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Certain visual illusions occur in neural networks that are capable of storing
partially contrasted enhanced spatial patterns in short term memory
(STM), and whose feature detectors are interconnected by nontrivial
generalization gradients. These include neutralization, or adaptation, of
nearly vertical or horizontal lines, tilt after-effect of successively viewed
lines, and perceived angle expansion. Neutralization can be achieved by
networks whose vertical and horizontal representations have higher
saturation levels, broader tuning curves, or stronger input pathways.
Tilt after-effect and angle expansion can be achieved by shunting lateral
inhibition that causes an outward peak shift in the orientationally-coded
STM pattern. The amount of outward peak shift is also dependent on the
size of the potassium equilibrium point. Differences between the directions
of tilt aftereffect (successive contrast) and angle expansion (simultaneous
contrast) are ascribed to a normalization of total activity in the STM
buffer whereby present stimuli and representations in STM of past stimuli
interact to form a consistent action-oriented consensus.

1. Introduction

Why do visual illusions occur? Why is the exquisitely formed visual system
susceptible to so many distortions of perception? This paper lists several
distortions of neural pattern processing that are consequences of basic
requirements on a pattern processor. In particular, certain distortions arise
. 1 Supported in part by the Office of Naval Research (N00014-67-A-0204-0051) and the
' Advanced Research Projects Agency (DAHCI15-73-C-0320) administered by Computer
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s distribution of activity centered at a particular column in the visual cortex,
and that this distribution is the net effect of summing lateral excitatory and
Mlinhibitory influences (Fig. 2). The two distributions add in such a way that
the peaks of the sum are shifted outward from the original peaks. If it is
3l :ssumed that populations which are further apart on the cortex code orien-
described by Blakemore, Carpenter & Georgeson (1970). Hysteresis effects} :\; tations that are further apart, then the peak shift represents a perceived angle
expansion.

2. Some Visual Illusions

The 1llus;on discovered by Blakemore et al. (1970) is as follows If two' a) L T i 1

0° 10° 0° I0°

when the angle is about 10° and drops to 0 when the angle approaches 0°
or 90°. When the angle is obtuse, it is perceived as smaller than it really i 1s,
which may be interpreted as a complementary effect to the original one.
Blakemore et al. (1970) conjectured that the shifted angle perception is a;
result of lateral inhibition between cortical neurons that are maximally tuned %
to different orientations. They postulated that each perceived line generates

(b) ! L 1 !

hNA
(c)\ \j OOU s L/

FiG. 2. Excitatory (C) and inhibitory (D) gradients that are centered at 0° and 10° add
in (2) and (b), respectively. The two net gradients add to yield a peak shift in (c). After .
3l Blakemore et al. (1970).

Fic. 1. Angle expansion due to an acute angle between A and B. Line B, is parallel to
Line C is perceived as parallel to B.
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There is a similarity, noted both by Blakemore er al. (1970) and by
Coltheart (19715), between the angle-expansion effect and the tilt after-effec
described by Gibson (1933) and Gibson & Radner (1937). If a tilted line L
which is nearly vertical is presented to a subject, and then it is removed from
the visual field and replaced by an objectively vertical line, the vertical line. g
will look tilted in the opposite direction; a tilted line which is nearly horizontal 4
creates an analogous shift in perceived orientation [Fig. 3(a)]. Thus the

D. S. LEVINE AND S. GROSSBERG
I I

A
_>

|
|
|
|

(a)

FiG. 3. Tilt after-effect of T due to prior inspection of I (a); neutralization of I to I’ 8

due 1o sustained inspection of I (b).

*“angle” between the two lines (though presented successively rather than

simultaneously as in the Blakemore experiment) is perceived as larger than
it actually is. [n effect, the stored representation of the first line interacts w1th
the representation of the second line, and thereby tilts it. Campbell & o
Maffei (1971) confirm this result using vertical and horizontal gratings, and
reference other experiments. i
Gibson also showed that the tilted line itself, as it is viewed, will approach 3
(but never reach) being seen as vertical [Fig. 3(b)). He calls this effect adap-
tation, but since that term has many other meanings, we prefer the term#
neutralization, used by Coltheart (1971a). It is obvious, by symmetry :
arguments, that if there are no biases that favor one orientation over anothet‘, e:

4
o
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then there is no reason for a neutralization shift to occur in one direction

VISUAL ILLUSIONS IN NETWORKS

rather than the opposite one. Hence some bias in network parameters as a
.function of orientation is anticipated. Mansfield (1974) has, for example,
[ reported that in the visual cortical projection of the fovea in rhesus monkeys,

vertical and horizontal orientations are more abundant than oblique
orientations.

3. Basic Network Properties

Below we review how recurrent on-center off-surround networks under-
going mass action (or passive membrane, or shunting) interactions can be
derived from first principles. Grossberg (1973) asked how parallel processing
of patterns can be accomplished in the presence of noise and saturation. His
solution is reviewed in Grossberg & Levine (1975). It is briefly outlined
below for completeness. In effect, the solution shows how statistical
properties of individual cells, or cell populations, can be married to
geometrical properties of cell interactions to overcome noise and saturation.

Let n states (or cells, or cell populations) v;, i = 1, 2, . » h, receive

"3 inputs () whose intensity depends on the presence of a prescribed feature,

or features, in an external pattern. Let each v, have B excitable sites of which
x(t), the average potential of v, are excited at time ¢. Suppose that

A unexcited sites, which number (B—x;), are excited by I, via mass action. Also

let excited sites x; spontaneously become unexcited at a rate 4. Then
X = —Ax,+(B-x)I;, 0))

so that x; approaches the equilibrium point 0 when no input /; is present.
The relatlve input intensity 8, = I,/ !, where

is the total input intensity, measures the relative importance of the feature

3l coded by v; in any given input pattern. How well do the equilibrium values
of x; code the 0; values? Grossberg (1973) notes that at high 7 values, the.

