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Abstract--The recognition o f  three-dimensional ( 3-D ) objects from sequences o f  their two-dimensional ( 2-D ) views is 
modeled by a family o f  self-organizing neural architectures, called VIEWNET, that use View Information Encoded 
With NETworks. V IEWNET incorporates a preprocessor that generates a compressed but 2-D invariant 
representation o f  an image, a supervised incremental learning system that classifies the preprocessed representations 
into 2-1) view categories whose outputs are combined into 3-D invariant object categories, and a working memory that 
makes a 3-D object prediction by accumulating evidence from 3-D object category nodes us multiple 2-D views are 
experienced. The simplest V IEWNET achieves high recognition scores without the need to explicitly code the temporal 
order o f  2-D views in working memory. Working memories are also discussed that save memory resources by implicitly 
coding temporal order in terms o f  the relative activity o f  2-D view category nodes, rather than as explicit 2-D view 
transitions. Variants o f  the VIEWNET architecture may be used for  scene understanding by using a preprocessor and 
classifier that can determine both what objects are in a scene and where they are located. The present V I E W N E T  
preprocessor includes the CORT-X 2 filter, which discounts the illuminant, regularizes and completes figural 
boundaries, and suppresses image noise. This boundary segmentation is rendered invariant under 2-D translation, 
rotation, and dilation by use o f  a log-polar transform. The invariant spectra undergo Gaassian coarse coding to further 
reduce noise and 3-D foreshortening effects, and to increase generalization. These compressed codes are input into the 
classifier, a supervised learning system based on the fuzzy  A R T M A P  algorithm. Fuzzy A R T M A P  learns 2-D view 
categories that are invariant under 2-D image translation, rotation, and dilation as well as 3-D image transformations 
that do not cause a predictive error. Evidence from sequences o f  2-D view categories converges at 3-D object nodes that 
generate a response invariant under changes o f  2-D view. These 3-D object nodes input to a working memory that 
accumulates evidence over time to improve object recognition. In the simplest working memory, each occurrence 
(nonoccurrence) o f  a 2-D view category increases (decreases) the corresponding node's activity in working memory. 
The maximally active node is used to predict the 3-D object. Recognition is studied with noisy and clean images using 
slow and fast  learning. Slow learning at the fuzzy  A R T M A P  map field is adapted to learn the conditional probability o f  
the 3-D object given the selected 2-D view category. V I E W N E T  is demonstrated on an M I T  Lincoln Laboratory 
database o f  128 x 128 2-D views o f  aircraft with and without additive noise. A recognition rate o f  up to 90% is achieved 
with one 2-D view and o f  up to 98.5% correct with three 2-D views. The properties o f  2-D view and 3-D object category 
nodes are compared with those o f  cells in monkey inferotemporal cortex. 
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1. V I E W  I N F O R M A T I O N  E N C O D E D  W I T H  
N E T W O R K S  

This  ar t ic le  descr ibes  a neura l  a rch i tec ture ,  called 
V I E W N E T ,  for  a u t o n o m o u s l y  learn ing  to  recognize 
th ree -d imens iona l  (3-D) objects  in real  t ime. M o r e  
general ly ,  V I E W N E T  i l lus t ra tes  a c o m p u t a t i o n a l  
s t ra tegy  tha t  m a y  be genera l ized  to  define archi tec-  
tures  capab le  o f  m o r e  complex  t a sk  o f  scene 
unde r s t and ing .  V I E W N E T  der ives  its n a m e  f rom its 
abi l i ty  to  use View I n f o r m a t i o n  E n c o d e d  Wi th  
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NETworks. This computational strategy attempts to 
achieve recognition of a 3-D object by learning 
invariant properties of its two-dimensional (2-D) 
views and then accumulating evidence from se- 
quences of 2-D views until 3-D recognition is 
assured. Such an approach uses only the types of 
information that are available to the system during its 
ongoing encounters with objects. The ultimate goal is 
to define an autonomous system for general-purpose 
object recognition and scene understanding. 

Many prior approaches to 3-D visual object 
recognition sought to build up a structural descrip- 
tion of an object to aid in the recognition process. 
Quite a few of these efforts used volumetric or 
surface-based descriptions to generate structural 
models of 3-D objects. Winston (1975) used multiple 
2-D views to create structural models of objects in a 
scene. He used the spatial relationships between 
simple primitives such as "wedge supported by 
brick" in each view to construct his models. 
Subsequent views were used to reinforce or modify 
the model. Underwood and Coates (1975) incremen- 
tally built a surface description of an object from 
multiple views for recognizing polyhedra. Freeman 
and Chakravarty (1980) used characteristic views in 
distinct topological arrangement as an index for 
identifying 3-D objects. Martin and Aggarwal (1983) 
built up a volume segment model of 3-D objects from 
2-D views. Using explicit information about each 
view point, they were able to use learning to refine the 
descriptions of the 3-D objects. Fekete and Davis 
(1984) tessellated a sphere and used the resulting 
viewpoints to index the first and second moment 
properties of images. No consideration was given to 
learning however, and no use was made of 
tessellation sequences for recognition. 

