupy the positions indicated, while luminance increases
along the vertical edge and decreases along the horizontal edge. If
certain that the sustained cell receptive fields sending inputs to
Level 4 of the MOC filter were arranged as indicated, a diagonal
motion signal could be generated from both vertically and horizon-
tally oriented cells, in conjunction with luminance-gating signals of
opposite signs.

to long-range filter

motion: motion:
short- /0 /G
range >

<= luminance:

(]
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Figure 21. Signals arrive at the long-range filter (to Level § of the
MOC filter) after several rectification and gating operations. Ac-
cordingly, signals that were gated by both increases and decreases
in luminance at (necessarily) different places can be combined into
a coherent motion signal.

increasing”’ on-cells and gating of another set by
*‘luminance-decreasing’’ off-cells (Level 3, Figures 14
and 16). Thus, while simultaneous increase and decrease
of luminance is logically impossible in an infinitesimal
area, and while a too rapid change from increase to de-
crease may be unresolvable by sustained cells at Level 2,

the simultaneous increase and decrease of luminance at
different orientations and different locations, but in the
same direction, are pooled by the long-range filter. This
sort of long-range filtering by MOC filter complex cells
is not the same as the still longer range cooperative group-
ing by MOCC loop bipole cells.

8. Sustained-Transient Gating before
Short-Range Spatial Filtering

In attempting to simulate the 2-D MOC filter on the
computer, a computational problem was noticed whose
solution was not required in the 1-D simulations of Gross-
berg and Rudd (1989a, 1992). In particular, Figure 17
shows short-range spatial filtering of sustained cell out-
puts before gating the result with a transient on-cell or
off-cell. The different spatial layouts of sustained cells
in Figure 21 made it difficult to select a regular spatial
arrangement of transient cells that could be used for all
cases. This analysis suggested that each oriented sustained
cell is first gated by a transient on-cell and off-cell at its
own location before each sustained-transient cell inputs
to the several directionally sensitive spatial filters to which
it contributes. While these 2-D simulation problems were
being confronted, Grossberg (1990, 1991) observed that
the FM symmetry principle requires a similar spatial ar-

&
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Figure 22. (a) The gating of sustained and transient cells within
the MOC filter of Grossberg and Rudd (1989a) was between sev-
eral sustained cells (three shown) with aligned receptive-field centers
and a single transient cell. (b) The revised form of gating is one to
one, between transient and sustained cells. Subsequently, signals
from spatially aligned gating cells (indicated by three small arrows)
are pooled to form a single Level 4 signal. (c) A motion oriented-
contrast on-cell formed by oriented pooling of transient on-cell ac-
tivations, such that the transient cells that input to the white region
of the oriented receptive field are excitatory, whereas those input-
ting to the black region are inhibitory, thereby creating a tendency
to respond to rightward motion. (d) A motion oriented-contrast off-
cell that also is sensitive to rightward motion but uses transient off-
cells to generate the appropriate oriented motion contrast signal.
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rangement. We therefore modify the MOC filter, as in
Figure 22b, by computing all sustained-transient combi-
nations at each position before combining their outputs
via directionally sensitive short-range spatial filters.

1t should be noted that parallel computation of oriented
sustained cells and transient cells that are subsequently
gated is not the only way to compute the desired sus-
tained-transient properties. An alternative is to group the
outputs from transient on-cells into oriented receptive
fields, thereby generating a motion oriented-contrast on-
cell (Figure 22c). In such a cell, transient on-cells excite
one half of the oriented receptive field and inhibit the other
half of the oriented receptive field. A single serial stream
of transient-then-oriented processing here replaces par-
allel processing by transient cells and sustained cells fol-
lowed by sustained-transient gating. The output of such
a serially generated cell would be positive only if the
oriented temporal contrast that the cell detected exceeds
its rectified output threshold. The duration of transient
on-cell activation defines a time window wherein an
oriented temporal contrast may be detected. Sufficiently
many on-cells from one half of the receptive field would
need to be simultaneously more active than those on the
other half of the receptive field for the cell to fire. A sep-
arate population of oriented off-detectors may likewise
be synthesized from combining outputs of transient cells
into an oriented receptive field (Figure 22d). Such cells
have many of the properties of Barlow and Levick (1965)
or Reichardt detectors (Reichardt, 1957, van Santen &

S
inhibitory
zones?

