


“1-2-3” list chunk shown in yellow, seventh row from the

bottom) before the more slowly unfolding top-down feed-

back interactions drive acoustic features and items above

their resonant thresholds in the correct order, modulated by

activity-dependent habituation.

2. Presentation of 1-*-5 yields 1-4-5 percept

To test that subsequent context alone can determine

which phoneme is restored, the next simulation presented

the input sequence “1-*-5” to demonstrate that the correct

item “4” is restored. Together, the simulations in Secs. IV D

1 and IV D 2 demonstrate how competing list chunks can

sense noisy input sequences and restore correct missing pho-

nemes “backward in time”: Since these simulations used two

competing chunks with the same initial portions, but differ-

ent endings, the correct phoneme is restored entirely due to

the future context that is provided by the final item.

In Fig. 7, as in Fig. 6, presentation of “1” (shown in blue

in the bottom row), then noise, causes a similar response in

the acoustic feature and item layers (second, third, and fourth

rows from the bottom). When the input corresponding to “5”

(shown in magenta, bottom row) is presented, this item

causes the list chunk coding for the sequence “1-4-5” (shown

in black, seventh row from the bottom) to become the most

active, rather than the list chunk coding for “1-2-3” (shown

in yellow) as in the previous simulation. As before, feedback

from this layer to the cognitive working memory allows

selection of expected features (the acoustic item “4” shown

in cyan, rather than “2” as in Fig. 6) and subsequent feed-

back from the cognitive working memory to the acoustic net-

work, causes the restoration of the acoustic item “4,” which

had been excised from the input. This can be seen in the top

row, wherein resonant activities of the acoustic items follows

a progression from item “1” to “4,” and finally “5” (shown

in blue, cyan, and magenta, respectively), as opposed to the

simulation shown in Fig. 5, which exhibited a resonant wave

across the items “1,” “2,” and “3.”

V. MODEL EQUATIONS

The cARTWORD model is defined mathematically as a

system of differential equations that describe how the activ-

ities of cells change in time. These equations also describe

the habituation and recovery of the synaptic signaling

strength of certain pathways which modulate the ability of

cells to excite and inhibit one another. The cARTWORD

model builds upon the ARTWORD model but goes consider-

ably beyond it by embodying realistic laminar neocortical

circuits, and a hierarchical cortical organization, gated by ba-

sal ganglia, that is capable of simulating the temporally

evolving speech percepts that are heard during phonemic

restoration and other context-sensitive percepts.

A. Cell membrane equations

The model is a network of interacting neurons whose

cell dynamics obey membrane, or shunting, equations

(Hodgkin and Huxley, 1952; Grossberg 1973). The single

compartment voltage VðtÞ of each cell obeys:

Cm
d

dt
VðtÞ ¼ � VðtÞ � Eleak½ �cleak � VðtÞ � Eexcit½ �cexcitðtÞ

� VðtÞ � Einhib½ �cinhibðtÞ: (1)

In (1), VðtÞ is a variable voltage; Cm is a constant membrane

capacitance; Eexcit, Einhib, and Eleak represent excitatory, inhibi-

tory, and passive reversal potentials, respectively, that define

shunting, or automatic gain control, properties of each cell;

and the term cleak represents a constant leakage conductance,

while the terms cexcitðtÞ and cinhibðtÞ represent, respectively,

the total excitatory and inhibitory inputs to the cell, as

FIG. 7. This figure shows the network dynamics in response to the sequence

“1- * -5”, where * again denotes noise (“1” is shown in blue, “*” is shown

in yellow, and “5” is shown in purple). The only difference between this

simulation and that of Fig. 6 is the final item of the sequence, “5,” which

serves as future contextual information with respect to the excised phoneme,

“4,” which is to be restored. Rather than selection of the “1-2-3” list chunk

(shown in yellow in the seventh plot from the bottom), presentation of the

acoustic item “5” allows the “1-4-5” list chunk (shown in black) to win the

competition across the masking field layer. Feedback from this chunk allows

the selection and amplification of the components of noise consistent with

its learned expectations, namely “4” (whose activity is shown in cyan in the

working memory activities of Yi and Xi). The feedback from working mem-

ory to acoustic features causes the super-threshold activity in the acoustic

item layer (shown in the top plot) to exhibit a resonant wave in a continuous

progression of activity across “1,” “4,” then “5” (blue, cyan, and magenta

traces, respectively), indicating that the excised item “4” has indeed been

restored. What is clear from this simulation is that the restoration occurs due

to inputs arriving after the noise, just as the restoration cases with “delivery”

and “deliberation.”
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determined by the architecture shown in Fig. 1. At equilib-

rium, the above equation can be rewritten as:

V ¼ Eleakcleak þ Eexcitcexcit þ Einhibcinhib

cleak þ cexcit þ cinhib

: (2)

Increases in the excitatory and inhibitory conductances

depolarize and hyperpolarize the membrane potential,

respectively, which undergoes divisive normalization by all

conductances (as shown in the denominator). When the re-

versal potential of the inhibitory channel is near the neuron’s

resting potential, the cell is said to undergo pure “shunting”

inhibition (Borg-Graham, Monier and Fregnac, 1998). Equa-

tion (1) can be rewritten in the form:

dxi

dt
¼ �Axi þ ðB� xiÞPi � ðxi þ CÞQi; (3)

where 0 is the passive equilibrium point, B (> 0) is the excita-

tory saturation point, and –C (� 0) is the inhibitory saturation

point. Term Pi denotes the total excitatory input, and term Qi

is the total inhibitory input influencing cell activity xi.