Chen and Freeman (1990) extended the method of 
Freeman and Chakravarty by using volumetric 
descriptions of 3-D objects to predict topologically 
distinct characteristic views of quadric-surfaced solid 
models. Edelman et al. (1989) modeled human 
performance in mental rotation experiments using a 
neural network and 2-D views of 3-D wire frame 
objects. Liu and Tsai (1990) learned a sequence of 2-D 
silhouettes from rotating 3-D objects as a series of 
moments which could then be matched against a test 
series for recognition. Training and testing data sets 
were derived by rotating objects on a turntable so that 
arbitrary object rotations were not handled. Rather, 
they intended their technique to be employed in a 
controlled viewing environment such as could be set 
up in a factory. Zhang et al. (1992) also constructed a 
3-D object model from 2-D view relations. In an 
attempt to manage the combinatorial complexity of 
using 2-D aspects, Dickinson et al. (1992) use a fixed 
set of 3-D volumetric primitives to describe 3-D 
objects. The 3-D volumetric primitives are used to 

generate a hierarchy of 2-D view aspects to which 2-D 
images are matched. The 2-D aspect hierarchy was 
intended to handle 3-D occlusions so that an input 2- 
D image indexes the set of 3-D primitives which in turn 
indexes the 3-D object being viewed. 

A number of researchers, concerned about the 
recognition speed limitations of volumetric or surface 
model matching methods, have concentrated on 
appearance-based approaches. Appearance-based 
recognition approaches use input imagery to con- 
struct 3-D object models. Perhaps the earliest explicit 
use of imagery to construct structural representations 
of 3-D objects was developed by Koenderink and van 
Doom (1979). Koenderink and van Doom created 
Aspect Graphs consisting of 2-D views of a 3-D object 
along the nodes of the graph, with legal view 
transitions indicated by the arcs among nodes as 
shown in Figure 1. In the figure, views of a cube (say 
a numbered dice) are displayed with arcs representing 
their topological relationship to one another. For 
Koenderink and van Doom, 2-D views and view 
transitions were equally important for recognizing 
the object. 

In the past few years, with inexpensive computer 
power and memory increasingly available, there has 
been growing interest in methods of automatically 
generating representations from imagery akin to 
Koenderink and van Doorn's aspect graphs. Gigus 
and Malik (1988, 1990), and Plantinga and Dyer 
(1990) have attempted to automatically construct 
aspect graphs from objects in a CAD database using 
convex polyhedra. Other efforts for automatically 
generating perspective projection aspect graphs from 
a CAD database using curved objects and non- 
convex polyhedra have been pursued by Bowyer et al. 
(1989), Sripradisvarakul and Jain (1989), Ponce and 
Kriegman (1990), Rieger (1990), Stewman and 

FIGURE 1. Aspect Graph of Koenderink and van Doom. Each 
node of the graph represents a distinct 2-D view of the object. 
Arcs represent legal view transitions that would be observed 
when viewing the object. 
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Seibert and Waxman's  cross-correlation 
view transition matrix representing 2D views 
and 2D view transitions. 

Evidence accumulation node 
~ for this 3D object 

f ------~ ~ Not learned 
, x / ~ • f 

( 
ART2 2D view category nodes 

FIGURE 2. View transition matrix from the architecture of Seibert 
and Waxman computes cross-correlations between Its input 2-D 
view categories. The matrix represents the correlation between 
the present categorical 2-D view and the decaying activation of 
the previous view. As preprccessed images enler ART 2, the 
resulting Categorical views excite learned weights in this cross- 
correlation "aspect graph" devoted to each 3-D object. An 
evidence node integrates activation from the learned connec- 
tions in the matrix. Another network (not shown) chooses the 
evidence node with Ihe highest accumulated activstion as the 3- 
D object most likely being viewed by the architecture. 

Bowyer (1990), Chang and Huang (1992), and Eggert 
and Bowyer (1993). Hidden Markov models have 
also been applied to learning an aspect graph from a 
view sequence by Rimey and Brown (1991). 

Seibert and Waxman (1990a, b, 1991, 1992) 
pioneered the development of neural network 
architectures that self-organize aspect graph repre- 
sentations of 3-D objects from 2-D view sequences. 
Since our work on VIEWNET was inspired by their 
model and uses the same database to benchmark our 
results, we review their model in some detail. Their 
approach relied on building a neural "cross-correla- 
tion matrix" as shown in Figure 2. The cross- 
correlation matrix was used to learn both 2-D views 
and 2-D view transitions and to associate the 2-D 
views and view transitions with the 3-D objects that 
produced them. To test their architecture, the 2-D 
views were taken from 3-D jet airplane models 
painted black and digitized against a light back- 
ground for ease of segmentation. 

Sequences of images were obtained by rotating the 
jets 360 degrees for each of the many angles of 
inclination that the video camera was set at, from 
zero degrees (horizontal) to 72 degrees (looking down 
at the spinning jet). These images were then binarized 
using a high threshold to remove noise. Points of high 
curvature and the object centroid were found using a 
reaction-diffusion process. A log-polar transform 
around the object centroid was used to remove 2-D 
rotation and scale variations. The output of this filter 
was (approximately) invariant under 2-D transla- 
tions, rotations, and dilations of the image. In order 

to compress this invariant spectrum and reduce 3-D 
foreshortening effects, the result was coarse coded 
(compressed to 5 x 5 pixels from 128 x 128) using 
Gaussian filters. 