S

Response? Yes No

(a)
?
Figure 23. If the inhibitory end zones of endstopped simple cells

Yes
were laid out as caricatured in part (a), a cell would be unable to
distinguish the termination of a line of its preferred orientation from
the continuation of a line of an orientation slightly different from
the cell's preferred orientation. In the resulting situation, di-
agrammed in (b), disinhibition of the (top) inhibitory zone occurs
while the strength of response from the central region decreases.

(b)
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Figure 24. Spatially isotropic inhibition among like-oriented simple
cells can generate functional enhancement of activity of oriented
receptive fields near line ends or corners, often referred to as
endstopping.

Sperling, 1985), even though they do not compute explicit
delays between separate input channels.

9. Endstopping: Generation of a Terminator
or Corner Advantage in Motion Signals

Another 2-D MOC filter refinement involves an end-
stopping operation. The need for this was illustrated in
our discussion of the barberpole illusion in Section 2.
There, we noted that motion signals near terminators or
corners tend to be better indicators of object motion than
do signals generated from a relatively straight interior of
a contour. In order for a motion signal at a terminator
or corner to be effective, however, it must somehow be
translated into a relatively large signal strength, since the
region of ambiguous interior motion signals is often larger
than the region of unambiguous terminator or corner mo-
tion signals.

We suggest that one source of this enhancement in-
volves endstopping the sustained cells and/or the transient
cells of the MOC filter. Many simple cells, identified with
model cells at Levels 2 and/or 4 of the MOC filter, ex-
hibit endstopping (Dreher, 1972). Endstopping is often
informally described as consisting of inhibitory zones that
occur along the major axis of orientationally tuned cells,
beyond the contrast summing region, as indicated in Fig-
ure 23a. If this were all that was involved, then the end
of a contrast edge that is oblique to a cell’s preferred direc-
tion and that partially overlaps the cell could escape the
inhibitory zone and stimulate the cell more than could a
corresponding edge of the preferred direction (Figure 23b).
This problem arises because the inhibition is anisotropic—
that is, it occurs only from the directions aligned with the
cell’s orientational axis.

The anatomical substrate for such anisotropy would be
more difficult to implement than would a scheme of
isotropic inhibition among orientationally tuned cells. For
such an isotropic inhibitory scheme (Figure 24), the ob-
served inhibitory zones for stimulation with edge stimuli
would still appear only at the ends of the cell’s receptive
field, owing to the interaction between isotropic inhibi-
tion and oriented receptive fields.
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Figure 25. The enhancement of motion signals at line ends and
corners can be strong or weak. (a) Strong inhibition can kill interior
signals, making the problem of motion segmentation easy. (b) The
surviving pools of activity at line ends can be directly tracked. (c) If
endstopping is mild enough, however, locally preferred motion direc-
tions (perpendicular to edge contrast) survive, as shown in (d).

As illustrated in Figure 25a, strong endstopping can at-
tenuate signals from all but the ends of a contour. Strong
endstopping reduces the problem of determining motion
direction to one of tracking an isolated region of activity
in an upward diagonal direction, as in Figure 25b. Weak
endstopping, as in Figure 25c, can partially attenuate in-
terior signals, relative to signals at the ends. If endstopping
is too weak, however, surviving signals indicating the “‘lo-
cally preferred’’ rightward horizontal direction can at least
partially confound the computation of an upward diagonal
object motion, as illustrated in Figure 25d. We note that
Marshall (1990) has also invoked endstopping. in his ex-
planation of the barberpole illusion, though in a manner
different from that outlined here.

10. Directional Competition and
Boundary Completion

The inward cooperative propagation by bipole cells of

motion signals to locations between the strong end reac-
tions can help to overcome this problem as it completes
the motion signal along the entire contour (Figure 13).
The cooperative feedback from the strong end reactions
also leads to inhibition of other directional signals via
short-range competition between directions at positions
along the contour, as occurs during motion capture (see
Section 2). Thus, the type of CC loop interactions among
hypercomplex cells and bipole cells that help to sclect the
globally preferred orientations in the static BCS, as in Fig-
ure 10, also help to select the globally preferred directions
in the motion BCS, with the caveat that ‘‘orientation’’
computations are replaced by ‘‘direction’’ computations.