B. Acoustic feature/item layers

The acoustic feature/item network (lower cortical area

of Fig. 1) consists of two deeper layers of interacting cells

(layers 6 and 4) which contain the feature processing cells,

and superficial layer 2/3 which contains the acoustic item

category cells.

1. Acoustic feature network: Cognitively gated
resonance

Acoustic feature processing occurs in recurrent on-center

off-surround shunting networks (Grossberg, 1973, 1978b,

1980) in layers 6 and 4 that self-normalize their activities.

Acoustic inputs Ii to the ith acoustic feature detector selectively

activate the corresponding feature cell activities Ei in layer 4

and Fi in layer 6. The feature activities Ei then serve as bot-

tom-up inputs to the acoustic item categories C
ðIÞ
i in layer 2/3.

a. Layer 6. Activity Fi of the ith layer 6 feature cell is

described by the shunting recurrent on-center off-surround

network:

dFi

dt
¼� 0:1Fi þ ð1� FiÞ Ii þ bEi þ ½CðIÞi � cI�þ

n

þ 3GðLÞf1ð½Yi � cY �þÞZ
ðY;FÞ
i

o
� 4Fi

X
k 6¼i

½CðIÞk � cI�þ
( )

:

(4)

Equation (4) contains a passive decay term (�0:1Fi). The total

excitatory input { Ii þ bEi þ ½CðIÞi � cI�þ þ 3Gf1ð½Yi � cY �þÞ
Z
ðY;FÞ
i } is shunted by ð1� FiÞ, thereby ensuring that activity

remains bounded above by 1. Reading from left to right, the

total excitatory input includes the bottom-up acoustic input Ii,

which in these simulations are modeled as a series of 50 msec

square pulses, each activating its corresponding acoustic fea-

ture activities Fi. The recurrent excitatory input bEi from layer

4 feature cells (where b¼ 0.2) helps to maintain activity in

layer 6 cells for a short while after acoustic inputs are

removed. Without this feedback between layers 6 and 4, activ-

ities Fi would rapidly decay back to their resting potential.

This feature persistence can last until top-down feedback from

the list chunks via working memory occurs, so that feature-

based resonances can develop.

Positive feedback from layer 2/3 auditory item category

activities ½CðIÞi � cI�þ is balanced against an inhibitory off-sur-

round from the item category layer
hP

k 6¼i ½C
ðIÞ
k � cI�þ

i
. This

top-down on-center off-surround network helps to boost

the activities of matched features when resonance begins.

The signal functions ½CðIÞi � cI�þ and ½Yi � cY �þ in both feed-

back loops are linear above a threshold (“threshold-linear”)

with ½CðIÞi � cI�þ ¼ max½CðIÞi � cI; 0� and ½Yi � cY �þ ¼ max

ðYi � cY ; 0Þ, where the output signal thresholds cI ¼ 0:5 and

cY ¼ 0:5.

In order to trigger sufficient activity for resonance to

occur, feedback from the cognitive working memory cell

activities f1ð½Yi � cY �þÞ via the sigmoidal signal function:

f1ðwÞ ¼
w2

0:012 þ w2
(5)

is necessary. The feedback f1ð½Yi � cY �þÞ is multiplicatively

gated by a term GðLÞ, as well as by a habituative synaptic

strength, Z
ðY;FÞ
i . The gating term GðLÞ equals 1 when any list

chunk cell activity C
ðLÞ
J in the masking field exceeds its output

threshold (set to 0.2), and equals 0 otherwise. This gating

property can be defined mathematically as follows:

GðLÞ ¼ H
X

j

max C
ðLÞ
J � cL; 0

h i( )
; (6)

where the heaviside function HðwÞ ¼ 1 if w > 0 and 0 other-

wise, and threshold cL ¼ 0:2. Thus, at least one list chunk

needs to sufficiently match the sequence of acoustic items

before feedback from list chunks can amplify the wave of

activation evolving across the feature and item layers,

thereby leading to a conscious resonance. The gating term

GðLÞ simplifies the process whereby prefrontal cortical work-

ing memories interact with the basal ganglia to open gates

that enable thalamocortical circuits to resonate and thereby

express plans, thoughts, and actions. More detailed models

of this gating process are found in Brown et al. (2004) and

Grossberg and Pearson (2008).

Function Z
ðY;FÞ
i in Eq. (4) describes the habituative syn-

aptic strength, or habituative transmitter gate, of the pathway

from working memory cell activity Yi to feature activity Fi.

It prevents perseveration of top-down feedback from acous-

tic item categories stored in working memory and thereby

helps to coordinate the sequence of resonant activations by

allowing a new item/feature resonance to take place after

previously occurring one has habituated. This habituative

synaptic strength, is defined as follows:

dZ
ðY;FÞ
i

dt
¼ e½1� Z

ðY;FÞ
i � � Z

ðY;FÞ
i fk½Yi � cY �þ

þlð½Yi � cY �þÞ2g: (7)
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Equation (7) implies that the synaptic strength from Yi to Fi

recovers at a rate of e until it reaches its maximal level, 1,

due to the recovery term e½1� Z
ðY;FÞ
i �. As a signal ½Yi � cY �þ

is sent along a pathway from the pre-synaptic to post-synap-

tic cell, its synaptic strength weakens at a rate determined by

the strength of the signal and the parameters k and l, which

specify linear and quadratic rates of activity-dependent

habituation (Gaudiano and Grossberg, 1991; Grossberg and

Myers, 2000). These linear and quadratic terms allow the

gated signal f1ð½Yi � cY �þÞZ
ðY;FÞ
i emitted from the cell to ex-

hibit a non-monotonic response, such that as signal

½Yi � cY �þ in (4) increases, the gated signal increases as well,

until, at high enough ½Yi � cY �þ levels, it decreases. With

only a linear term, the gated signal at equilibrium would be a

monotonically increasing function of the input activity

½Yi � cY �þ, and would require an external “supervisor” to

manually shut off signals maintaining high activation levels.