The coarse-coded vectors (25 data points) were fed 
into an ART 2 (Carpenter and Grossberg, 1987) 
network for unsupervised learning and categoriza- 
tion. These "categorical" 2-D views further com- 
pressed the 2-D representation so that a new 2-D 
view category was chosen only if significant changes 
occurred in the 2-D appearance of the object that 
were not invariant under translation, rotat ion,  
dilation, or modest foreshortening. How much 
change was tolerated was controlled by the ART 2 
vigilance parameter. These 2-D view categories were 
then fed into a series of cross-correlation matrices, or 
view graphs, one for each possible 3-D object, so that 
views and view transitions could be learned by a 3-D 
object categorization layer. The 3-D categorization 
layer incorporated "'evidence accumulation" nodes 
which integrate activations that they receive from 
learned connections to the correlation matrix. Decay 
terms in these integrator nodes determine how long 
they stay active without input support. 

Seibert and Waxman's approach of automatically 
generating aspect graphs directly from the imagery 
that the architecture experiences vastly simplifies 
earlier attempts which generated aspect graphs by 
constructing projections from mathematical descrip- 
tions of the 3-D objects. However, using view 
transition information comes at a cost: Given N 2- 
D views and M objects, the architecture must have 
the potential to encode an order of N 2 x M 2-D view 
transitions and the corresponding adaptive weights. 
Another potential problem is that an error in 
identifying a 2-D view may introduce a spurious 2- 
D view transition. Finally, unless one presumes a 2-D 
view frame capture rate fast enough to capture the 
highest speed movement that an object can make, 
view transitions may be skipped inadvertently by fast 
object motion. 

As reported in Seibert and Waxman (1992), 75% 
of the 2-D jet images were ambiguous to some degree. 
That is, 75% of the 2-D view categories formed by 
ART 2 gave evidence for more than one type of jet. 
Two possible reasons for this level of ambiguity exist: 
(1) image preprocessing using high curvature points 
followed by coarse coding may lump together object 
features that are needed for unambiguous recogni- 
tion; and (2) the 2-D views were categorized by ART 
2 without using any supervised feedback to help 
correct category boundaries. Although most 2-D 
view categories were ambiguous, the transitions 
between them were used to unambiguously identify 
a particular 3-D object. Thus, view transitions are 
critically important in the Seibert and Waxman 
architecture, which may then incur the cost of 
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needing up to N 2 x M view transition correlation 
matrices. 

This analysis suggests that a tradeoff exists 
between the choice of preprocessor, learned categor- 
izer, and evidence accumulation parts of the 
architecture. If the preprocessor and categorizer 
generate 2-D view categories that are too coarse or 
ambiguous, then the evidence accumulation network 
may have to be enhanced to overcome these 
limitations. VIEWNET explores this tradeoff by 
using a different preprocessor and categorizer that 
generate less ambiguous 2-D view categories. In fact, 
VIEWNET can categorize individual views on the 
Seibert-Waxman database with high accuracy (up to 
90%), in accord with the human experience that 
many objects can be identified with a single view, 
except when they are observed from an unfamiliar 
perspective or from a perspective that reduces the 
object's apparent dimension. A computationally less 
costly evidence accumulation, or working memory, 
network could then be used, at least on these data. 
The general problem is to design the optimally 
balanced preprocessor, categorizer, and working 
memory networks to handle the largest possible set 
of images. 

The VIEWNET approach was also motivated by 
work of Bradski et al. (1992), who described an 
alternative architecture that could potentially over- 
come the problem of proliferating view transitions. 
This architecture learns to code 2-D views in 
recognition categories, as do Seibert and Waxman, 
but stores these categories in a working memory, 
called a STORE network, whose activity pattern 
codes N view categories and their temporal order 
using only N codes. Larger activation of a category 
node in a STORE working memory codes for earlier 
occurrence of the corresponding 2-D view. An ART 
network then learns to categorize the stored 
combination of 2-D views and (implicitly coded) 
view transitions into a 3-D object category. Such an 
algorithm needs no more than N x M adaptive 
weights to code N 2-D views in working memory 
for M 3-D objects. This paper further develops the 
perspective that, although multiple views may 
facilitate recognition, explicit coding of view transi- 
tions may not be needed to achieve high recognition 
accuracy. 

As diagramed in Figure 3, VIEWNET consists of 
three parts: an image preprocessor, a self-organizing 
recognition network that may operate in either 
unsupervised or supervised modes, and a working 
memory network to accumulate evidence over 
multiple views. It is assumed that the figure to be 
recognized has already been separated from its 
background. Neural networks for figure-ground 
separation that use computations consistent with 
those in the VIEWNET preprocessor were described 

CORT-X 2 
filter 

Center 

Log-polar 
filter 

Center 

I Coarse 1 
Code 

FIGURE 3. The image processing flow chart of the VIEWNET 
system. 