11. Short-Range Versus Long-Range Reactions
to Contrast Changes in the Static BCS
and Motion BCS

The several BCS processing stages from sustained and
transient cells to simple cells, complex cells, hypercom-
plex cells, and bipole cells form a type of highly special-
ized pyramid in which an increase in the scale of spatial
interaction is combined with a reduction in sensitivity to
direction of contrast. For both the static BCS and the mo-
tion BCS, these processing stages achieve an output sig-
nal of orientation or motion direction, respectively, that
is insensitive to direction of contrast. These operations
do not imply that the systems.are insensitive to changes
of direction of contrast in the input. As pointed out by
Prazdny (1984), reversing the contrast relative to a neu-
tral background of one set of dots in a Glass pattern can
weaken, or even annihilate, the grouping percept (see Fig-
ures 26a and 26b). The paradoxical nature of this result
can best be appreciated by juxtaposing it with the strik-
ing illusory groupings that can be sustained between the
like directions of contrast (Figure 26¢) of the Kanizsa
square, as well as the opposite directions of contrast (Fig-
ure 26d) of the ‘‘reverse contrast Kanizsa square’’ (Co-
hen & Grossberg, 1984; Grossberg & Mingolla, 1985b;
Prazdny, 1984; Shapley & Gordon, 1985). Within the
static BCS, this apparent paradox has been resolved as
follows (Grossberg & Mingolla, 1985b): The weak group-
ing percept in response to a reverse-contrast Glass pat-
tern can be traced to spatially short-range interactions
within the simple cell receptive fields of the SOC filter,
which are sensitive to direction of contrast (Figure 2). The
strong grouping percept in response to a reverse-contrast
Kanizsa figure is due to spatially long-range interactions
within the CC loop, whose hypercomplex cells and bi- -
pole cells are capable of combining opposite directions
of contrast.

A similar pattern of sensitivity to direction of contrast
at short range and insensitivity to direction of contrast at
long range also occurs in motion perception. For short-
range motion, reversal of dot contrast between frames
abolishes a coherent motion percept, whereas long-range
apparent motion can occur using displays whose contrast
with respect to the background reverses between frames
(Anstis & Mather, 1985). - -

12. 2-D MOC Filter Equations

We have found that several closely related computa-
tional realizations of the above heuristics can generate mo-
tion fields capable of distinguishing between contour
orientation and contour direction of motion. We will here
define a model that separates computations involving
receptive fields with opposite directions of contrast until
these are merged by the long-range Gaussian filter. This
is the strategy followed by the Grossberg-Rudd model
(Section 6). Analogous properties have been simulated
using a variant of this model in which receptive fields with
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(b)

(c) (d)

Figure 26. The subtleties of the interaction of spatial scale and direction of contrast are revealed by the juxtaposition of two classical
visual phenomena. Parts (a) and (b) illustrate how the formation of Glass patterns is destroyed by reversing the contrast of one field
of dots (from “On the perception of glass patterns” by K. Prazdny, 1984, Perception, 13, 469-478. Copyright 1984 by Pion, London.
Reprinted by permission). The reversal of contrast of inducers in the Kanizsa square configuration from (c) to (d) does not significantly
weaken illusory contour formation.
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Figure 27. The 2-D MOC filter embodies a number of variations
and extensions of the architecture of the 1-D MOC filter of Figure 14.
See text for details.

opposite directions of contrast are merged at the short-
range spatial filter stage (see Section 14). Other varia-
tions of the basic computational strategy also work, and
they might be used by different species in vivo. The de-
scription that follows is keyed to Figure 27.

Level 1: Stimulus representation. Let I,4(f) denote
the intensity of a time-varying image input at position
(p,q) and time ¢.

Level 2: Oriented sustained receptive fields. Let the
output Jijx of a receptive field centered at position (i, j)
with orientation k be defined by

Jijk = 1 Alipglpg, n
Pe

where Ajp, defines the value of a Gabor kernel at posi-
tion (p,q) that is centered at position (i, j) with orienta-
tion k. The Gabor kernel is

ASpa = anexp{—Balva(Bfa)' +(Clise) 1} sin(64C 330),

V)]
where a4 is a constant that scales the Gabor amplitude,
B4 scales the size of the kernel’s Gaussian envelope, a4
specifies the degree of elongation of the receptive field

in the preferred orientation, and &4 controls the frequency
of the kernel’s sinusoidal modulation. Terms

2wk . 27k
B, = (p—i)COS(%) - (q—J)S‘“(—;_) @
and
¢ 2k
W = (p—i)Sin(z%) + (q_f)cos(%') @

describe the effect of shifting a receptive field centered
at position (0,0) to position (i, j), rotating it to orienta-
tion k, and evaluating it at position (p,q), given that K
is the total number of orientations.

