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Kohonen (1993) provides an interesting discussion of how a self-organizing feature map
(SOFM) may be biologically realized. He notes that such a map “has been used as an idealized
theoretical principle and effective practical computing method, without explicit reference to any
physiological processes...It is now argued in the present article that there may exist a
physiological implementation of this principle” (p.895). Kohonen’s goal is to physiologically
interpret a winner-take-all dot product rule and a self-normalizing synaptic weight change rule,
where weights change only if they are in the neighborhood of the winner, and do so by an
amount that varies with their distance from the winner. He builds upon his own contributions to
the SOFM model, dating from 1982.

As with other key neural network models, however, substantive model discovery and
development were carried out in the 1970’s and even the 1960’s. That is why the renewed
interest in neural networks in the 1980’s led to such explosive development of the field. Often
key models were substantially known, ready to be presented to a new audience for further
development. In this heady atmosphere, the original discoveries were often overlooked, much as
backpropagation is often attributed to Rumelhart, Hinton and Williams (1986), rather than to
Amari (1967; see also Amari, 1993), Werbos (1974), and Parker (1982).

As Kohonen (1993) notes on p.895, a number of investigators studied the SOFM model before
1982. Many of these investigators considered how maps self-organize in the cerebral cortex. In
addition, in Grossberg (1976a) and Grossberg (1978a), neurobiological modeling rules were
articulated and restated in the familiar SOFM formalism as an algebraic winner-take-all dot
product rule, and a self-normalizing synaptic weight change rule whose weights change only if
they are in the neighborhood of the winner. This transition was made possible by a decade of
prior mathematical and simulation work that analysed how neural networks carry out associative
learning (e.g., Grossberg, 1969a, 1972a) and how recurrent on-center off-surround networks
carry out competitive decision making, including winner-take-all competition (e.g., Grossberg,
1973; Ellias and Grossberg, 1975; Grossberg and Levine, 1975; Levine and Grossberg, 1976).
The mathematical properties of these associative and competitive networks guided the selection
of idealized rules for SOFM computation.

These rules, schematized in Figure 1 from Grossberg (1976a), are used in all contemporary
SOFM models. The 1976 article also contained the first mathematical proof of the key SOFM
properties that synaptic weights self-normalize, track the statistics of environmental inputs, and
stabilize in an input environment that is sufficiently “sparse”. The 1976 paper developed the L1
norm model that was subsequently applied by Rumelhart and Zipser (1985). The 1976 proof of
weight normalization led to the observation in Grossberg (1978a) of how the L2 norm case that
is used by Kohonen (1984) carries out unbiased learning. The relationship of these results to the
seminal work of Malsburg (1973) is reviewed in Grossberg (1987) and Carpenter and Grossberg
(1991). In brief, Malsburg (1973) modified the additive model for adaptive instar classification
that was developed in Grossberg (1972b) to introduce the first biologically motivated SOFM. His
model, however, used a non-local adaptive weight equation and did not operate in real-time. The
Grossberg (1976a) article showed how to modify the Malsburg SOFM rules to introduce the first
local real-time SOFM model.

These research streams on both biological and technological SOFM models have continued



unabated to this day. Contributions have been made to all the areas that Kohonen (1993)
mentions, and seem to exhibit computational and data-predictive properties that have not yet
been attained in Kohonen (1993), while providing some evidence against one of his key
hypotheses. Since the primary focus in Kohonen (1993) was to discuss physiological
mechanisms for winner-take-all (WTA) competition, that will also be the focus below.

To better appreciate this discussion, the reader should keep in mind that one of the results proved
in Grossberg (1976a) led to a bifurcation of research on neural networks after the mid-1970’s.
This result proved that learning in the SOFM model is unstable in response to an arbitrary
nonstationary input stream. One large group of researchers, with Kohonen (1984) as one of its
most visible stimuli, applied SOFM models to problems in sparse or stationary environments,
and externally controlled learning at large times to ensure good convergence. The second group
of researchers focused on how to design an SOFM that could self-stabilize its learning in
response to arbitrary nonstationary inputs. To accomplish this goal, I introduced Adaptive
Resonance Theory in Part II of the original SOFM paper (Grossberg, 1976b). Thus ART models
were introduced as examples of self-controlling SOFM models. One theme of considerable
research interest still today is whether, and how, external or internal controllers are used to
stabilize SOFM learning. All such approaches can be viewed as variants or elaborations of the
basic SOFM model in Figure 1.