‘pattern of 8,’s is lost due to saturation of all x; at B, whereas at low I values,
the pattern of 0/s is confounded by any noise that exists in the system.
How can a better record of the 6,’s in x; responses be achieved? Inter-
actions between inputs and/or states must occur, because the 8,’s are defined
by an interaction of all the inputs f,, k = 1,2, ..., n; namely, 8, = I,I™!.

iThe simplest solution is to let the inputs 7, be distributed in a nonrecurrent
(feed-forward) on-center off-surround anatomy (Fig. 4). Then equation 1))
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I; (n

FiG. 4. Nonrecurrent on-center off-surround network.

becomes ‘ %
)2:,- = —Ax‘+(B—x,~)Ii—x, Z,I"’ (2) .':
k# X
so that at equilibrium (¥; = 0),
BI
=,—. (3
=0y +1 )

Equation (3) shows that automatic gain control via the off-surround, that

is, term
| (554

ryi
.. . . e . .
in equation (2), eliminates saturation as I increases, and maintains x;’s

sensitivity to the ratio of center-to-su\rround excitation. Moreover, the total ‘_

activity
n
x=) X
K=1

adapts, or is normalized, since x € B no matter how intense I is.
How can short term memory (STM) of input patterns be achieved ? Some

mechanism is needed that can maintain activity in the v; after inputs cease #
and that can also let this activity be rapidly inhibited by competing inputs.
Reverberatory interactions between populations are therefore assumed. to
exist. The simplest recurrent network capable of overcoming saturation
utilizes feedback signals distributed in an on-center off-surround anatomy,. t_.j

3 3

as in system

% = _Ax,+(3_x,)[f(x,)+1i]—x,[k;:,f(x,‘)+h], C))

where f(w) is the average feedback signal that is produce-d by an average gt
activity level w; for example, term (B—x;)f(x;) in equation (4) descn!)es
self-excitation of v, via the recurrent signal f(x;) at activity level x,. Function k!
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I (1)

FiG. 5. Recurrent on-center off-surround network.

I; in equation (4) is the excitatory input to v;, and J, is the inhibitory input

to v;; e.g.,
Jl =. Z Iks
k#i
as in equation (2).

The signal function f(w) must be properly chosen to store important input
data in STM and yet to prevent amplification and storage of noise in STM.
A complete classification is given in Grossberg (1973) and is reviewed in
Grossberg & Levine (1975). A sigmoid (S-shaped) signal function f(w)
[Fig. 6(a)] can suppress noise and other activity that falls below a prescribed
quenching threshold (QT), yet contrast enhances and stores in STM all
activity that exceeds QT [Figs 6(b) and (c)]. The sigmoid function balances
two undesirable tendencies: too little vs. too much noise suppression. Linear
signals [f(w) = aw] and slower-than-linear signals [e.g., fiw) = w(b+w)™!]
both amplify noise. Faster-than-linear signals [e.g., f(w) = w?] suppress
noise so strongly that they also “choose” the population with initial maximal

i ‘activity for STM storage and suppress all nonmaximal activities [Fig. 6(d)].

The sigmoid signal can store partially contrast-enhanced patterns, because it
has a QT. A main question therefore arises: what other mechanisms exist
for storing partially contrast enhanced in STM, as in Fig. 6(c)? How can
the two extremes of noise amplification and choice-making be avoided so
that a continuum of activity levels can be simultaneously stored in STM ?

Ellias & Grossberg (1975) study STM in a wide variety of related systems;
for example, systems of the form

%= —Ax;+(B;~x)) Lé‘,lf(xk)cm + Il] —X; [kz:v_‘,l 9(y)Dyu+ Ji] &)

Vi=—Ey+ kz,l XeF i, (6)
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Fi1G. 6. Dependence of contrast enhancement in STM on choice of signal function.

where x, is the mean activity in the ith excitatory population, y; is the mean §
activity in the ith inhibitory population, 7, is the ith excitatory input, and J;
is the ith inhibitory input. They find that a powerful tendency for either 1
choice-making or noise amplification exists, but that partial contrast in:
STM can be achieved by two main mechanisms: (1) a system such as
equation (4) in which the off-surround has uniform strength between all;
distinct populations and the signal functions for excitatory and inhibitory,
signals have the same form; or (2) a system in which excitatory signal strength W
decreases with distance more rapidly than inhibitory signal strength, as in’
Fig. 7. Case (2) describes situations where there are many feature detectors

and some detectors are mutually more closely coupled than others }

Anatomies of this type have a plausible psychological interpretation; for
example, color detectors sensitive to similar wavelengths, or line detectors
sensitive to similar orientations, etc. Such preferred couplings between |
populations are presumably the anatomical substrate on which innate

fw)
|
)
I
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k /

Fia. 7. Fall-off of excitatory (C) and inhibitory (D) connection strengths as a function
of distance.

behavioral generalization gradients are built, There are also simple physio-
logical reasons why the connection strengths between neurons can decrease
as a function of the distance between them; for example, a random growth
of axon branches will cause the number of synaptic connections to decrease
with distance (Sholl, 1956). In fact, excitatory signals often traverse narrower
distance ranges than inhibitory signals (Colonnier, 1965; Szentagothai,
1967; Scheibel & Scheibel, 1970; Bishop et al., 1971). The excitatory

:1‘ coefficients C; will correspondingly be assumed to decrease with distance

faster than the inhibitory coefficients D,,;. Below it is shown that when systems
of this type are constrained to be capable of graded activity in STM, then
they also exhibit behavior analogous to certain illusions. Even if other
mechanisms contribute to these illusions in vivo, the minimal mechanisms