Level 3: Endstopped sustained cells. A competition
of like-oriented Gabor receptive fields across neighbor-
ing positions and orientations leads to sustained cell acti-
vations xjx that are stronger at line ends and corners, as
in the equation

d
gy Nk = —oxXik + Bx—xiji) Jijk
— (x+xiw) L JIpak, &)
peED;;

where Dj; is the set of all positions within some radius
E of (i,j); that is,
Dij = [(p.g): (p—i)* + (¢g—j)*<E’].  (6)
Level 4: Unoriented transient receptive fields. The
transient on-cell yj;’ responds to increments in the total
input to a region F;; surrounding (i, ), as in

. d
y(lj) = (d_ )M

PIEFi;

IPQ) ’ (7)

where Fj; is the set of all positions within some radius
G of (i, j); that is,

Fij = [(p,q): (p—i)* + (¢—j)*=<G?] (8
for some radius G. Likewise, transient off-cell y}f)

responds to decrement in the total input to a region sur-
rounding (i,j), as in

R d
y(ij) = (d_ E

PIEF;;

IPQ) ’ (9)

where region Fj; is defined above.

Level 5: Center-surround transient cells. In this ver-
sion of the model, lateral inhibition among transient cells,
analogous to the endstopping operation among simple
cells, is implemented. The center-surround transient cell
activations Yj;"’ and Y’ obey the same type of equation
(Equation 5) as the endstopped sustained cells; namely,

d (+)

;1—11’,&” = —oYii + B- V")
- (w+¥") X v (10)
PqE€ H;
and
(%y,.;r’ = —a ¥ + B-¥7)yy
- (+Y5) T v, an
PqEH;;
where
Hij = [(p.@): (p—i)* + (g—j)*=<L?]. (12)

The transformation from Level 4 signals to Level 5 sig-
nals results in enhanced activity at line ends and corners.
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Level 6: Sustained-transient simple cells. As in
Level 4 of the Grossberg-Rudd MOC filter (Section 6),
multiplying outputs from sustained cells and transient cells
starts to compute a local measure of motion direction. In
particular, sustained cell activations that are sensitive to
opposite directions of contrast give rise to activations that
are sensitive to the same direction of motion by being mul-
tiplied with transient on-cells and off-cells, respectively.
For example, the sustained-transient interaction

Mum = [-xijkl’Yi“)’ (13)

where

K
m = (k+z)(mod K), (14)
with K an integer multiple of 4, and the sustained-transient
interaction

Mum = [Xijlfl’}li('_), (15)

where

k = (k+§;§)(mod K), (16)
are both maximally sensitive to oriented contours of orien-
tation k moving in direction m, even though the activa-
tions x;jx and x; sense opposite directions of contrast
in an orientation that is perpendicular to m.

These quantities are time-averaged by the cells at Wthh
Lhe sustained-transient interactions occur. Let z{jn and
Zim compute the acuvmes of the sustamed -transient cells
that receive the inputs M {j» and M {;, respectively. Then

d + +
d Zi(Jn)l = azZum + MI(JI')I (17)
t
and
46 = + M (18)
d’Zum = azZum um

For simplicity, the time-averaging in Equations 17 and
18 was computed in discrete time steps using the equations

Zijm (1) = ETM.“)( )¢, 19)
and
Zum(’) E_ Ml (T)g-l—r’ (20)

where 0< ¢ <1 and the number of time steps T was
chosen large enough to provide a good approximation to
Equations 17 and 18, respectively. Comparison of the
continuous and discrete time equations shows that { =
exp(—az).

Level 7: Short-range spatial filter — Pooling of orien-
tation detectors into local direction detectors. Each ac-
tivation z{j» and z{j» is derived from an oriented recep-
tive field whose orientation k is perpendicular to m. The
next operation pools activations that are sensitive to the
same direction of contrast using a short-range spatial filter.
The spatial filter pools activations that lie along motion
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trajectories with different preferred directions of motion
m. Activations z{}» or z{;» are accepted whose directions
n are not too different from the trajectory direction m.
This pooling operation exploits the relative advantage at
line ends and corners achieved by endstopping to com-
pute trajectory signals that begin to disambiguate a con-
tour’s direction of motion from its orientation.