The parameters for all habituative gating equations were set

to e¼ 0.01, k¼ 0.1, and l¼ 3.

The superscripts in the habituative strength Z
ðY;FÞ
i in

Eq. (7) denote the pathway along which synaptic strength

habituates; that is, Z
ðY;FÞ
i is the synaptic strength along the path-

way from Yi to Fi. Similarly, Z
ðLÞ
j , in Eq. (19) below, is the

synaptic strength of the self-excitatory path from C
ðLÞ
j to itself.

The inhibitory off-surround
P

k 6¼i ½C
ðIÞ
k � cI�þ of Eq. (4)

is derived from all supra-threshold acoustic item category

activities, ½CðIÞk � cI�þ for k 6¼ i and is shunted by term �4Fi,

thereby keeping the activity of the cell non-negative.

Because inhibitory feedback from layer 2/3 activities

½CðIÞk � cI�þ arrives only from supra-threshold acoustic items,

this off-surround prevents the simultaneous resonant activa-

tion of multiple acoustic feature cells. This is due to the fact

that, when any cell activity ½CðIÞk � cI�þ reaches threshold, it

strongly inhibits off-surround layer 6 feature cell activities

Fi, until habituative synaptic strength in the bottom-up path-

way [due to Z
ðF;EÞ
i in Eq. (8) and Z

ðE;IÞ
i in Eq. (10)] causes the

currently supra-threshold cell to fall below threshold,

thereby allowing the resonant activation of the next most

active acoustic item category.

b. Layer 4. Activity Ei of the ith layer 4 feature cell is

described by the recurrent shunting on-center off-surround

network:

dEi

dt
¼� 0:1Ei þ ð1� EiÞ eIi þ eFiZ

ðF;EÞ
i

h i

� eEi

X
k 6¼i

ðIk þ FkÞ
" #

: (8)

Equation (8) contains a passive decay term (�0:1Ei), as well

as a shunted excitatory input

�
eIi þ eFiZ

ðF;EÞ
i

�
and inhibi-

tory input

�P
k 6¼i ðIk þ FkÞ

�
. All excitatory and inhibitory

inputs in Eq. (8) are scaled by the parameter e¼ 0.05. The

two excitatory inputs are bottom-up acoustic inputs eIi and

recurrent excitatory feedback eFiZ
ðF;EÞ
i from layer 6 cell

activities that represent the same feature. Excitatory input

from layer 6 cells is gated by each cell’s habituative synaptic

strength Z
ðF;EÞ
i to temporally limit activity persistence due to

the positive feedback between layers 6 and 4:

dZ
ðF;EÞ
i

dt
¼e

�
1�Z

ðF;EÞ
i

�
�Z

ðF;EÞ
i

�
k½Fi�cF�þþlð½Fi�cF�þÞ2

�
:

(9)

The signal function ½Fi � cF�þ ¼ maxðFi � cF; 0Þ in Eq. (9)

is threshold-linear, where cF ¼ 0:65, and thus requires cell

activity Fi to reach threshold 0.65 before the synaptic

strength from Fi to Ei begins to habituate. As before, this

habituative gate helps to prevent perseveration of resonant

activity of acoustic features and item categories, since fea-

ture cell activities Fi which reach threshold quickly lose their

ability to continue exciting cell activities Ei.

Off-surround inhibitory inputs
P

k 6¼i ðIk þ FkÞ in (5)

come from all the other bottom-up acoustic inputs Ik and the

output signals of layer 6 cell activities Fk for k 6¼ i, as shown

in Fig. 1 by the inhibitory connections arriving at layer 4 fea-

ture cells from the acoustic input as well as from layer 5/6

feature cells.

The off-surround input is shunted by the term �eEi

which keeps the activity of the cell non-negative

c. Layer 2/3. Activity C
ðIÞ
i of the ith acoustic item cate-

gory, or item chunk, cell is described by:

dC
ðIÞ
i

dt
¼�0:1C

ðIÞ
i þ ð1�C

ðIÞ
i Þ 2EiZ

ðE;IÞ
i þwf2ð½CðIÞi � cI�þÞ

n o
:

(10)

Equation (10) contains a passive decay term (�0:1C
ðIÞ
i ) and

a shunted excitatory term {2EiZ
ðE;IÞ
i þ wf2ð½CðIÞi � cI�þÞ}

whose bottom up excitatory input 2Ei from layer 4 cell activ-

ities is gated by the habituative synaptic strength Z
ðE;IÞ
i :

dZ
ðE;IÞ
i

dt
¼ e½1� Z

ðE;IÞ
i � � Z

ðE;IÞ
i ½kEi þ lðEiÞ2�: (11)

As in layer 4 cells, habituative input to layer 2/3 activities

helps to prevent perseveration of supra-threshold resonant

activations, by causing bottom-up gated signals from cell

activities Ei to collapse at sufficiently high levels. Layer 2/3

cell activities C
ðIÞ
i , also receive self-excitatory feedback ac-

tivity wf2ð½CðIÞi � cI�þÞ, thereby allowing cells which have

reached threshold to maintain their supra-threshold activa-

tions for longer than they would be capable of if they only

received bottom-up inputs from layer 4. The sigmoidal sig-

nal function in (10) is given by:

f2ðwÞ ¼
w2

12 þ w2
; (12)

The self-excitatory feedback term in (10) is scaled by the pa-

rameter W¼ 0.125.