¥ described below must also be implicated whenever recurrent on-center off-

surround networks undergoing shunting interactions participate in pattern
processing.
Our results will study the equilibrium behavior of such networks after

‘they adjust to prescribed input patterns. We therefore analyse the simpler

networks

%= —Ax;+(B;—x) Lilf(xk)cki'*‘fi]

—X; [k21 g(x)Dy;+J ,] 0]

in which the inhibitory potentials have already equilibrated to their excitatory
inputs. We also study the related networks

%= —Ax;+(B;—x) [ké‘,lf(xk)cki+1i]

~Gi+B)| 3, 06D+, ®

-E >0, in which the inhibitory equilibrium level —FE and the passive

equilibrium level 0 are different; E is related to the Nernst potential for
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potassium (Hodgkin, 1964; Katz, 1966). Indeed, each term in equation (8)

can be interpreted as a voltage times a conductance.

Grossberg & Levine (1975) study a special case of equation (7) that 1s
iiA the distance between the two populations receiving inputs is important, not

important below; namely

X = —Ax;+B;—x)f(xp+ 1] —x x)+J4, (9)“ ¢
% i+ Bi= X)) +11] l[k;if k ‘] Dy, = D(i—k) with this convention in mind. Suppose that / < n/2 and

where the number of excitable sites B, in each v, can be arbitrary positive
numbers. They prove that the v, with the largest B, tend to totally quench the %
STM of v; with smaller B;, other things equal. Total quenching is due to the -
fact that each v, can inhibit all v,, k& # i, with equal strength f(x;). Section 5

shows that when populations interact as in Fig. 7, then the total quenching nar
‘@ %141 > x;. This is the same as

becomes partial and is interpreted as line neutralization.

4, Angle Expansion

This section explicates Blakemore’s heuristic additive model and analyses
the behavior of analogous shunting models. In Blakemore’s model, each line ::
generates a net gradient due to the summation of excitatory and inhibitory

influences, as in Figs 2(a)~(b). When two lines are presented, their gradients

lines (“angle expansion’) will give clear evidence of inhibitory interaction,
As E is parametrically increased, net inhibition in response to one line w111

network parameters.
Blakemore tacitly introduces a model which we explicate as follows:

.i" = —Ax‘+ Zl chml_ Zl K,"Dm,.

Assume that each population v, is maximally sensitive to a different line 3
orientation (Hubel & Wiesel, 1962, 1968), and that the v, are arranged ina §
circle going from 0° to 180° (which is the same as 0° here). This is done to i

avoid boundary effects, such as spurious bumps in the STM pattern, due to

the existence of only finitely many cells; cf. Ellias & Grossberg (1975). AT

stimulus of two lines is represented by letting K,, = 0 for all but two Values

r Consider Fig. 2(a). There, the right hand side of equation (11) is always
‘A positive. To make the left hand side even more positive it is sufficient that
JC()) =2 0, and thus that C(/)—C(+1) = 0, at an / value where D(l) is

and D(i); as the breadth increases, the likelihood that D(0) =
combine additively to produce a net gradient whose peaks are outwardly

shifted, as in Fig. 2(c). This peak shift is due to the addition of net excitation ;
in one gradient with net inhibition in the other gradient. It will be seen j
below that in the shunting case, net inhibition is not needed to produce a }
shift. In other words, even if the net gradient due to one line shows no net |
inhibition, the interaction between two such gradients gives indirect evidence }
that inhibition is operative. No net inhibition in response to one input line §
will occur if E = 0 in equation (8), yet the network reaction to two mput ]

Jal J; =0, K, = K, =
occur, and angle expansion is achieved for a more robust choice of other {atory coefficients C,,; were chosen to have a Gaussian distribution; e.g., for
1im—i| < n/2, let C,; = Gexp {—H ?|m~i|?}. The inhibitory coefficients
4 D,,; were similarly distributed. No iphibitory inputs existed, but inhibition

(10) ]

3§ maximal strength of inhibition equalled that of excitation, either no peak
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of m (one of which is set equal to 0 for our computation) and K,, = some

positive constant K for m = 0 and m = I. Cy, and D, are assumed to be

f functions of the minimum distance between i and k on the circle. Thus only

their absolute location. We can therefore write C, = C(i—k) and

i < nf2 for definiteness. Then at equilibrium (x; = 0), equation (10) implies
x; = ATK[C@)+ C(i—1)— D@)— D(-D)].

Since x; is symmetric around //2 as a function of #, 0 < i < /, it suffices to
consider its behavior as i approaches /. In particular a peak shift will occur if

LD - D+ D]-[CH—-CC+D] > [CO)-CM)]-[DO-DD)]. (1)

significantly greater than D(/+ 1). The absolute size that D()— D(I+ 1) must
attain to satisfy equation (11) depends on the breadth of the peaks of C(i)
D(1) also
increases. In any case

D)—-C() > DU+ 1DH—C(+1),

so that the net inhibition at / is greater than the net inhibition at /4 1. This
will not be necessary in the case of shunting interactions.

In the shunting case, computer studies were first carried out on system (8)
with

Il = ;1 KmCmi’

K, and K, = O otherwise. In particular, the excit-

spread through the network via the recurrent off-surround. Even if the

shift occurred or it occurred inwardly rather than outwardly. Further
analysis showed that the inhibitory interactions were still not strong enough
to overcome the combined effects of excitatory inputs and excitatory
interactions.