Kohonen (1984, 1989) regulated convergence by using a topological neighborhood, or bubble,
whose size was shrunk through time by an external controller. One reason why external control
as needed is that Kohonen, like Malsburg (1973) and Grossberg (1972b) before him, used an
additive model as his state equation for neuron interactions. In Grossberg (1976a), a shunting
model of neuron interactions was used. A shunting model realizes the membrane equations of
neurophysiology (Hodgkin, 1964), in addition to having important computational properties. For
example, shunting models tend to self-normalize their total activity. Thus, as learning proceeds,
the topological neighborhoods, or bubbles, in a shunting SOFM model shrink automatically, due
to internal self-control, as winning nodes get relatively more active due to the map learning
process. This difference between additive and shunting models is also relevant to evaluating
Kohonen’s proposed WTA model.

Kohonen correctly notes that “one of the original WTA networks” was presented in Grossberg
(1973). This 1973 article introduced and analysed networks with transient inputs that instate an
activity pattern before they are shut off. Then nonlinear internal feedback selects a winning
population or populations. Kohonen incorrectly states that Cohen and Grossberg (1983) analysed
a more general class of nets with transient inputs. He then asserts that his goal is to analyse “a
WTA function with respect to persistent external inputs”. Actually, the Cohen-Grossberg model
and theorem were developed to handle a large class of biological networks with persistent inputs
that were introduced subsequent to 1973, with Ellias and Grossberg (1975), Grossberg and
Levine (1975), and Levine and Grossberg (1976) presenting some of the earliest. All of these
networks are built up from cells undergoing shunting equations that interact through recurrent
on-center off-surround interactions (Kuffler, 1953; Ratliff, 1965), as in Kohonen’s Figure 2.
They thus provided the type of WTA “physiological implementation” that Kohonen is now
seeking, as well as a mathematical characterization of when “bubbles”, or partial contrast-
enhancement, will occur.



Kohonen (1993) does not use a shunting equation to describe WTA of model activities n_1i.
Instead, he uses an additive equation with variable gain y(n_1); see his equation (6). He also uses
slow inhibitory feedback interneurons { i to periodically inhibit, and thus reset, the WTA choice;
see his Figure 4. Periodic inhibition using slow feedback inhibitory interneurons in additive
networks was mathematically analysed in Grossberg (1970, Section 3); see also Ogmen and
Gagné (1990).

Kohonen adds this well-known device to his WTA network. If the feedback inhibition gets large,
however, then the activities n_i could potentially become negative and thereby destabilize
network dynamics. To prevent this from happening, Kohonen imposes unphysiological
mathematical conditions on equation (6). In contrast to these unphysiological properties of
additive models, shunting networks can automatically preserve the sign of their activities
(Grossberg, 1973). In summary, Kohonen uses an additive network with slow inhibitory
interneurons to make and reset a WTA choice. Because the interneuron varies more slowly than
the WTA choice, he ignores it in his mathematical treatment of the WTA property in Lemma 2.

This difference between the additive and shunting equations having been noted, it can be seen
that Kohonen (1993) uses the same mathematical method in his Lemma 2 to prove the WTA
property for an additive network as was developed for the shunting case in Grossberg (1973). In
particular, fixed signs of terms and faster-than-linear signals (condition y’’ > 0 in Lemma 2) are
used to prove that activity differences grow, thereby leading to selection of a winning population.
Kohonen (1973, p.903) goes on to note that “a connectivity of O(N) can be achieved if the
inhibitory effects are first summed up by a common interneuron”. The proofs in Grossberg
(1973) and Ellias and Grossberg (1975) showed this by rewriting network interactions as an
“adaptation level” > k o(n_k) that can be computed by an inhibitory interneuron. Kohonen
(1993) also uses the adaptation level formulation; see his equation (12).

This “adaptation level” observation led to another burst of research activity. It was generalized in
a series of articles in the mid 1970’s, leading to the characterization and mathematical analysis of
a general class of “adaptation level” recurrent networks, all of whose trajectories approach
equilibria (Grossberg, 1978b). This analysis introduced global Liapunov methods into the theory
of neural networks (Grossberg, 1980). The effort to develop a unified method for proving
convergence in both additive and shunting models also led to the Cohen-Grossberg model and
theorem (Cohen and Grossberg, 1983; Grossberg, 1982), which anticipated and subsumes the
additive model and Liapunov function that is sometimes called the Hopfield model after their use
in Hopfield (1984). Because Hopfield did not first describe either the model or the Liapunov
function, the classical name of additive model is more accurate.