J. Acoust. Soc. Am., Vol. 130, No. 1, July 2011 S. Grossberg and S. Kazerounian: Cortical model of phonemic restoration 453

Downloaded 19 Jul 2011 to 128.197.61.178. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



C. Cognitive working memory and list chunk network

The cognitive working memory (upper cortical area of

Fig. 1) consists of two layers of interacting cells (layers 6

and 4) which together comprise the Item and Order Working

Memory, and a third layer (layer 2/3) which contains the

masking field list chunk network.

1. Item and order working memory

The sequence of auditory item chunk activities C
ðIÞ
i is

stored as a primacy gradient of activation in the Item and

Order Working Memory, which consists of a shunting recur-

rent on-center off-surround network between layers 6 and 4

of the cognitive working memory.

The ith auditory item chunk activity C
ðIÞ
i inputs to the ith

layer 6 cell activity Yi as well as the ith layer 4 cell activity Xi

of the cognitive working memory. Layer 4 cells, in turn,

excite masking field list chunk activities C
ðLÞ
J in layer 2/3.

a. Layer 6. Activity Yi of the ith layer 6 cell obeys the

shunting equation:

dYi

dt
¼� 0:1Yi þ ð1� YiÞ 2eC

ðIÞ
i Z

ðI;YÞ
i þ dXi

h
þgHðYiÞff2ð½CðLÞJ � cL�þÞMjig

i
: (13)

This equation contains a passive decay (�0:1Yi) term, and

shunted excitatory input terms ½2eC
ðIÞ
i Z

ðI;YÞ
i þ dXi

þgHðYiÞðMjif2ðCðLÞJ � cþL ÞÞ�. The bottom-up excitatory input

from auditory item chunk activities 2eC
ðIÞ
i is gated by its

habituative synaptic strength Z
ðI;YÞ
i , where:

dZ
ðI;YÞ
i

dt
¼ e

�
1� Z

ðI;XÞ
i

�
� Z

ðI;XÞ
i

�
kC
ðIÞ
i þ l½CðIÞi �

2

�
: (14)

This habituative gate limits the duration of item chunk inputs

to working memory, and thereby also prevents them from

strongly altering the spatial pattern of activations in working

memory once acoustic features and item categories have

reached their resonant thresholds. Input to layer 6 cells is also

received from top-down intra-cortical feedback from the ith
layer 4 cell activities dXi, where d¼ 0.7. As discussed in Sec.

III C, the on-center inputs dXi in Eq. (13) and eYi in Eq. (15),

and off-surround inputs eYk for k 6¼ i in Eq. (15) allow these

layers to achieve short-term memory storage of inputs pre-

sented to these layers, while meeting the constraints of the

LTM Invariance principle.

Last, layer 6 cells receive top-down feedback from layer

2/3 list chunk activities gHðYiÞff2ð½CðLÞJ � cL�þÞMjig via the

signal f2 given in Eq. (12). Layer 2/3 feedback is multiplica-

tively gated by top-down adaptive weights, Mji, which enable

long-term memory traces of list chunks to be readout into

working memory (cf. Grossberg and Pearson, 2008). This

feedback is further gated by the heaviside function HðYiÞ,
which ensures that top-down feedback from list chunks is

modulatory. As a result, a list chunk cannot activate a working

memory cell Yi in the absence of its prior bottom-up activa-

tion. This feedback term allows previously learned expecta-

tions from list chunk cells to influence bottom-up activations

being stored in working memory, such that once a given list

chunk cell activity C
ðLÞ
J exceeds the threshold cL, it begins to

influence active working memory activities Yi via the adaptive

filter defined by Mji. The scaling parameter g ¼ 8. For the

purposes of these simulations, top-down weights Mji were set

equal to weights Wij in the bottom-up adaptive filter [Eq.

(17)], as would result from outstar and instar learning laws,

wherein weights track post-synaptic and pre-synaptic activ-

ities, respectively (Grossberg, 1968, 1978b, 1980).

b. Layer 4. Activity Xi of the ith layer 6 cell obeys the

shunting recurrent on-center off-surround equation:

dXi

dt
¼� 0:1Xi þ ð1� XiÞ 2eC

ðIÞ
i Z

ðI;XÞ
i þ eYi

h i

� 1:25Xi

X
k 6¼i

½2eC
ðIÞ
k Z

ðI;XÞ
k þ eYk�

( )
: (15)

Equation (15) contains a passive decay term (�0:1Xi), a

shunted on-center excitatory term [ 2eC
ðIÞ
i Z

ðI;XÞ
i þ eYi], and a

shunted off-surround inhibitory term
P

k 6¼i ½2eC
ðIÞ
k Z

ðI;XÞ
k

þeYk�. Bottom-up excitatory inputs arrive at the ith cell from

the ith auditory item chunk category activity 2eC
ðIÞ
i , which is

gated by Z
ðI;XÞ
i , where:

dZ
ðI;XÞ
i

dt
¼ e½1� Z

ðI;XÞ
i � � Z

ðI;XÞ
i fkC

ðIÞ
i þ l½CðIÞi �

2g: (16)

As in Eq. (13), this habituative gate prevents perseveration

of acoustic item chunk inputs to the working memory. Bot-

tom-up input Xi also arrives from the ith layer 6 cell activ-

ities eYi that is part of the cognitive working memory

feedback loop with layer 4.