in Grossberg (1994) and Grossberg and Wyse (1991, 
1992). The image figure is then processed by a 
boundary segmentation network, called the CORT- 
X 2 filter (Carpenter et al. 1989; Grossberg and Wyse, 
1991, 1992). CORT-X 2 is a feedforward network 
that first compensates fox variable illumination, 
extracts ratio contrasts, and normalizes image 
intensities. It then suppresses image noise while it 
completes and regularizes a boundary segmentation 
of the figure. Thus the maximal curvature point 
representation of Seibert and Waxman is replaced by 
an illumination-compensated, noise-suppressed seg- 
mentation of the entire figure. This boundary 
segmentation is then rendered invariant under 2-D 
rotation, translation, and scale by a centering, log- 
polar, centering operation as described in Schwartz 
(1977). As in Seibert and Waxman, the resulting 
spectra are then compressed by coarse coding to gain 
some insensitivity to 3-D deformation effects and to 
reduce memory requirements. Coarse coding is done 
by two methods, whose performance is compared: a 
many-to-few pixel simple spatial averaging, and 
Gaussian spatial averaging. The output of this 
preprocessor is a coarse-coded, invariant spectrum 
of an illumination-compensated, noise-suppressed 
boundary segmentation. This representation pro- 
vides the input vectors to the self-organizing neural 
network classifier. 
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Fuzzy ARTMAP (Carpenter et al., 1992a) was 
used to categorize the output spectra. This architec- 
ture is capable of fast, stable learning of recognition 
categories in response to nonstationary multidimen- 
sional data, and of learning to generate many-to-one 
output predictions from the recognition categories to 
output labels. Fuzzy ARTMAP runs under either 
unsupervised or supervised learning conditions. 
Under supervised conditions, erroneous predictions 
trigger further hypothesis testing, or memory search, 
in the input classifier. Fuzzy ARTMAP converts the 
vigilance parameter of unsupervised ART classifiers, 
such as ART 2, into an internally controlled 
parameter. When an erroneous prediction occurs, 
vigilance is increased just enough to trigger a new 
bout of hypothesis testing to discover a better 
category. This control scheme is called match 
tracking because the vigilance parameter tracks the 
match value that encodes how well the selected 
category's prototype matches the input spectrum. 
Using match tracking, memory search discovers and 
learns recognition categories that conjointly max- 
imize code compression and minimize predictive 
error. Fuzzy ARTMAP can hereby use supervised 
learning to rapidly fit the number, size, and shape of 
input categories to the statistical demands of the 
environment. This added power helps Fuzzy ART- 
MAP to learn 2-D view categories that tend to fit the 
data better than ART 2. In the simplest VIEWNET, 
that we call VIEWNET 1, Fuzzy ARTMAP also 
automatically combines the outputs of 2-D view 
categories at 3-D object category nodes that are 
invariant under changes of experienced 2-D views. It 
is this combination of boundary segmentation 
preprocessing combined with supervised ART learn- 
ing that achieves correct prediction of up to 90% 
accuracy in response to a single airplane view. 

A similar type of hierarchical organization from 
2-D view to 3-D object has been reported in 
neurophysiological studies of cell responses in 
monkey inferotemporal cortex, where some cells 
respond to individual 2-D views whereas others, like 
3-D object nodes, respond to a wide range of views 
(Logothetis et al., 1994). These studies were 
motivated by the regularization networks of Poggio 
and Edelman (1990) which also add up responses 
from 2-D views at 3-D object nodes. These networks 
do not, however, incrementally learn their categories 
in real-time and have not yet been incorporated into a 
self-organizing architecture. 

Given the high accuracy attained by individual 2- 
D view categories, the simplest possible working 
memory was used in VIEWNET 1 to illustrate the 
tradeoff between preprocessor, categorizer, and 
working memory. No view transitions were used. In 
fact, no temporal order information was used. 
Instead, the working memory simply updated its 

representation of each 3-D object category every time 
one of its 2-D views was experienced, and the 3-D 
object was predicted by voting for the winning 3-D 
category. Using this scheme, voting with two views 
achieves up to 94*,/0, and with three views up to 
98.5% accuracy. It was hereby shown that the 
simplest evidence accumulation from multiple views, 
without view transitions in a VIEWNET 2 architec- 
ture or even a representation of view temporal orders, 
can lead to high recognition on the Seibert-Waxman 
database if the preprocessor and classifier are 
designed as indicated. 

The remainder of the paper describes these 
operations in detail. Section 2 describes the airplane 
database. Section 3 describes the CORT-X 2 
boundary segmentation network and Appendix A 
describes its equations. Section 4 describes the 
operations to generate an invariant representation 
of the boundary segmentation. Section 5 describes the 
coarse-coding algorithm. Section 6 describes the 
Fuzzy ARTMAP network and Appendix B describes 
the equations. Section 7 describes computer simula- 
tion results in response to a single view, using fast or 
slow learning with or without image noise. The 
results are robust across all simulation conditions. 
Section 8 summarizes how multiple views may 
improve recognition scores, and demonstrates that 
learning explicit view transitions in a VIEWNET 2 
architecture does not improve performance on this 
database. Section 9 discusses these results in a 
broader context and outlines how these computa- 
tions may be generalized to define an architecture for 
scene understanding. 