The short-range spatial kernel N{j5g’ favors a motion
trajectory with direction-of-motion m that is centered at
position (i, j). It separately pools activations z pgn OF Z pgn
with a weight that depends upon how close n is to m and
(p,q) is to (i,)), as in

Uuim = L Na z2oan @1
pan
and
m = L NG 2han, 2)
pan
where
Nips' = Pjplcos[2a(m—n)K]' 23)
and
Pifpg = apexp{—B,lvp(Q{R)’
+ (Rijpe)'1} cos(5pRi55). (24)

In Equation 24, just as in Equation 2, «p, is a constant that
scales the kernel amplitude, 8, determines the size of the
kernel envelope, v, specifies the degree of kernel elon-
gation in the preferred direction m, and &, specifies the
frequency of the kernel’s cosine modulation. The values

Qllipe = (p—i)cos(z"T'") - (q—j)sin(z"T'") (25)
and
R = (p~ t)sm(——) + (9~ J)COS(—) (26)

describe the effect of shifting a receptive field centered
at position (0,0) to position (i, j), rotating it to point in
direction m, and evaluatmg it at position (p,q).

The cell activations u {j» and u {;m are computed using
the algebraic Equations 21 and 22 rather Lhan Lhe dlffer-
ential Equauons 17 and 18 used to compute z {jm and z {jm,
because u jm and u {j» are assumed to respond much more
quickly to their inputs than z{j» and z {m. In parucular
the kernel N{j7’ accumulates evidence for motion in
direction m along a trajectory through position (i, j). The
persistence of z % and z g activations as they temporally
decay, together wnth the spatial anisotropy of the kernel,
begin to overcome the uncertainties that arise from the
aperture problem. Kernel anisotropy is hypothesized to
arise, at least in part, in response to experiences with the
trajectories of moving contours during an early phase of
brain development. Such trajectories are, with high proba-
bility, approximately straight over sufficiently small regions.

The cell activations u$m and uiim both detect an esti-
mate of direction of motion m at position (i, j), but they
are sensitive to opposite directions of contrast. The long-
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Figure 28. (a) At a corner, the Gaussian filter combines signals
of several directions. (The circle indicates the spatial domain of the
Gaussian filter.) (b) The resolution of motion signals of many direc-
tions can be accomplished by a shunting “center-surround” compe-
tition with normalization among direction signals at a given location.
Such a competition chooses the globally most consistent direction
at a location. The solid line indicates the “on-center,” and the dashed
line indicates the “off-surround” of interaction weights across direc-
tions. (c) An input distribution with peaks at the rightward and up-
ward directions is transformed into a single peaked distribution point-
ing upward and rightward by such a network.

X - 4 § X\

range spatial filter combines signals that are sensitive to
opposite directions of contrast, but the same direction of
motion, to compute a more accurate estimate of motion
direction, as indicated in Figure 21. The output signals
Ui and U from Level 7 to this long-range filter are
rectified vérsions of the Level 7 activations, as in

Uijm = [uijm—n]*

27
and
(28)

Ui = Tl =l

Level 8: Long-range spatial filter and directional
competition. The trajectory responses U {jm and U {jm are
next combined across space and direction of contrast to
generate a response vijm that is sensitive to the consensus
within a region surrounding position (i, j) of how much

evidence there exists for motion in direction m. Thus, we let
vim = L (Ubigm+ Upg) exp{ ~en[(p =i+ (g =j)1},
PIEW,
29)
where
Wi = [(p.g): (p—i) + (¢-j)*=X"]. (30)

The long-range filter is indicated by the parallel dashed
lines near the top of Figure 27.

The output of the long-range filter undergoes a final
competition to choose a consensual direction among all
signals that have been grouped at a spatial location (Fig-
ure 28). This competition is in the form of a center-
surround organization in *‘direction space,’’ as given by

d
El Wim = —QwWijm + (Bw‘"wijm) EVijn’Ynm
n
- (Suw+t Wijm) E Vijn€nm, 31
where
Yam = yexpl—pw(m—n)’] (32)
and
€nm = eexp[—vw(m—n)?]. (33)

The competition stage at Level 8 is not necessary to gener-
ate consistent direction signals for simple, noise-free in-
puts. Snowden (1989, 1990) has reported psychophysical
and physiological evidence for such shunting inhibition
among directional signals, for situations in which conflict-
ing signals must be resolved. Williams and Phillips (1987)
and Watson and Ahumada (1985) have proposed a simi-
lar direction-averaging mechanism.