To see this, consider what happens if the excitatory inputs are so strong
that they dominate all recurrent interactions. Then the recurrent network (8)
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can be approximated by the nonrecurrent network
%; = —Ax;+K(B—x)[C(@i)+C@i—D],

with equilibrium value

D. S. LEVINE AND S. GROSSBERG

_ BK[C()+Ci—D]
¥ T YT KICG) +Cl— D]

Since x; is a monotone increasing function of the input sum C(@, /) = C(i) 4

12 ]

+C(i—1), and since C(j, /) has its maximal value(s) between 0 and /, the
peak(s) of the graph x; must also occur between 0 and /. A

The strength of inhibition can be increased either nonrecurrently, using

inhibitory inputs to balance the excitatory inputs, or recurrently, via the with F = AK~'. As in the case of additive interactions, such an outcome is

A facilitated by the conditions C(0) = C(1), C(l) = C(I+1), D) = D(1),
dand D()— D(I+1) relatively large. Then equation (15) becomes approxi-
4 mately

inhibitory interactions. Both mechanisms work, and they do so in a way that
interestingly contrasts with the case of additive interactions.

First consider the nonrecurrent network in which each line generates both
an excitatory and inhibitory gradient. Then

xl'= —Axi+(B—xi) Z chmi_(xi+E) Z KmDmi'
m=1 1

m=

At equilibrium,

)

m=1

K, (BC,;—ED,;) i
(13) :

xi = n .
A+ Z Km(cmi+Dmi)
m=1

near zero for definiteness,
BKC(i)
YT A+ K[CG)+ D)
Interpolate a continuous function x(s) through x, by letting
BKC(s)
X5 = 4 KTCG)+ Do)
and suppose that C(s) falls faster than D(s), as in Fig. 7, in the sense that |
C~Y(5)C(s) < D~ '(s)D(s). (14) :
Condition (14) holds, for example, if the excitatory and inhibitory coefficient

strengths have a Gaussian distribution. Given equation (14), x(s) has one
maximum at 0 because if X(s) = 0 at some other value of s,

C1(5)C(s) = [AK ™+ D(s)]~'D(s) > D~ *(s)D(s),
which is a contradiction. Thus if E = 0, the net gradient of excitation and .

3
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inhibition is unimodal with no net inhibitory trough, by contrast with the
4 subtractive case of Fig. 2(b). Although there is no inhibitory trough if E = 0,
‘d such a system is nonetheless capable of an outward peak shift if two lines
i are presented, say at 0 and /. Then at equilibrium,

e BK[C(i)+ C(i— D]
T A+K[CG)+C(Gi— 1)+ D) +D(i - D]

34 An outward peak shift occurs if x;,; > x,;, which is the same as

C(l+ 1) D)+ C(1) D) + DO)C(I+ 1)+ DO)C(1)— Cl) DI+ 1) — C(1) D(1)
—CO)D(+1)—CO)D(1) > F[Cl)—C{+ 1)+ CO)—C(l)], (15)

[CO)+CDI[DX)— D+ 1] > 0,

A which is trivially satisfied. How can these conditions be guaranteed? In all
cases where inhibition falls off more slowly with distance than excitation,
f condition C(0) = C(1) implies D(0) = D(1), and values of / exist such that
C(l) = C(+1) whereas D(I)— D(I+ 1) is still relatively large. Condition (15)

is also easier to achieve for smaller values of F = AK™", which supports

dthe assumption, used to motivate the nonrecurrent approximation, that
{inputs are large compared to interaction strengths. The existence of an
An interesting contrast with the additive case occurs if E = 0. Suppose that
only one line perturbs the network, say at 0. Then, considering values of i '

outward peak shift shows that inhibition can have an important influence
even if no net inhibitory trough exists.

If E # 0 in equation (13), then a net inhibitory trough can exist, and when

it does a peak shift can be more readily produced. In fact, the conditions
{that guarantee an inhibitory trough in response to one line when E > 0 are
1 qualitatively the same as the conditions that guarantee a peak shift in
{ response to two lines given any values of E. To see this, suppose that a line
perturbs the network at m = 0. Then at equilibrium, equation (13) implies

‘. K[BC(i)—ED(i)]
A+ K[C)+DO)T
For convenience, interpolate the x;’s using
_ K[BC(s)—ED(s)]
A+K[C()+D(s)]

x(s)

A critical point of x(s) is characterized by

F[BC(s)— ED(s)] = (B+E)[C(5)D(s)~ C(s)D(s)]- (16)

32
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By equation (14), the right-hand side of equation (16) is positive. On the 3
left-hand side of equation (16), B and E are positive, whereas C(s) and D(s) 3
are negative. Equallty in equation (16) can be achieved at values s where §j
C(s) == 0 and D(s) is sufficiently negative to match the right-hand side; for 3
example, where C(s) is already near zero and D(s) is falling rapidly. In 3
other words, the conditions that guarantee an inhibitory trough in response |
to one line when E > 0 are qualitatively the same as the conditions that
guarantee a peak shift in response to two lines when E = 0. We now show 7
that the range of parameters that produce a peak shift for E > 0 is wider
than the range of parameters that produce a peak shift for £ = 0. Thus, }
although a trough is'not necessary for a peak shift to exist, it can only make §
a peak shift easier to obtain. To see this, present lines at m = 0 and /. Then §

at equilibrium, equation (13) becomes
= K[BC(@#)+BC(i—)— ED(i)y—ED(i—1)]
P UA+K[CH+CGE-D+D)+Di—-D]

Suppose x;+1> x,. Defining Uy = C()+C(©0), Uy = C{+1)+C(l),
= D)+ D(0), and V, = D(I+ 1)+ D(1), this inequality becomes
F+U+V,” F+Uy+Vy t
The analogous inequality when E = 0 is
U U
1 > ° (19)
F+U+V,~ F+Uy+V,

We now show that equation (19) implies (18). Multiply both sides of
equation (19) by B+ E and subtract E. Then