2. DATA 

The image database used to test the architecture 
described below consists of multiple 2-D images 
of three airplanes: an F-16, F-18, and HK-1 (we 
thank Michael Seibert and Allen Waxman of 
MIT Lincoln Laboratory for the use of their data 
and their unfailing cooperation). Video images 
were taken of three models of these airplanes. Each 
was painted black and suspended by string against 
a light background to aid in segmentation. The 
camera was mounted anywhere in an arc around 
the jets that started at 0.0 degrees above horizontal 
and went in increments of 4.5 degrees to a 
maximum of 72.0 degrees above horizontal. For 
each camera angle, the jets were spun and frames 
covering one full revolution (an average of 88 
frames) were retained resulting in 1200 to 1400 
images per object. The images themselves were 
128 × 128 pixel gray-scale. The images were then 
thresholded and binarized into a SUN raster 
format to form the "raw" database. For our 
processing, data was turned into a floating point 
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format scaled between 0.0 and 1.0 and an additive 
noise process was introduced. The noise consisted 
of a 128 x 128 pixel image with each pixel taken 
from a uniform distribution between 0.0 and 1.0 
scaled by a constant C />0.0. That is, every pixel 
in the noise image is multiplied by C to create a 
"scaled" noise image. Thus, if say C=0.5, the 
noise image would consist of pixels that varied 
randomly in amplitude with uniform distribution 
between 0.0 and 0.5. These scaled, 128 x 128 noise 
images were then added to the 128 x 128 airplane 
images prior to processing. Thus, both noise-free 
and noisy 2-D views covering a half-sphere 
surrounding the 3-D object were collected, keeping 
their spatial relationships intact. 

Even-numbered rotation images from each cam- 
era angle were taken as the training set with the 
odd-numbered images forming the test set. The 
system was trained using random walks over the 
half-sphere of training images. Testing was done 
using random walks over the half-sphere of test 
images so that the paths taken and views seen were 
never the same between the training and test sets. 
Figure 4 shows example image from the data- 
base. The difficulty of the problem derives in part 
from the existence of small ambiguous frontal 
views in the database; see Figure 13 which appears 
later in this paper. 

(b) 

(a) 

(C,) 
FIGURE 4. Example Images from the database. Side views of (a) 
an F-16, (b) an F-18, and (c) an HK-1. 

3. CORT-X 2 FILTER 

The CORT-X 2 filter was used to preprocess the 
128 x 128 airplane images. This is a feedforward 
network that detects, regularizes, and completes 
image boundaries from edge, texture and shading 
contrasts, while suppressing noise that does not have 
an underlying anisotropic structure. The CORT-X 2 
filter is an enhancement of the original CORT-X filter 
(Carpenter et al., 1989). It generates better boundary 
segmentations, deals better with noise, and may also 
be used for figure-ground separation. The figure- 
ground separation properties were not needed in this 
research because the data images were already 
separated from their backgrounds. These CORT-X 
filters are simplifications of the Boundary Contour 
System (or BCS) for boundary segmentation 
(Grossberg, 1987, 1994; Grossberg and Mingolla, 
1985; Grossberg et al., 1989, 1995). The BCS includes 
internal feedback loops to generate coherent bound- 
ary completions even over image regions defined by 
sparse image contrasts. A full BCS system can be 
inserted into the VIEWNET architecture to handle a 
wider class of imagery. 

(a) C O R T - X  2 Flow C h a r t  

Off-tinier Om--Ctat*r 
O n l ~ u ~ u d  O f l ' ~ a l d  

Simple cells scale:s Small Lar Small La * rge [ ~ ' - -~  ~ ~ P /  

complex ~'~ - '~ Comptex I 
(,ells I L lmRe . . . .  

l" ' om-I " ° - ' "  I . . . .  I . . . .  
plex ¢ella CmqMte a e r ~  pet Complex Cells 

dl~mt e,~otlUem plex celh 

i ; I 
l - 

Boundary Lo~ 

(b) C O R T - X  2 Fi l ter  Kernels  
On-Center / Off-Center / 
OffnSurround C.. 0 iI-Surrottnd - ~  / 

Unorlented 2 -D Gausslan kernels 
Receptive fields Orientations 

QQ D S  NN 
g D  I S  NN 

G(y,x,k) U(y,x) O(y,x,k) 

FIGURE 5. CORT-X 2 flow-chart and filter kernels. The image is 
processed in parallel with small and large scale filters. Grey 
areas in the kernels are the active regions. All kernels are 
normalized to have an area equal to one. 
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The CORT-X 2 filter incorporates a number of 
features that are useful for processing noisy imagery, 
including ON and OFF cells and multiple size scales, 
that respond to images in complementary ways. The 
CORT-X 2 filter embodies a computational strategy 
for combining these complementary computations to 
achieve enhanced image processing. The processing 
stages of the CORT-X 2 filter are schematized in 
Figure 5 and summarized below. Equations and 
parameters are listed in Appendix A. 

Step 1. Discount the Illuminant 

The first processing stage compensates for variable 
illumination, and thereby extracts ratio contrasts 
from the image while normalizing the overall activity 
level in each image region. Both ON cells and OFF 
cells process the image in this way, using parallel 
shunting on-center/off-surround ("ON-C') and off- 
center/on-surround ("OFF-C')  networks. Para- 
meters are set so that the ON-C network has a zero 
baseline activity and the OFF-C network has a 
positive baseline activity. The OFF-C filter performs 
an image inversion because it has a positive baseline 
activity that is inhibited by positive signal values in 

the image. Figure 6 shows a noise-free image as well 
as the ON-C and OFF-C outputs. 

Along straight contrast boundaries in an image, 
both the ON-C and OFF-C networks enhance the 
contrast. On the other hand, the ON-C network has a 
stronger response to concave comers of activity in an 
image than the OFF-C network, while the converse is 
true at convex comers, as was noted by Grossberg 
and Todorovi6 (1988). These complementary re- 
sponses are joined at later processing stages used to 
build more complete boundary segmentations. 