13. Computer Simulations: Distinguishing

Motion Direction from Boundary Orientation
Computer simulations were carried out on simple mov-

ing forms to illustrate how the MOC filter can compute

Figure 29. Simulations of the response of the 2-D MOC filter to
the motions of two simple figures are shown in subsequent figures.
These figures are (a) a square moving diagonally upward and to the
right, (b) a parallelogram moving horizontaliy rightward, (c) a
square moving horizontally rightward, and (d) a paralielogram mov-
ing diagonally up and to the right.
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Table 1
Graphics Conventions
Symbol Figures Level Cell Type
\l/ 31a, 33a 2 Oriented sustained
\l/ 31b, 33b 3 Endstopped oriented sustained
. 31¢, 33¢ 4 Unoriented transient
(luminance decreasing)
O 3¢, 33c 4 Unoriented transient
(luminance increasing)
. 31d, 33d 5 Center-surround transient
(luminance decreasing)
O 31d, 33d 5 Center-surround transient
(luminance increasing)
W 3le, 33e 6 Sustained-transient simple
(luminance decreasing)
g 3le, 33e 6 Sustained-transient simple
(luminance increasing)
W 3if, 33 6 Time-average of sustained-transient simple
(luminance decreasing)
g 31f, 33f 6 Time-average of sustained-transient simple
(luminance increasing)
W 31g, 33g 7 Short-range spatial filter
(luminance decreasing)
g 31g, 33g 7 Short-range spatial filter
(luminance increasing)
\l/ 31h, 33h, 35, 37 8 Motion hypercomplex

an accurate measure of motion direction even if the bound-
ing contours of the form have orientations that are not
perpendicular to the direction of motion. Four illustra-
tive moving forms are analyzed below: a square moving
diagonally upward, a square moving to the right, a paral-
lelogram moving diagonally upward, and a parallelogram
moving to the right (Figure 29). For the square moving
diagonally, the resultant activation pattern at each stage
of the MOC filter is shown in order to aid the reader’s
intuition. The graphics conventions used are shown in
Table 1.

Consider the case of a light square moving diagonally
up and to the right on a dark background, as depicted
in Figure 30. Figure 31a displays the response of the
oriented sustained detectors of Level 2; the parameters
controlling the scale of the detectors are such that only
a single row or column is activated around the perimeter
of the square, although several orientations are active at
each position. Figure 31b displays the response of the end-
stopped, oriented sustained detectors of Level 3. Note the
attenuated response along the interiors of the segments
bounding the square and the enhanced response at corners.
Figure 31c displays the response of increasing and de-

creasing transient detectors of Level 4. Note that the
leading and trailing corners (upper right and lower left,
respectively) have strong activity, because the axis they
define is in the direction of motion, while the other two
corners have attenuated activity. Figure 31d displays the
result of contrast-enhancing competition of Level 5 tran-
sient detectors. Note that this competition occurs indepen-
dently in the ““increasing’’ and ‘‘decreasing’’ channels,
permitting the greatest enhancement of activity at the
corners where activity was weakest in Figure 3lc.
Figure 3le displays the output of a field of Level 6 sus-
tained-transient simple cells. Note that those signals along
the top and right edges of the square are formed by gating
sustained responses with luminance-increasing detectors,
while those signals along the left and bottom contours are
formed by gating with luminance-decreasing detectors.
Figure 31f displays the temporal ‘‘smearing”’ of responses
at Level 6. Note that at the upper left and lower right
comners, signals formed by gating with luminance-increasing
detectors (pointing upward or rightward, respectively) are
superimposed upon signals formed by gating with luminance-
decreasing detectors (pointing rightward or upward,
respectively). Thresholded responses of the Level 7 short-
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Figure 30. A representation of a frame from an input sequence presented to
the 2-D MOC filter. A light square moves diagonally up and to the right against
a dark background. The resolution of the image used in the simulation was
128 x 128 pixels; the distance between nearest receptive-field centers for network
activities depicted in Figures 30-37 is 4 pixel units.

range spatial filters are displayed in Figure 31g. This
filtering stage imposed a greater directional selectivity than
did the previous stage, by virtue of the elongated form
of its spatial filters. Level 8 is the first stage to combine
information generated from both luminance-increasing
and luminance-decreasing transient cells. The diagonal
motion of the square is registered at all four corners, as
shown in Figure 31h. The competition of Level 8 does
not contribute materially to network function in this noise-
free example, but it would be expected to play a more
important role in noisier or more cluttered environments.