BU,—EV,~EF _ BU,~EV,~EF

F+U +V, F+Uy+V,
Since F+ U+ V; < F+Uy+V,, it is also true that
EF EF
> . @y s
F+U+V, F+Uy+V, ‘

Adding equations (20) and (21) yields equation (18). Thus a positive E
makes a peak shift easier to achieve than E = 0. In other words, shifting
the potassium equilibrium point should influence the size of outward peak

shift, other things equal. More generally, Grossberg (1976) shows that
increasing E produces a new form of contrast enhancement in on-center

off-surround networks. A sufficiently large E can inhibit all but the non- *

uniform part of the activity pattern across a network.

n

(20) .
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In Appendix A, the recurrent network with inputs coupled to inhibition
as above is studied by means of computer simulation. Parameters are
employed which produce angle expansion in the non-recurrent case treated
above. The full network is equation (8) with all B, = 4,

VISUAL ILLUSIONS IN NETWORKS

Ii = Zl chmi’ Jl = ;1 KmEmb Cmi = Gl exp {_Hl_zlm_llz}’

and D,, = G,exp {—H>?*m—i|*}. Here G, = G, and H, < H,. The
signal function f(w) = w? grows faster than linearly, but since our maximum
activities are all small, it is a good approximation to the small activity range
of a sigmoid signal function. Parameter values and their justification are
contained in Appendix A.

The inhibition needed to produce an outward peak shift can also be
introduced via the inhibitory connections in the absence of inhibitory inputs.
Then equation (8) holds with

Il = 21 chmi

and J, = 0. In order to obtain such a shift, it was necessary to make the
maximum inhibitory interaction strength enough greater than the maximum
excitatory interaction strength to balance the additional contribution due to
sustained excitatory inputs. Computer studies of this phenomenon are
found in Appendix A.

5. Gibson Neutralization and After Effect

The Gibson & Radner experiments contain two parts, one on line
neutralization, in which a line close to vertical (horizontal) under sustained
gaze gradually looks more vertical (horizontal), and the second on tilt after-
effect, in which after the first line is removed, a second line that is vertical
(horizontal) looks tilted away from the first line. Below we will find a
neutralization effect in a network in which there are either of two kinds of
biases. Either the interaction gradients are amplified in strength near the
vertical and horizontal populations, or the maximal number of excitable
sites in these populations is greater.

The speed with which neutralization sets in will depend on the choice of
network parameters. An arbitrarily slow drift can be achieved. Thus one
cannot reliably argue that the slow onset of neutralization implies the
existence of plastic changes in network parameters. Once the neutralized

| line is stored in STM by the reverberation, the shift in the second line’s

apparent orientation can be viewed as an angle expansion phenomenon in
which the gradient created by the actually perceived line interacts with the
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interpretation of the after-effect First, it is not essential that the stored
representation be of a neutralized line, but only that it be of a line that has
two properties: it is on the same side of the second line as the first line was, , n
and it makes a sufficiently small angle with the second line. Second, this ;i
explanation faces the issue that items can be stored in STM without being 5
perceived at every moment that they are stored; for example, a telephone =

number can be stored without each digit being contmuously heard. Yet 'k

which subserve the percept. Our explanation suggests that recurrent on- center
off-surround interactions are occurring in either or both of these structures, ,‘
but does not require a precise synthesis of the feedback mechanism to make i
its qualitative point. Therefore the remainder of this section will be devoted ¢ 4
to the neutralization effect. Grossberg (1977) discusses this feedback. !

It is obvious, by symmetry arguments, that if there are no biases that f
favor one orientation over another, then there is no reason for a neutral- }
ization shift to occur in one direction rather than the opposite one. Hence \'
some bias in network parameters as a function of orientation is antrcrpated i
Speaking formally, two main types of parameters can be biased: the
maximum activity levels, or number of excitable sites, B; and the interaction }
strengths C;; and D;;, or tuning, between populations. For the case that we |
studied, an increase in certain B, is the same as an increase in C;; and D;;
This case is defined by equation (8) with f(w) = w? and E = 0. The choice =“‘
of a quadratic f(w) was made to simulate the effect of a sigmoid signal
function at small activity levels. Defining B; = l B, equation (8) can be *
transformed, using the change of variable g; = 1; 'x;, into system

~ g+ B=)| 3. fa)Cu 11
—4q [MZ::I J@mDpi+ Jr] ,

where C,; = A2C,; and E,; = A2E,,;. In other words, an amplification of B, .:
is formally the same as an amplification, or retuning, of the interaction :
coefficients of the ith population. We will therefore only discuss a non- §
uniform distribution of B,’s; that is, a non-uniform choice of the number of § §
cell sites that code for prescribed orientations. In a similar fashion, biases in ;
the connection strengths of pathways bringing inputs to the network can be |
transformed into a non-uniform distribution of network parameters. ;

Grossberg (1975b) describes a model of cortical tuning that shows how such

4

(22)
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an asymmetric parameter distribution can develop using shunting network
mechanisms and cross-correlational synapses.

In our computer studies, we let population i = 0 code a vertical orien-
tation, and choose a Gaussian distribution B; = G~' exp {— H|i|*} as well
as Gaussian distributions of interaction strength as a function of the
distance between populations. A sustained input is delivered to a population
v; which codes a nearly vertical orientation. This input creates a locus of
maximal excitation at v; and we study whether, and how fast, this locus
drifts towards the vertical. For small values of H, there is no drift; for inter-
mediate values of H, the drift is slow; and for large values of H, the drift
is fast. In other words, the drift rate depends on how non-uniform is the
pattern of B;’s of the v; with which v; interacts; cf. equation (9). In the
Gibson-Radner experiments, neutralization takes place on a time scale of
minutes, and is therefore a “slow’” phenomenon.