Off-surround inhibitory inputs to Xi come from all other

bottom-up inputs 2eC
ðIÞ
k Z

ðI;XÞ
k and layer 6 cell activities eYk

for all k= i. The parameters e¼ 0.05 and 2e¼ 0.1 describe

the relative strengths of bottom-up auditory item inputs and

feedback inputs. A primacy gradient is achieved across the

working memory layers by the relative strengths of the bot-

tom-up and recurrent excitatory input parameters and the

strength of the off-surround inputs in Eq. (15).

2. List chunk network

Item sequences stored in the cognitive working memory

are categorized by list chunk cells in a masking field network

within layer 2/3. The activity of a list chunk cell C
ðLÞ
J that

codes the sequence J is defined by the shunting recurrent on-

center off-surround network:

0:5
dC
ðLÞ
J

dt
¼ �0:1C

ðLÞ
J þ ½1� C

ðLÞ
J �

70

Jj jXiWijZ
ðX;LÞ
i

�

þ Jj jf2ðCðLÞJ Z
ðLÞ
j Þ
o
� ½CðLÞJ þ 1�

�

P
K

gðCðLÞK Þ Kj jð1þ K \ Jj jÞP
K

Kj jð1þ K \ Jj jÞ

8><
>:

9>=
>;: (17)
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Equation (17) contains a passive decay term (�0:1C
ðLÞ
j ), on-

center shunted excitatory inputs
�
ð70= Jj jÞXiWijZ

ðX;LÞ
i

þ Jj jf2ðCðLÞJ ÞZ
ðLÞ
j

�
and off-surround shunted inputs

P
k

gðCðLÞK Þ Kj jð1þ K \ Jj jÞP
k

Kj jð1þ K \ Jj jÞ

8><
>:

9>=
>;.

Excitatory bottom-up inputs from the ith layer 4 cell activ-

ities 70= Jj jð ÞXiWijZ
ðX;LÞ
i , are filtered by bottom-up weights,

or long-term memory traces, Wij, which allow a list chunk to

be selectively activated due to learning (not simulated here;

see Cohen and Grossberg, 1987) and are normalized by a

factor of 1= Jj j, which is inversely proportional to the number

of inputs Jj j converging on list chunk, C
ðLÞ
J , from the

sequence J that is stored in working memory. As discussed

in Sec. III D, the scaling of bottom-up inputs to list chunk

cell size by 1= Jj j normalizes the maximum total input to the

cell using the property of conservation of synaptic sites. This

property helps a masking field to maintain selectivity in

response to sequences of different length, by preventing cells

which code for lists of length n from becoming active in

response to sequences much smaller than n.

Weights Wij were set as follows: W11¼ 0.1, W22¼ 0.1,

W33¼ 0.1, W44¼ 0.1, W55¼ 0.1, W16¼ 0.15, W26¼ 0.1,

W36¼ 0.05, W17¼ 0.15, W47¼ 0.1, W57¼ 0.05, with all other

values set to 0. These weights reflect a primacy gradient and

are normalized such that each chunk receives the same total

bottom-up weight, properties that would arise naturally from a

normalized instar learning law whose weights track primacy

gradient activitie across an Item and Order Working Memory

(Grossberg, 1978b; Grossberg and Pearson, 2008).

The bottom-up input is also gated by a habituative syn-

aptic strength Z
ðX;LÞ
i that is defined as:

dZ
ðX;LÞ
i

dt
¼ e

�
1� Z

ðX;LÞ
i

�
� Z

ðX;LÞ
i

�
kXi þ lðXiÞ2

�
: (18)

The other excitatory input term, Jj jf2ðCðLÞJ ÞZ
ðLÞ
j , which results

from activity dependent self-similar growth, describes the

self-excitatory feedback activity of a list chunk onto itself.

This self-excitatory feedback term is proportional to the

number J of cortical inputs received by the list chunk, and

further helps a masking field to achieve selectivity by pro-

viding a competitive advantage to cells which receive stored

inputs from longer lists. The self-excitatory feedback signal

function f2 is defined in Eq. (12) above. The feedback is

gated by the habituative transmitter Z
ðLÞ
j , where:

dZ
ðLÞ
j

dt
¼ e

�
1� Z

ðLÞ
j

	
� Z

ðLÞ
j

�
kC
ðLÞ
J þ l

�
C
ðLÞ
J

�2�
: (19)

The inhibitory inputs to a list chunk C
ðLÞ
J are shunted by

½CðLÞJ þ 1�, ensuring that activity remains above -1. In the in-

hibitory input

P
k

gðCðLÞK Þ Kj jð1þ K \ Jj jÞP
k

Kj jð1þ K \ Jj jÞ

8><
>:

9>=
>;,

J and K denote the sequences that activate C
ðLÞ
J and C

ðLÞ
K ,

respectively, terms Jj j and Kj j denote the numbers of items

in these sequences, and the term K \ Jj j denotes the number

of items that the two cells share. Thus, the inhibitory input to

a cell C
ðLÞ
J from a neighboring cell C

ðLÞ
K , is proportional to the

signal gðCðLÞk Þ, where the sigmoid signal function g is defined

by:

gðwÞ ¼ w2

0:22 þ w2
; (20)

the number of inputs Kj j that converge on C
ðLÞ
K , and the num-

ber of inputs K \ Jj j shared by C
ðLÞ
K and C

ðLÞ
J . These inhibitory

coefficients, which also describe self-similar competitive

growth between list chunks, further provide masking field se-

lectivity by allowing larger cells to more strongly inhibit

smaller cells, with inhibition proportional to the number of

items contacting a given list chunk. Shunting inhibition in the

denominator of the inhibitory term results in divisive normal-

ization such that the maximum total strength of inhibitory

connections to each list chunk is equal to 1.