As noted above, one of Kohonen’s WTA design goals is to “reset [the network] before a new
input becomes active” (p.898). He uses a slow negative feedback loop that generates a reset at a
fixed delay after input onset. However, in both biological and artificial networks, inputs typically
need to be reset aperiodically, in a stimulus-dependent way, at a variable delay after input offset,
much as the information stored in a working memory is dependent more on the order of events
than on their input timing (Atkinson and Shiffrin, 1968, 1971). In principle, reset could follow an
input at a fixed period and thus be insensitive to subsequent environmental feedback; or it could



be driven nonselectively by changes in inputs; or it could be driven to selectively reset only those
nodes that mismatch present or subsequent input data. All of these types of reset have been
studied before in the literature. An example of the third, most selective type of reset, is found in
the ART3 model of Carpenter and Grossberg (1990). This model uses a chemically modulated
on-center off-surround recurrent network whose competitive decisions are reset selectively in
response to mismatches with the changing inputs themselves, whether they be periodic or
aperiodic in time.

Another design goal of Kohonen is to determine the cut-off that decides how many winners there
are. He notes that one option is to vary a selection threshold. Grossberg (1973) showed that
shunting competitive nets compute a “quenching threshold” that can be used as a control
parameter to select any prescribed number of winners. In the more advanced masking field
model of Cohen and Grossberg (1986, 1987), the informational ambiguity of an input pattern can
automatically determine how many approximate winners are stored, with fewer winners being
stored as the input becomes more predictive. In addition, as noted above, learning automatically
“shrinks the bubble” as the information became more sure. Bubble shrinking is often done by an
external controller in the SOFM applications of Kohonen.

Kohonen emphasizes the possible role of “chemical substances rapidly diffusing” (p.900) to
achieve fast and even signaling for control of learning at synaptic weights. In this regard, he
reviews a stochastic learning law discussed in Kohonen (1984) that has self-normalizing adaptive
weights; see equations (7) and (8) in Kohonen (1993), where chemical signals subtract from
synaptic strength to cause a type of “forgetting” that normalizes synaptic strength. A similar self-
normalizing learning law was described in Grossberg (1984) and used in Grossberg and
Kuperstein (1986, Chapter 10; see also Grossberg, 1988, Sections 20 and 21) to model stochastic
learning of invariant self-regulating maps. This learning law also uses chemical signals to control
the forgetting that leads to synaptic normalization. Similar chemical signals were used to regulate
the reset and learning operations in the ART systems of Grossberg (1980) and Carpenter and
Grossberg (1990). These results are consistent with Kohonen’s hypothesis about the importance
of chemical signals.

On the other hand, diffusive chemical signaling has not been needed to explain the fast and even
spread of a postsynaptic learning factor to multiple sites, in contrast to Kohonen’s central claim
that extracellular chemical signaling is needed because intracellular electrical “signal attenuation,
especially in large ramified cells, is a severe problem” (p.899). In Grossberg (1975, Section 24)
it was suggested that a massive action potential, triggered by the cell body of hippocampal
pyramidal cells, could broadly activate cell dendrites and dendritic spines to provide such an
evenly distributed learning signal. This prediction was applied again in masking field models of
cortical processing (Cohen and Grossberg, 1987, Figure 16) and in models of classical
conditioning (Grossberg and Schmajuk, 1987, Figure 9), both of which include SOFM variants.
Jaffe et al. (1992) have summarized supportive neurophysiological data of their own and related
experiments that suggest how voltage-dependent Na+ spikes, that are initiated in the cell body of
a hippocampal pyramidal cell, actively propagate along hippocampal dendrites and trigger local
Ca++ currents that may help to initiate synaptic learning. A role for such local Ca++ currents in
synaptic learning was suggested in some of the earliest real-time network models of associative
learning (e.g., Grossberg, 1968, 1969b). Experimental results do not yet seem, however, to have



tested another property of this prediction; namely, that the global action potential helps to
dissociate the local read-out of synaptic weights from the global read-in to synaptic weights after
the cell body experiences a competitive decision process.

In summary, the problems which Kohonen (1993) raises have been actively studied for many
years. In particular, his WTA analysis uses familiar equations, mechanisms, and methods, but his
use of the additive model seems less compelling to me as a physiological model than the earlier
shunting models and generalizations thereof. In fact, it was precisely these sorts of deficiencies
of the additive model that led me to increasingly use shunting models over the years.

Many researchers may not be aware of these earlier results because they have often been told that
the 1960’s and 1970’s were a dark age in neural network history. This is true from a political
perspective. From a scientific perspective, however, this era was a golden age of neural network
discovery during which many key models, including symmetric autoassociators, back
propagation, self-organizing feature maps, and WTA networks, were discovered and
substantially developed. Now that the neural network renaissance is well underway, it is time to
expand our scholarship and to get our history right. Only then can our young researchers reliably
plan their own research programs with confidence.
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Figure 1. SOFM rules as described in Grossberg (1976). [Reproduced with permission.]
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