Various other data suggest that asymmetries exist in the orientational
coding of certain neural populations. Rose & Blakemore (1974) have done
a statistical study of the tuning curves of orientation-sensitive cells in the
cat striate cortex. Two types of cells were investigated, the so-called ““simple”’
and “complex” cells. In both types of cells, the average half-width of tuning
curves of cells coded vertically of horizontally differs from the half-width of
other cells. For complex cells, the vertical and horizontal tuning is broader;
for simple cells, it is narrower. The tuning of complex cells is compatible
with our model. Our above considerations therefore suggest that if the
complex cells are partly responsible for neutralization, then either they are
interconnected by a recurrent on-center off-surround network, or they
interact with a STM buffer that has this structure. ‘

VISUAL ILLUSIONS IN NETWORKS

6. Discussion of the Lateral Inhibition Model and Alternatives

As sections 4 and 5 indicated, shunting on-center off-surround networks
undergoing distance-dependent interactions can simulate various visual
illusions. There: are also heuristic models in the literature for all these
phenomena, and it is instructive to compare these models with network
mechanisms.

For the Gibson & Blakemore phenomena, the two major theories that
have been proposed, other than lateral inhibition, are known as normal-
ization and satiation.

The normalization theory was first stated by Gibson (1937), who con-
jectured that neutralization results from the horizontal and vertical
orientations being in some sense norms, such that a given line adapts toward
the norm to which it is closest. He viewed the tilt after-effect as a product of
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neutralization, claiming that the shift in perceived orientation of the first §

D. S. LEVINE AND S. GROSSBERG

line will shift the perceived orientation of the second vertical line in the same , i

direction.
Gibson does not propose a specific neural mechanism for the normal
ization, but he implies that the vertical and horizontal are special dll‘CCthl‘lS

in mammalian (or at least human) visual perception. Gibson & Radner 4

(1937) showed that human subjects, when asked to set a pointer at prescribed }
orientations, are most accurate at setting vertical and horizontal orientations,
and often set oblique orientations by estimating how far they deviate from
vertical or horizontal. Campbell, Kulikowski & Levinson (1966) support
this idea by constructing gratings out of parallel lines, and showing that
acuity is best when the lines are vertical or horizontal and worst when the -
lines are tilted by 45°. Maffei & Campbell (1970), using an evoked potential
technique, show that the human visual cortex responds more to vertical and
horizontal axes than to oblique axes.

There exists some psychological evidence that these “norms” develop due
to more frequent exposure to the vertical and horizontal orientations in the i

early visual environment. Annis & Frost (1973) showed in a cross-cultural
study of white Canadians and Cree Indians that the whites exhibited selective
acuity for horizontal and vertical gratings, but the Indians did not. They

attribute the Indian data to such factors as the lesser degree of horizontal

and vertical orientations in Indian architecture.

The idea that the “norms” are strongly influenced by early visual env1ron- 4
ment is also supported by some neurophyswloglcal evidence. Blakemore &

Cooper (1970) showed that if kittens are raised in a visual environment :
consisting solely of vertical (horizontal) stripes, then they are virtually blind ;
to horizontal (vertical) stimuli and develop fewer cells in the visual cortex
tuned maximally to the horizontal (vertical). Hirsch & Spinelli (1970)
raised kittens with one eye seeing only horizontal stripes and the other eye
seeing only vertical stripes; they later found a preponderance of cells in the 3

visual cortex driven only by one eye (instead of by both eyes as in normal . _‘
cats) and with receptive fields oriented in the direction to which that eye had ¢

been exposed. Moreover Pettigrew (personal communication) has raised |

kittens in an environment consisting solely of stripes tilted at an oblique 3
orientation, and has found that animals so raised developed a bias among: 4
cortical cells in favor of that particular tilted orientation. In all these experi- .

ments, there had not been degeneration of cortical tissue, so it would seem | :
1 cells. A second line will therefore be shifted in its perceived orientation away

if visual 1
experience has made certain classes of cells sensitive to that orientation more

that experience had altered the tuning curves of cortical cells.
We can therefore consider a particular orientation a “norm’

numerous than others, or perhaps more broadly tuned than others. In that;

T

VISUAL ILLUSIONS IN NETWORKS 495

{ sense, the model proposed in section 5 sharpens Gibson’s idea that line
neutralization results from adaptation to a norm.

Tilt after-effect need not, however, be explained by adaptation to a norm.
In fact, more recent experiments have shown that such an after-effect can
{ take place even when there has been no neutralization. Kdhler & Wallach

(1944), Prentice & Beardslee (1950), and Templeton, Howard & Easting

4
;
1
2

1 (1965) did experiments similar to that of Gibson & Radner (1937); an
] inspection line was presented to a subject, then removed and followed by a
test line of a slightly different orientation, but not necessarily horizontal or
vertical. As in the Gibson-Radner effect, the perceived orientation of the
test line was not its actual orientation but slightly shifted away from that of
the inspection line. In particular, an after-effect took place even if the
inspection line was vertical or horizontal, and therefore could not have been
neutralized. Coltheart (19714) reports data in which the after-effect develops
even if the inspection line is viewed only for a few seconds. Typically,
neutralization occurs on a time-scale of minutes. This data, therefore, also
suggests that the after-effect can occur in the absence of neutralization. In
our model, it is not necessary for the inspection line to be neutralized, but
only for it to have a STM representation that can interact with the represen-
tation of the test line to produce angle expansion.