Step 2. Boundary Segmentation 

The CORT-X 2 filter transforms the normalized ON- 
C and OFF-C images into a boundary segmentation 
using fast feedforward computations with oriented 
contrast-sensitive cells. Each processing stage pos- 
sesses a full range of oriented cells as at each pixel in 
the image. Image processing is done in parallel using 
two sets of convolution kernels at two different size 
scales. As noted in Carpenter et al. (1989), larger scale 
oriented cells are better able to complete gaps in 
image boundaries and to suppress noise. On the other 
hand, smaller scale oriented cells do a better job of 

(b) 
FIGURE 6. (a) The original F16 image. (b) CORT-X 20N-C output. (c) CORT-X 20FF-C output. 
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boundary localization than do larger scale cells. 
Interactions between the two size scales are designed 
to generate boundary outputs that combine good 
localization, boundary completion, and noise sup- 
pression properties. 

The first stage,, called the simple cell layer, consists 
of oriented contrast detectors that are sensitive to the 
orientation, amount, direction, and spatial scale of 
image contrast at a given image location. The 
orientation sensitivity results from using an ellipti- 
tally shaped kernel, or input field, one for each of 
eight orientations spaced 45 degrees apart that 
operate in parallel at each position in the image. 
Sensitivity to direction-of-contrast results from a 
kernel in which one half is excitatory and the other 
half inhibitory. At each orientation, a pair of 
detectors sensitive to opposite directions-of-contrast 
processes the image. The net activity of each detector 
is rectified, giving rise to a half-wave rectified output 
signal. Figure 7 shows the results of processing the 

ON-C (Figure 7a) and OFF-C (Figure 7b) image with 
the small spatial scale (6 x 3 pixels) simple cell layer. 
The line lengths in the figure indicate the magnitude 
of the simple cell responses at each orientation and 
position. 

The next processing stage generates a cell type 
whose output is insensitive to direction-of-contrast, 
or contrast polarity. Such an operation enables image 
boundaries to bridge textured and shaded image 
regions where contrast polarity reverses. This 
complex cell layer combines outputs from the simple 
cells at each position as shown in Figure 5. Complex 
cells perform a full-wave rectification of the image 
that is sensitive to the orientation, amount, and 
spatial scale of the contrast in the image, but not to 
its direction-of-contrast. To achieve this, complex 
cells sum up the half-wave rectified outputs of like- 
oriented and scaled simple cells of both directions-of- 
contrast at each position from both the ON-C and 
OFF-C networks. This is done in two parallel circuits 

!t i : : :I :  

. . . . .  " ! !li . . . . . . . .  !!i 
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(b) (d) 
FIGURE 7. CORT-X 2 processing. (a) Output resulting from the ON-C network, using left sided elliptical filters (simple ceil output) with a 
small spatial scale (6 x 3 pixels). A "left-sided" filter refers to filters that respond to a vertical left-to-right, high-to-low contrast transition 
area in the image when the filter is in vertical orientation. A "right-sided" filter is the opposite. Lines in the figure are proportional to the 
magnitude of the response at each orientation at each position. (b) Output from the OFF-C network using small left sided elliptical filters. 
(c) Hypercompiex cell output for the small scale. (d) The final CORT-X 2 output. 
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at both the small and large spatial scales (see Figure 
5). 

Complex cells excite hypercomplex cells in the next 
layer at their position and orientation while inhibiting 
hypercomplex cells at nearby locations that are not 
colinear with the complex cell's orientation. This 
positional competition is called the first competitive 
stage. It positionally sharpens the location of the 
segmentation, especially in response to textured and 
shaded images. Figure 7(c) shows the output of the 
hypercomplex cell layer for the small scale. 

The next layer, called the second competitive stage, 
chooses the hypercomplex cell whose orientation is 
maximally activated to represent the activity at each 
position. These orientationally favored hypercomplex 
cells are often called higher-order hypercomplex cells 
in the full BCS. Figure 8(a) displays the small scale 
output of these higher-order cells. 

The final stages of CORT-X 2 involve cooperative 

interactions between the large and small scale filters 
to join together the better boundary completion and 
noise suppression properties of the larger scale cells 
and the better localization properties of the smaller 
scale cells. One type of cooperative interaction is used 
to complete boundaries across boundary gaps caused 
by image noise. In the full BCS, boundary completion 
bridges gaps between distant image contrasts using a 
feedback loop that includes another cell type, called 
the bipole cell. Lacking a feedback loop, the CORT- 
X 2 filter uses a simplified interaction that captures 
the main heuristic for completing boundaries across 
small image gaps. In particular, cooperative interac- 
tions among the higher-order hypercomplex cells 
activate an inactive cell if enough cells that share the 
inactive cell's orientation are active on both sides of 
its oriented axis. 

Another type of cooperative interaction combines 
large and small scales in such a way that the better 

, \ 1 '  

I • \ \  . . . .  * . - - / I , -  . ~ \ \ \ , , .  

. . . . . .  / . . . . . . . . . .  

• ~. ;:::in . . . . .  

: ' : ' ~  :.:.:.. ;::::::::-::": ~ i  N . . .  ..:::::: ~" 

i:!:i:~:i:i i:~:T:'~; 

(b) 
:::i ~" "i!i~ "~iii 

ii !~!!! ~iiii ............. 
::. :,. ":+: ::.:::::.~:':':':':';':':'::'ii::i!i::~ 

!!!! iiiii .... ~ . . . . . . . . .  ~:i::i . . . . . . . . .  : ..... 