VI. DISCUSSION

Although various models of human speech perception

have used phonemic restoration as a motivating factor in

their creation, and even as evidence of their validity, we are

not aware of any that have attempted to explicitly explain

and simulate why and how phonemic restoration occurs

(Elman and McClelland, 1986; Norris, 1994; Norris et al.,
2000). Indeed, although it is never simulated, phonemic res-

toration is claimed to be one of the primary motivations of

the TRACE model. “We start with [the Ganong] phenom-

enon because it, and the related phonemic restoration effect,

were among the primary reasons why we felt that the interac-

tive-activation approach would be appropriate for speech

perception as well as visual word recognition and reading,”

(Elman and McClelland, 1986, p. 24).

There are also some speech models that draw on knowl-

edge of human speech perception in order to deal with how

speech can be recognized when portions of speech are

occluded by noise, or absent from the signal altogether.

Some of these models have addressed the question of phone-

mic restoration (Masuda-Katsuse and Kawahara, 1999; Sri-

nivasan and Wang, 2005), and produce a spectral

representation of the speech signal with the appropriately

restored phoneme. They do not, however, explain how pho-

nemic restoration may arise in humans. Restoration in

Masuda-Katsuse and Kawahara (1999), for example, uses a

Kalman filter to track and predict the spectral envelopes of

segmented speech streams, which then produce the output

spectrum of the restored phoneme. The model does not use

top-down lexical information. Conversely, while Srinivasan

and Wang (2005) make use of lexical information to restore
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a masked, but not missing, phoneme, it does not operate in

real-time. Instead, multiple processing stages make use of

Kalman filtering, Hidden Markov Modeling, and Dynamic

Time Warping in order to predict, track, and reconstruct a

phoneme occluded by noise, necessitating that these process-

ing steps occur off-line in multiple passes over the input.

Prominent alternative models of human speech perception

include the TRACE model (McClelland and Elman, 1986) and

the MERGE model (Norris et al., 2000). The cARTWORD

model has conceptual and explanatory advantages over these

models. Fundamental conceptual problems of these alternative

models are summarized below. The explanatory advantages of

cARTWORD include its use of neurobiological circuits whose

variations have been used to successfully explain many kinds

of data and that are based on a well-known laminar cortical or-

ganization. Explanatory advantages also include cART-

WORD’s ability to explain contextual effects that can operate

over long time intervals, including the effects of future con-

text, by using its resonance mechanisms. Another key advant-

age of cARTWORD is its ability to represent consciously

perceived percepts and to explain how these percepts are

related to mechanisms of attention, resonance, and learning.

Although the model’s perceptual representations are simpli-

fied, the working memory, list chunking, and resonance mech-

anisms of cARTWORD can be naturally extended to explain

much more complex percepts as the complexity of feature pre-

processing is extended, much as has already been done in

models of visual perception.

A. TRACE

The TRACE model is based on the Parallel Distributed

Processing framework of Rumelhart et al. (1986) and is

closely related to the interactive activation model (IAM) of

letter perception. The model uses a network of fully con-

nected, yet simple, processing units. The activity of each of

these units is governed by an activation function, and results

in a spreading of activation to all the other units to which it

is connected. TRACE embodies such general properties,

however, in a way, that is, inconsistent with basic properties

of human speech perception, or indeed of any real-time

physical model. These include:

(1). Not a real time model. TRACE does not operate in real

time. Indeed, it does not include a plausible representa-

tion of time that can be used in any physical process.

Rather than treat time as an independent variable, it is

treated as a structural variable used to create a series of

“time slices” that are sequentially activated to represent

a sequence of events. As a result, the model massively

duplicates feature detector, phoneme, and word units, as

well as their connectivity patterns. Every word and pho-

neme representation thus has a copy at every time slice,

in striking contrast to the content-addressable unique

representations in cARTWORD that may be activated at

certain times. Aside from preventing the model from

being able to recognize variable-rate speech data, it

makes learning difficult since it is not clear how learning

at a representation in one time slice should interact with

a corresponding representation in a different time slice.

(2). Silence is not context-sensitive. Silence in the model is

explicitly built in and is represented by a unit, or node

that is activated in the absence of input. There are, how-

ever, many examples wherein perceived silence is con-

text-sensitive and does not correspond to silent breaks

in acoustic inputs. cARTWORD and its antecedents

ARTWORD (Grossberg and Myers, 2000) and ART-

PHONE (Grossberg et al., 1997) simulated such data as

temporal breaks in the resonant wave that embodies

conscious speech.

(3). Driving top-down feedback and unstable learning.

TRACE does not implement the ART Matching Rule.

The proposed alternative is that when “higher levels

insist that a particular phoneme is present, then the unit

for that phoneme can be activated… then the learning

mechanism can ‘retune’ the detector.” However, it has

been mathematically proved that such a driving top-

down feedback mechanism leads to unstable learning

and memory (Carpenter and Grossberg, 1987; Gross-

berg, 1988). Indeed, behavioral, neurophysiological,

and anatomical data support the proposal that top-down

attention is modulatory, not driving, except when voli-

tion may alter top-down signals to induce visual im-

agery, fantasy, or internal planning (Grossberg, 2000,

2003; Raizada and Grossberg, 2003). Due to this driving

property of TRACE top-down processing, over and

beyond the lack of resonance as a mediating mecha-

nism, TRACE cannot simulate phonemic restoration

data. Specifically, it cannot explain how silence in a res-

toration condition remains silent and how a reduced set

of spectral components in a noise input leads to a corre-

spondingly degraded consonant sound (Grossberg et al.,

1997; Samuel, 1981a, b).