Figure 33 displays a sequence of transformations corre-
sponding to those of Figure 31, but this time for the case
of a parallelogram moving horizontally to the right, as
depicted in Figure 32. The transformation from the out-
put of oriented sustained cells of Level 2, shown in Fig-
ure 33a, to the output of endstopped cells of Level 3,
shown in Figure 33b, changes the relative distribution of
active orientations at corners. Likewise, the transforma-
tion from Level 4 transient cells to Level 5 contrast-
enhanced transient cells (shown in Figures 33c and 33d,
respectively) helps to create a stronger pool of activity
at the ends of the diagonal lines, as was discussed with
reference to the barberpole illusion in Section 2. The out-
put of sustained-transient simple cells of Level 6, shown
in Figure 33e, contains an assortment of active local direc-
tion signals. The spatial trail formed by the smearing of

those signals in time, shown in Figure 33f, enables the
short-range spatial filters of Level 7, shown in Fig-
ure 33g, to more accurately register the prevailing direc-
tion of motion. The output of Level 8, shown in Fig-
ure 33h, further smooths the signals over space, while
sharpening their directional distribution. Note that the re-
sulting pattern of activity is stronger at the 45° corners
than at the 135° corners, and that the directional pattern
at the latter is not symmetric about the horizontal. It may
be that such effects underlic some of the anomalous mo-
tion percepts reported for motions of curves, such as those
employed by Nakayama and Silverman (1988). Chang-
ing parameters in the simulation to include longer spatial
filters at Level 7 would in any case reduce this effect and
generate a more nearly horizontal pattern of responses.

For comparison, we have included the response at
Level 8 to the cases where a horizontal square moves
rightward (Figures 34 and 35) and where a parallelogram
moves diagonaily (Figures 36 and 37).

14. A Related MOC Filter
Similar computational properties are found if the mask
responses in Equation 1 are thresholded, as in

Jije = (EA};p)qlpq_fA).y 34)
Pq

and the terms M {j» in Equation 13 and M{j» in Equa-
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Figure 31. The output of the 2-D MOC filter of Figure 27 in response to
the moving square of Figure 30. The parts of the figure (above and on the fol-
lowing three pages) show the responses of (a) the sustained cells of Level 2, (b) the
endstopped sustained cells of Level 3, (c) the transient cells of Level 4, (d) the
contrast-enhanced transient cells of Level §, (e) the sustalned-transient simple
cells of Level 6, () the pattern formed by the temporal smearing of the responses
of sustained-transient simple cells of Level 6, (g) the short-range spatial Filter
cells of Level 7, and (h) the competitive cells of Level 8.
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Figure 32. A representation of a frame from an input sequence presented to
the 2-D MOC filter. A light parallelogram moves rightward against a dark back-
ground. The resolution of the image used in the simulation was 128 x 128 pixels;
the distance between nearest receptive-field centers for network activities de-

picted in Figures 32-33 is 4 pixel units.

tion 15 are combined into a single time-averaged sus-
tained- transient cell type zim, instead of the separate
streams Equations 19 and 20. Then

{
Zim (1) = X [Mim(r) + Min(Ig"™"  (35)
r=¢t-T
and
Uijm = EN;};};)qun, (36)
pgn
where
NG = Pipa{lcos@a(m—-mKI]'}?, (37)

function Pjpy is defined in Equation 24, and parameter
p in Equation 37 enables the smoothing across directions
n to be made more or less broad within a 180° span. Using
this approach, the threshold n in Equations 27 and 28
is not needed, because the masks (Equation 34) are al-
ready thresholded, and the functions M {j» and M j;m com-
bine to generate a more central directional tendency at
an early processing stage. Then

Vijm = 2 Upemexp{—av[(p—i)*+(q—j)'1} (38)
pqEW

suffices instead of Equation 29.

15. Perception of Moving Form in Depth:
The V1—-V2—-MT Pathway

The motion BCS circuitry suggests the types of pro-
cessing stages, and their ordering, that are needed to ef-
fectively process moving images. As such, the circuit
suggests experimental tests of the cell types and inter-
actions in the V1~ MT cortical processing stream. The
theory also helps to understand (as described in Gross-
berg, 1991) why an indirect, V1~V2~MT, cortical
pathway from V1 to MT exists in addition to the direct
V1—MT pathway (DeYoe & van Essen, 1988). As noted
in Section 7, outputs from the MOC filter sacrifice a mea-
sure of orientational specificity in order to effectively pro-
cess direction of motion. However, precisely oriented
binocular matches are important in the selection of corti-
cal cells that are tuned to the correct binocular dispari-
ties (von der Heydt, Hinny, & Diirsteler, 1981). The
static BCS can carry out such precise oriented matches;
the motion BCS cannot. As noted in Section 3, this fact
suggests that a pathway from the static BCS to the mo-
tion BCS exists in order to help the motion BCS to gener-
ate its motion segmentations at correctly calibrated depths.