F I G U R E  8.  C O R T - X  2 final stale o u t p u t s .  (a )  T h e  maximal orientations of the hypercomplex cells (second competitive stage). (b) The long- 
range boundary completion o u t p u t .  (c)  T h e  m u l t i p l e  scale interaction output. (d )  T h e  f i na l  C O R T - X  2 output from the additive combination 
of Ihe lop right and bottom left o u t p u t s .  
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(c) 
FIGURE 9. Results of processing noisy images with CORT-X 2. Uniform random noise was added to every pixel in the original image. The 
original Image (left column) had pixels with activity levels between 0.0 and 1.0. Uniform random noise with pixel values ranging between 
0.0 and 1.0 was scaled by C and added to the clean image prior to processing by CORT-X 2 with results shown in the right column. At top 
(s, b), random noise between 0,0 and 0.5 (C = 0.5 or 50% noise) was added, on the bottom (c, d), noise between 0.0 and 1.0 (C = 1.0 or 
100% noise) was added. For example, 100% noise refers to the fact that the magnitude ot any given noise pixel can be as large as the 
largest magnitude pixel in the noise-free image. 

localization properties of  the smaller scale filters have 
an effect only within regions where the larger scales 
have located a boundary. The output  of the 
boundary-completing cooperative cells is shown in 
Figure 8(b). Figure 8(c) displays the multiple scale 
cooperative interaction, and Figure 8(d) shows the 
final CORT-X 2 output consisting of  the sum of 
output of  the boundary-completion and multiple 
scale localization interactions. Figure 9 shows the 
results of processing images with two levels of 
additive noise: C=0.5  or 50% noise (a), and 
C = 1.0, or 100% noise (c). Because of  the relative 
simplicity of  the images being processed, only 
amplitude information was used. The CORT-X filter 
also computes potentially useful information about 
the relative orientation of  different object parts, as in 
Figure 8(a). The boundary completion capabilities of 
the CORT-X filter are also not greatly taxed by these 
images. 

4. TRANSLATION,  ROTATION AND SCALE 
INVARIANCE 

The next processing stages generate a representa- 
tion, using standard methods, that is invariant 
under 2-D translation, rotation, and dilation. First, 
the 2-D boundary segmentation is centered by 
dividing its first moments by its zeroth moment to 
find the figure centroid, subtracting off the center 
of the image and then shifting the figure by this 
amount. A log-polar transform is then taken with 
respect to the center of  the image. Each point (x, 
y) is represented as re i°. Taking the logarithm 
yields coordinates of log radial magnitude and 
angle. As is well known (Schwartz, 1977), figural 
sizes and rotations are converted into figural shifts 
under log-polar transformation. Using these shift 
parameters to center the log-polar transformed 
image leads to a figural representation that is 
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(c) (f) 
FIGURE 10. Log-polar transform example. At top (a,d) are the results of processing F-18 images at two different scales and orientations 
using CORT-X 2. The middle images (b,e) show the results of a log-polar transform of the top images. At bottom (c, f) are the centered 
log-polar images that have been made more identical in the sense that, overall, many more (x, y) pixel locations obtain similar values 
between the two images after processing. In the log-polar images, the ordinate is the Iog-radisf magnitude and the abscissa is the 
periodic angle axis. 

invariant under 2-D changes in position, size and 
rotation. Figure 10 shows the results of processing 
two F-18 images which are identical except for 
scaling and rotation. The images become very 
similar in the centered log-polar domain. 

An alternative approach to invariance filtering, 
called the What-and-Where filter (Carpenter et al., 
1992b, 1993a) could also have been used, and has 
distinct advantages for generalizing the VIEWNET 

architecture to scene understanding applications, as 
noted in Section 9. 

5. COARSE CODING 

Coarse coding reduces memory requirements, as it 
compensates for modest 3-D foreshortening effects 
and inaccuracies of figural alignment in the invariant 
filter. Coarse coding by averaging in the space 
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domain is equivalent to low pass filtering in the 
frequency domain. Neighboring pixel features are 
hereby blurred, compensating for slight alignment 
variations. In addition, 2-D images of 3-D objects 
suffer from 3-D perspective distortions that cannot be 
corrected by log polar transforms. These are view- 
point-specific foreshortening effects and self-occlu- 
sions. The blurring associated with coarse coding can 
help to increase generalization by causing foreshor- 
tened and nonforeshortened images to map to nearly 
the same image. On the other hand, too much 
blurring can obscure critical input features and 
thereby harm recognition performance. Our analysis 
suggests how to balance these effects to maximize the 
benefits of coarse coding. 

Data reduction is an important practical issue in 
its own right in many realistic pattern recognition 
problems. Seibert and Waxrnan's database contains 
4300 images of three distinct objects. Each image is 
made up of 128 x 128 floating point pixels of 4 bytes 
each for a total of 128x 1 2 8 x 4 x 4 3 0 0 =  
281,804,800 bytes. Yet, as reported below, object 
identification performance based on single 2-D views 
did well even when images were reduced to just 4 × 4 
pixels, yielding a database of just 4 x 4 x 4 x  
4300 = 275,200 bytes. This reduction affords an 
enormous saving in both computation and memory 
storage. 