A reviewer kindly sent us a simulation, and illustrative

figure, to advance the claim that TRACE can simulate pho-

nemic restoration, despite its incorrect form of top-down

feedback. The simulation used a java implementation of

TRACE known as jTRACE. Figure 8 depicts a simulation

of jTRACE using parameters provided by the reviewer, as

well a reconstruction of that simulation. This simulation

depends upon another assumption of TRACE; namely, that

silence activates a “silence node” that strongly inhibits all

phonemic nodes. Such an assumption has no biological

support. Moreover, it is incompatible with several types of

data that ART can explain. For example, this hypothesis

prevents TRACE from explaining percepts in which a phys-

ical silence is heard as sustained sound. Data of the latter

kind have been simulated in earlier ART articles (e.g.,

Grossberg et al., 1997) on which the current model builds.

In contrast, ART predicts that silence is a temporal disconti-

nuity in the resonant wave that represents conscious speech.

Moreover, activity of a silence node would inhibit all primed

activity during silent intervals in priming experiments,

thereby undermining TRACE’s ability to simulate RT data,

among others, in such experiments. ART can accommodate

priming data as well (e.g., Grossberg and Stone, 1986).

In the reviewer’s simulation, jTRACE is presented with

the word luxury, whose input representation is given by -
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l^kS^ri-, where “-” represents a silence. The figure shows

the activity of the /l/ phoneme whose center is at time slice

4, under three conditions. In the normal condition, all inputs

are presented to the network, preceded and followed by acti-

vation of the silence node. In the silence condition, the /l/ is

removed from the input and replaced by activation of the

silence node. In the noise condition, a constructed noise vec-

tor replaces features for /l/ in the input. While it may at first

seem that this simulation can account for phonemic restora-

tion, since the /l/ phoneme becomes active in the noise con-

dition but not the silence condition, serious problems appear

upon closer inspection.

The first problem is that this simulation relies on the

explicit activation of a silence node. Because silence is

treated like any other phoneme and because it is arbitrarily

given a feature representation that is orthogonal to every

other phoneme, its representations in all the time slices

become strongly activated in response to the absence of bot-

tom-up input and strongly inhibit all other phonemes. If,

instead, the TRACE model were to properly treat silence as

the absence of acoustic input, the /l/ phoneme instead

becomes more activated, and at an earlier time frame, when

replaced by silence rather than noise. This is shown in Fig.

9(a). While parameter changes may allow for the /l/ pho-

neme to become more active in noise than in silence, in the

absence of an artificial means of representing silence,

TRACE perceptually restores a phoneme even when that

phoneme is replaced by silence; i.e., the absence of input.

This problem can be traced to how TRACE defines top-

down inputs as driving, rather than modulatory.

The earlier activation of the /l/ phoneme during a silent

interval than during a noise presentation arises from

another problem of the TRACE model regarding the repre-

sentation of time. Specifically, because time is represented

as a series of frames during which reduplicated nodes pro-

cess input, not only does the time course of activations lose

FIG. 8. This figure shows the activities of the /l/ phoneme in the jTRACE

model, when presented with the word luxury under three conditions. In the

normal condition, all the corresponding feature level inputs to the phonemes

are present, whereas in the silence condition the feature inputs correspond-

ing to /l/ are replaced with the feature inputs corresponding to the silence

phoneme node. In the noise condition, a noise vector was created by setting

all values of all features to 4. The plot shown in (a) was provided by one of

the reviewers, and the plot shown in (b) is a recreation to be certain that sub-

sequent plots are accurate.

FIG. 9. (a) Recreates Fig. 8 for the normal and noise conditions. However,

in the silence condition, rather than replace the feature level inputs corre-

sponding to /l/ with the feature vector corresponding to the silence phoneme,

the silence replacing /l/ in this figure was simply the absence of acoustic

input. When silence is represented in this biologically relevant way, the acti-

vation of the /l/ phoneme node is earlier and higher than in the case when

noise is presented. The main reason for this is that there is no competition

from an artificial silence node, whose strong activation during silence pre-

sentations yields strong lateral inhibition with every other phoneme. Another

reason is that competition due to activation by noise attenuates rather than

facilitates activation of the /l/ phoneme node when compared to silence.

This is in direct contrast to phonemic restoration data, wherein a phoneme is

perceived when replaced by noise, but not by silence. The plot shown in (b)

is identical to the simulation from Fig. 8, except the correctly time-aligned

phoneme activations for /k/ and /S/ are shown as well (/r/ and /^/are left out

for simplicity). This figures shows that the Traces for /k/ and /S/ become

active well before /l/ becomes positively excited, suggesting that the per-

cepts described by the TRACE model do not mirror the fluent and sequential

percepts formed when listening to a speech stream.
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meaning from both a behavioral and neurobiological per-

spective, but so too do the existence of the reduplicated

phoneme/word nodes themselves. More specifically,

because it is argued that the TRACE, or node activity, is

the percept, and interactive activation is the process of per-

ception (Elman and McClelland, 1986), the TRACEs for all

the reduplicated phonemes and words must explicitly be

ignored, discarded, or shifted to the appropriate time align-

ment, in order to avoid the implication that they are all

being perceived throughout the full duration of any stimu-

lus presentation. These problems are made clearer if we

consider the time course of activations in the case of noise

replacing a phoneme. Figure 9(b) shows a simulation in

which, even allowing for the use of a silence phoneme

node, the /l/ phoneme node (centered at time 4), becomes

active only after the phoneme nodes for /k/ and /S/ (we ignore

here /r/ and /^/ for simplicity, since /r/ shares overlapping

input features with /l/, and /^/ is a duplicated phoneme).