Such a pathway needs to arise after the level of BCS
processing at which cells capable of binocular fusion are
chosen and binocularly rivalrous cells are suppressed. This
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(a)
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Figure 33. The output of the 2-D MOC filter of Figure 27 in response to the
moving parallelogram of Figure 32. The parts of the figure (above and on the
following three pages) show the responses of (a) the sustained cells of Level 2,
(b) the endstopped sustained cells of Level 3, (c) the transient cells of Level 4,
(d) the contrast-enhanced transient cells of Level §, () the sustained-transient
simple cells of Level 6, (f) the pattern formed by the temporal smearing of the
responses of sustained-transient simple cells of Level 6, (g) the short-range spatial
filter cells of Level 7, and (h) the competitive cells of Level 8.
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Figure 34. A representation of a frame from an input sequence presented to
the 2-D MOC filter. A light square moves horizontally te the right against a
dark background. The resolution ef the image used in the simulation is 128 x 128
pixels; the distance between nearest receptive-field centers for network activi-
ties depicted in this figure is 4 pixel units.
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Figure 35. The output of the competitive cells of Level 8 of the 2-D MOC filter
in response to the moving square of Figure 34,
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Figure 36. A representation of a frame from an input sequence presented to
the 2-D MOC fiiter. A light paralielogram moves diagonally up and to the right
against a dark background. The resolution of the image used in the simulation
was 128 X 128 pixels; the distance between nearest receptive-field centers for net-
work activities depicted in this figure is 4 pixel units.
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Figure 37. The output of the competitive cells of Level 8 of the 2-D MOC filter
in response to the moving parallelogram of Figure 36.
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Motion BCS Static BCS
CC Loop CC Loop
MOC Filter SOC Filter

1 1

Figure 38. Model analog of V1 — V2 — MT pathway: Stereo-
sensitive emergent segmentations from the static CC loop help to
select the depthfully correct combinations of motion signals in the
MOC filter. (Reprinted, with permission, from Grossberg, 1991.)

process is completed within the hypercomplex cells and
bipole cells of the static BCS (Grossberg, 1987b; Gross-
berg & Marshall, 1989), and hence within the model ana-
log of prestriate cortical area V2 (Figure 38). Thus, the
existence of a pathway from V2 and/or V4 to MT is con-
sistent with the different functional roles of the static BCS
and the motion BCS.

According to this reasoning, the V2—MT pathway
should occur at a processing stage prior to the one at which
several orientations are pooled into a single direction of
motion within each spatial scale. Thus, the pathway ends
in the MOC filter at a stage no later than Level 4 in Fig-
ure 14, or correspondingly, Level 7 in Figure 27. Such
a pathway would join like orientations within like spatial
scales between the static BCS and the motion BCS. It
could thereby enhance the activation within the motion
BCS of those spatial scales and orientations that are
binocularly fused within the static BCS.

16. Contextually Consistent and Coherent
Motion Segmentation

In this article, we have described mechanisms for the
processing of moving forms whereby the visual system
frees itself from an excessive reliance on purely local com-
putations that ignore the context of surrounding scenic
data. Instead, competitive and cooperative interactions
within a parallel and structured network with several
scales of interaction help to choose and enhance those as-
pects of local data that contribute to consistent and co-
herent measures of object motion. Like its counterpart in
the domain of quasi-static form perception, the motion
BCS employs both unoriented and oriented computations,
short-range and long-range interactions, and is in some
places sensitive and at other places insensitive to direc-
tion of contrast. The precise configuration of levels,
however, differs from that of the static BCS in order to
efficiently generate coherent segmentations of moving
forms. Indeed, the static BCS and motion BCS play dual
roles in a larger architecture whose structure can be
rationalized by principles of form-motion symmetry
(Grossberg, 1991). Far from being independent modules
or separate channels (Livingstone & Hubel, 1987), the

principles and architectures of neither the static form per-
ception system nor the motion form perception system can
be fully understood without understanding the specializa-
tions of the complementary system and the interactions
of the two. This complex interplay of overlapping com-
putational properties puts to rest the comforting but sim-
plistic idea that a primate vision system can be understood
as a set of modules that compute separable properties of

. form, motion, stereo, and color. In the absence of such

a convenient modular description, model neural network
systems provide a natural language for analyzing the com-
plex interactive properties that make vision so useful in
our daily lives.
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