Gibson found support for normalization as the cause of after-effect in the
{ following “indirect effect”, whose existence was confirmed by Campbell &
{ Maffei (1971). If the inspection line is tilted slightly counterclockwise from
the vertical, not only will a vertical test line appear tilted in the clockwise
‘: direction but so will a horizontal test line. Gibson explained this phenomenon
by stating that the neutralization of the first line causes not only the nearest
A norm to shift but both norms to shift together. One is initially tempted by
this data to suppose that all orientations are tilted in the neutralized direction.
This does not explain, however, why the indirect effect is always smaller
than the direct effect. In the discussion below, we will see that other
models can explain the indirect effect in a manner that also explains this
difference.

The satiation theory was first stated by Kohler & Wallach (1944) to
explain the after-effect alone and not the neutralization. They claimed that
orientation-sensitive cells in the visual cortex that respond to the first line
will be satiated after prolonged exposure to that line; thus for a short period
afterwards, the responses of the visual cortex will be biased away from those
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from the orientation of the first line. The theories of after-effect that are
named “neural enhancement” (Over, 1971) and “adaptation” (Coltheart,

i 19715) are really variants of the satiation theory.
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The indirect effect was explained by Coltheart (19714) using a satiation
theory. He cited Hubel & Wiesel’s (1965, 1968) result that there exist hyper-
complex cells in the visual cortex having two preferred orientations that are
90° apart. Thus if the first line is tilted slightly counterclockwise from vertical,
that orientation will satiate and so will the orientation 90° away, which is
slightly tilted counterclockwise from horizontal; a horizontal second line
will therefore be perceived as tilted clockwise. This explanation does not
explicitly describe the feedback pathways from hypercomplex cells to the
other processing stages that contribute to perceiving a line. Nor have the
feedback pathways from simple cells or complex cells been described. None-
theless, Coltheart gives a plausible account of why the indirect effect is
smaller than the direct effect. He claims that the network representation of
a horizontal test line is influenced only by satiated hypercomplex cells,
whereas the representation of a vertical test line is also influenced by satiated
complex cells, among others.

The above explanation of the indirect effect can, however, also be recast
in a theory of norms: let the neutralized representation of the inspection line
excite the corresponding hypercomplex cell population, which in tumn
excites the representation of perpendicular lines. This normative effect can

C=8p

(o) (b}

(c)

Fic. 8. Disinhibition by a third line (A") of the angle expansion that would otherwise
show at C due to A and B.
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only be increased if the asymmetric representation of horizontal and vertical
lines as a result of development induces a corresponding asymmetry in the
coding properties of hypercomplex cells.

The satiation theory seems to be less satisfactory as an explanation of
angle expansion. Blakemore et al. (1970, 1971) reject the satiation theory
based on experiments that are compatible with a disinhibition mechanism,
but not a satiation mechanism. They place a third line near one of the two
lines forming an acute angle (Fig. 8). This third line decreases the angle
expansion that would otherwise occur, whether it lies inside or outside the
angle. If satiation theory were true, when the third line is inside the angle,
there should be an increase in angle expansion. In a theory based on lateral
inhibition, the third line inhibits the activity (especially) of the adjacent line,
thereby reducing its inhibitory effect on the nonadjacent line and decreasing
the angle expansion.

Recent neurophysiological experiments on the visual cortex of adult cats
(Creutzfeldt & Heggelund, 1975) suggest that an adaptation of cortical
populations can be induced by prolonged exposures to oriented displays.

'{ Whether this is due to a slowly building satiation or to enhancement of
| inhibitory connection strengths has not been decided. In either case, these

results do not compromise the suggestion that lateral inhibition can yield

{ illusions over shorter time scales.

7. Normalization of Activity in STM

Two discrepancies between the Gibson data and the Blakemore data still

{ need to be explained. Figures 9(a) and (b) reproduce Fig. 3 of Gibson &

Radner (1937) and Fig. 3 of Blakemore et al. (1970), respectively. First, as

§ the graphs show, the direction of the Gibson after-effect changes when the
1 lines are 45° apart. [Morant & Harris (1965) find that the cross-over point
{ is closer to 60°, and argue that neutralization and satiation effects add up to

produce this effect.] By contrast, the direction of the Blakemore angle
expansion does not change until the lines are 90° apart. Second, the con-

{ traction of obtuse angles in the Blakemore experiment is opposite to the

indirect effect of Gibson, where an obtuse angle between the inspection and

{ test lines is expanded if the angle is less than 135°,

Both discrepancies are compatible with properties of the hypercomplex

4 cells mentioned above, which have two preferred orientations at right angles

to each other. We have already discussed Coltheart’s explanation of Gibson’s
indirect effect by means of these hypercomplex cells; the Gibson effect is
dealt with by noting that the hypercomplex cells divide up angle space into
four equal quadrants. Let axis 1 denote the orientation of the inspection

.
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F1G. 9. Dependence of Gibson & Blakemore illusions on angle.

line. By the above arguments, test lines within at least +45° of this orien-
tation will be displaced away from the inspection orientation. Imagine that
the inspection line excites the appropriate hypercomplex cells, which feed
back to cells coded at +90° from the inspection orientation. These indirectly
excited cells will also cause an outward shift in the perceived orientation of
test lines within +45° of them. The directly and indirectly excited cells
hereby break orientation space into four quadrants.

If this argument is accepted, then it remains to ask why the hypercomplex
cells do not break up orientation space into four quadrants in the Blakemore
experiments, where instead orientation space is broken into two halves?
The two situations differ in terms of two kinds of parameters: simultaneous
versus successive presentations of lines, and time scales for the effects to
develop. The second of these differences is probably less important, con-
sidering Coltheart’s claim that after-effects can occur even if the inspection
line is only briefly viewed. The main difference, therefore, is that Gibson-
type experiments, because of the successive presentation, depend on a
memory effect, presumably a STM effect, whereby the stored representation
of a past line interacts with the perceived representation of a present line.
We are therefore led to consider the following conceptual framework to
unify this discussion.