There are a couple of possible explanations for this

property, yet none of them corresponds to properties of pho-

nemic restoration. If we accept that the Trace is the percept

itself, then we would expect the percept (Trace) of /l/ to

become active before the percepts (Traces) of the phonemes

subsequent to it, such as /k/ and /S/. Alternatively, consider

the possibility that the Trace corresponds to a response prob-

ability as calculated by the Luce Choice Rule, which is used

in McClelland and Elman (1986). Although these response

probability curves are not shown here, they are roughly equal

to the activation traces shown. Then one could make the

argument that it is only after the lexical entry for luxury
is recognized as such that the /l/ can be perceived as an /l/

rather than as noise. That is to say, only after enough evi-

dence has accumulated for the lexical item, will a listener

report perceiving /l/ rather than noise. The trouble with this

argument is that, as evidence for the lexical item accumu-

lates as a winning lexical entry more strongly inhibits its

competitors, the response probabilities for perceiving the

other phonemes in their respective positions would increase

as well. This does not happen, however: Both their activa-

tions and their response probabilities are decreasing by the

time /l/ begins to get activated. These are fundamental prob-

lems of the TRACE model which result from the fact that

time is represented in an ad hoc manner, that bottom-up and

top-down interactions are not plausible given the structure of

the model itself, and that silence is represented as an explicit

phoneme category.

B. MERGE

Norris et al. (2000) developed the MERGE model to

argue that feedback from lexical to pre-lexical levels is not

necessary in explaining speech perception. The model is a

competition activation network, with excitatory connections

between layers, and inhibitory connections within each

layer. It consists of an input layer, which sends excitatory

inputs to a word layer as well as a phoneme decision layer,

and there are additionally feedback connections from the

word layer to the phoneme decision layer. The MERGE

model builds on the SHORTLIST model (Norris, 1994),

which attempted to address some of the shortcomings of the

TRACE model. However, MERGE also relies on activation

functions that are not biologically plausible, and does not

include learning laws. In fact, the MERGE model proposes

that connections from lexical and pre-lexical levels to a deci-

sion layer should be built “on the fly” in a task-dependent

manner, a proposal greatly at odds with how the brain works.

Furthermore, as with the TRACE model, it simulates only a

decision process by which a perceived word may be chosen,

but does not describe what is actually perceived. As such,

the MERGE model provides no explanation for why broad-

band noise is required in the perceptual restoration of a miss-

ing phoneme. Nor can it explain the grouping processes

which give rise to perceived silence in the case where a pho-

neme is replaced by a silent interval. Finally, it is well

known that top-down feedback processes are ubiquitous in

the brain and are even more numerous than the bottom-up

processes that they modulate (Felleman and Van Essen,

1991; Goldman-Rakic, 1987; Rempel-Clower and Barbas

2000). cARTWORD and other ART models clarify how

these top-down processes control attentional and learning

processes that are necessary for fast and stable language

learning and context-sensitive conscious perception.

VII. CONCLUSION

The cARTWORD model describes in quantitative terms

how a hierarchy of interacting laminar cortical circuits may

give rise to conscious speech percepts and how bottom-up

and top-down interactions serve to filter, store, chunk, modu-

late, and complete acoustic inputs into a coherent speech

code. To do this, cARTWORD simulates how a temporal

sequence of feature patterns is unitized into item representa-

tions. The item representations send matching feedback to

the feature patterns as they are sequentially stored in work-

ing memory. In this way, a temporal series of speech sounds

is stored as an evolving spatial pattern of activity through

time. As this spatial pattern changes, it selects unitized

sequence, or list, chunks that compete among one another to

select the list chunk, or chunks, that best represents the cur-

rently active stored item sequence. These list chunks, in turn,

can send top-down matching signals to the stored working

memory items while they activate a gating network. As the

gates open, the entire hierarchy of networks can enter a syn-

chronous resonance. Activity-dependent habituative trans-

mitter gates, or synaptic strengths, enable individual feature-

item resonances to become activated in their correct order

without perseveration. All of these mechanisms, notably the

top-down attentive matching mechanisms, are part of an

emerging cognitive theory that helps to explain how speech

and language may be rapidly and stably learned. Using these

resonant mechanisms, the cARTWORD model simulates

key properties of data in which context acting over hundreds

of milliseconds can influence what speech percept is heard.

The phonemic restoration effect illustrates such contextual

dynamics, including why a silence duration replacing an

excised phoneme gives rise to a break in perceived speech,

why broadband noise enables restoration of an excised pho-

neme, and how stimuli subsequent to the excised phoneme
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can determine which phonemes are earlier perceived. These

demonstrations contrast with competing models of speech

perception, which have not shown how representations of

such conscious speech percepts may arise.

As these concepts become increasingly well developed

and used to explain ever more complex speech and language

data, they may have an increasing influence on the design of

speech recognition systems in technology, especially in

multi-speaker noisy environments, where the coherent com-

pletion and noise suppression properties of resonant dynam-

ics are most valuable.
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