Suppose that a tug-of-war exists between the data already stored in STM
and the demands of present events. For example, suppose that a list is stored
in STM ready for retrieval and an incompatible event occurs. How is a
consensus between the old and new data generated ? In particular, how does
the new event weaken the STM activities of the old incompatible events?
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Analogously, suppose that a behavioral plan is being carried out, with
commands for action stored in STM ready to be elicited. How are new
commands generated if an incompatible event occurs? How do the new
commands inhibit the old commands? Speaking intuitively about such
situations, one wants to say that strengthening one command or represen-
tation somehow weakens another. Such a concept of total activity normal-
ization also arises in mechanisms of reinforcement (Grossberg, 1972a); of
STM for parallel processed patterns (Grossberg, 1973); of perceptual
constancies (Grossberg, 1972b); of pattern discrimination (Grossberg, 1970);
and of attention and discrimination learning (Grossberg, 1975a4). The
normalization property is illustrated by the adaptational property of shunting
networks that was described by equation (3). Given such a property, the
difference between successive contrast (Gibson) and simultaneous contrast
(Blakemore) would be explicable if the highest-order discriminative cells,
such as hypercomplex cells, have greater activity in STM, and therefore
greater potency for transforming the data in perceptual fields, when they are
less inhibited by lower-order representations of present events. Thus, when
more external cues are on (Blakemore), the activity of higher-order cue
representations is partially inhibited by active lower-order cue representations.
When the external cues are shut off (Gibson), the tendency for data to be
coded in the highest-order, and most selectively tuned, populations is

 released from inhibition by lower order activities. To test this idea, experi-

ments should be designed wherein increasing the strength of certain cues in
STM weakens the strength in STM of related cue combinations. For example,
increasing the duration of certain cues (and presumably their strength in
STM) might well weaken the strength of related cues presented later, In
particular, the Gibson indirect effect might well be greater if the inspection
line is presented longer.

A detailed synthesis of how the internal representations of present events
interact with the stored STM representations of past events in the heterarchy
of discriminative cells falls beyond the scope of this paper. Nonetheless, the
above results sharpen the idea that common mechanisms, such as recurrent
on-center off-surround networks undergoing mass action interactions, are
operating on several, if not all, levels of the hierarchy.
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APPENDIX A

Blakemore Simulation

The computer programs used in both appendices were written to numer-
ically solve system (8) for chosen parameter ranges. Both programs employ
the Runge-Kutta method, they were both written in FORTRAN and run
on an IBM 360 and PDP-9. Programs are available on request by writing :o
Dr Levine. '
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In the Blakemore study, the orientation-sensitive populations were

arranged in a circle, as described in section 4. Here n = 90, and there are
two reasons for using such a large number of populations: (1) the spread of
excitatory and inhibitory interactions must be made sufficiently wide to
achieve the conditions C(0)— C(1) = 0, C(/)~C(I+1) = 0,and D()—- D(I+1)
relatively large; (2) in Blakemore et al. (1970), the maximum angle expansion
is 2°, and if the whole circle of orientations is 180° wide, then 2° is the
difference in presentation between neighboring populations if n = 90, °

In the first simulation (Table 1), both excitatory and inhibitory inputs were

present. The parameters were chosen so that the recurrent network was

TABLE 1
Intense excitatory and inhibitory inputs simulate angle expansion

A 0-05.
B 1
E 0
- -2
g"‘ ¢ :k ::2119,}k—i means distance mod 90
Kt e "

I 3(Cas, 1+ Cs2, 1)
Jy 3(D3o, 1+ Ds2. )

approximately a nonrecurrent network, i.e., inputs were intense relative to
the maximum possible f(x;,). Parameter 4 was chosen small to facilitate
equation (15), and the E; were all set to 0.

In the second simulation (Table 2), inputs were purely excitatory. The
inputs were. less intense than above, so as not to dominate recurrent
inhibition. The strength of self-inhibition was made three times as great as
as that of self-excitation to balance the excitatory inputs. Note that the
inward peak shift at T = 0-1 and 0-2 in Fig. 10 [cf. equation (12)} becomes
an outward peak shift at T = 0-6 when the recurrent inhibition takes effect.

TABLE 2
Excitatory inputs balanced against recurrent interactions simulate angle
expansion
A 0-05
B 1
E 0-1

202
- - 1217 )
Cia 4: " ‘),Isz}k—imeans distance mod 90
Dy, -

If 0-5(C3p, 1+ Cos2, 1)
0

B
—_ ———————
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FiG. 10. Inward peak shift becomes outward as recurrent inhibition builds up.

APPENDIX B

Gibson Simulation

Here n = 11, and the populations were again arranged in a circle. One of
the populations (i = 6) was assumed to code vertical, and B, was a Gaussian
function of the distance modulo 11 between i and 6. A sustained stimulus
line was delivered to a population coding a nearly vertical line (i = 5) as

TABLE 3
Parameters for neutralization simulation

A 1
B, ze—u-a)’/u" a=4,445
E, 0
(k= 1y
IC)M e” - M::,,}k i means distance mod 11
i €7
I Coi
A Dy,

B

et o bt s+ st
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both an excitatory and inhibitory input. If a drift of maximal x; occurred, jt
always was in the direction of the vertical population,

The excitatory and inhibitory interaction strengths were fixed Gaussiang
and the sums of the two Gaussians were the same, The sum of the Gaussiag
defining B, was kept constant and its standard deviation was varied. The
drift in peak response was either nonexistent, slow, or fast, as the standard
deviation was decreased (Table 3). The graphs are shown in Figs 11 and 12,

0:08
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F1G. 12, Slow peak shift at an intermediate standard deviation of maximal excitability.
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