Coarse coding of the 2-D images used a spatial 
averaging method that preserves sufficient informa- 
tion for accurate recognition. This method was 
selected as follows. Spatial averaging consists of 
convolving the original image I with a function • and 
then sampling the resultant image with delta 
functions spaced every T pixels: 6 ( x - n T ,  y -  kT). 
For simplicity, in I-D this is 

( I ,  ~). ~ ~(x - nr). (1) 
n = - o o  

If the Fourier transform of I is ), and that of • is ~,  
then the Fourier transform of equation (1) is 

(2) 

where 9ts = 27r/T, and T is the sampling period in 
pixels. If  Q~v is the highest frequency in the image, 
then for the image to be uniquely determined by its 
samples, we must have by the Nyquist sampling 
theorem that 

271" 
n~ : T > 2aN. (3) 

Two simple spatial averaging functions ~I' are: (I) 

uniform averaging of the input image so that all 
pixels in a window of some width are summed and 
divided by the number of pixels in the window; (II) 
Gaussian averaging of the input image so that a 
normalized Gaussian weighted sum of all pixels is 
taken over a window of some width. Both approaches 
were investigated in this paper. 

Method (I) was considered first, using a rectan- 
gular window centered on each sampling point nT of 
width 2T. A problem with this approach is that a 
rectangular filter in space is a sine function in 
frequency. The side lobes of the sine function can 
introduce high frequency aliasing ("ringing") in the 
resultant image. High frequency ringing can be 
reduced by using a function that provides a better 
low pass filter. This is true of the Gaussian function 
of  method (II), which has the further advantage of 
being an eigenfunction of a Fourier transform, since 
the Fourier transform of a Gaussian is a Gaussian 
with reciprocal variance, thereby simplifying calcula- 
tion. 

For Gaussian-based spatial averaging, we must 
determine how to best set the standard deviation cr of 
the Gaussians. Let us define two standard deviations 
away from the Gaussian midpoint to be essentially 
zero. The cutoff frequency of such a low pass filter is 
then 7r/2~r. From eqn (3), we must have 

27r 27r 
-T- > 2---~ (4) 

which yields at equality 

T 
= - .  ( 5 )  

2 

By (5), the standard deviation should be set to half 
the Gaussian center-to-center sampling period so that 
the zero point of each Gaussian just touches the 
center of the next Gaussian as in Figure 1 l(c). Figure 
1 l(d-f) shows the results of coarse coding the image 
in Figure l l(b) in this way to reduce the original 
image of 128 x 128 pixels down to 16 x 16, 8 x 8, and 
4 x 4 pixels, respectively. 

A third method of coarse coding could also be 
envisioned: truncating an infinite series expansion of 
the image with orthogonal filters. This approach is 
computationally burdensome unless one computes 
only the first few terms of the expansion. If  sinusoidal 
filters are used and the series is truncated, then this 
method becomes equivalent to low pass filtering with 
a rectangular filter. Since a rectangular filter in the 
frequency domain is a sine function in the space 
domain, this approach is equivalent to first convol- 
ving the original image with a sine function. It would 
thus be desirable to use a smoother function with 
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FIGURE 11. Preprocessing summary. (e) Output of CORT-X 2 preprocessing. (b) Centered log-polar image. (c) Geusslan coarse coding 
pattern. (d-f) Coarse coding reduction from 128 × 128 plxels down to 16 x 16, 8 x 8, and 4 × 4 plxels. 

which to do the low pass filtering, but this is exactly 
what the Gaussian averaging of method (II) achieves. 

6. LEARNING RECOGNITION CATEGORIES 
USING FUZZY ARTMAP 

The Fuzzy ARTMAP architecture was used to learn 
2-D view categories from the coarse-coded invariant 
spectrum of the noise-suppressed boundary segmen- 
tations. Fuzzy ARTMAP was chosen because it can 
achieve stable fast incremental learning of categories 
in response to unlimited amounts of nonstationary 

input data, can run in both unsupervised and 
supervised modes, and in its supervised mode can fit 
the size, number, and shape of its categories to the 
input statistics. Fuzzy ARTMAP parameters were 
chosen to enable the network to learn the conditional 
probability of the true 3-D object given the selected 2- 
D view category. We utilized the simplified version of 
the Fuzzy ARTMAP network of Carpenter et al. 
(1992a) that was employed in Carpenter et al. 
(1992c). This circuit consists of a Fuzzy ART 
module (Carpenter et al., 1991) ARTa that learns 2- 
D view categories and a field of 3-D object category 
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FIGURE 12. Fuzzy ARTMAP architecture. Each preprocessed 2-D 
Input vector  a Is fed sequentially to the network as It becomes 
available. The inputs are complement coded which translorms 
the M-vec tor  a into the 2M-vector A = (a, a ©) at field F~o which is 
then fed Into the Input field F~I. A category node k Is chosen at F~: 
which reads out Its prediction to the Map Field via weights w: b. if 
the prediction Is dlsconfirmed, a match tracking process is 
Invoked In ART,. Match tracking raises the ART, vigilance Pa to 
Just above the match ratio Ix ' l / IA I. This triggers an ART, search 
which actlvatos either a d i f ferent  existing category, or a 
previously uncommitted category node at F~2. A l ter  the search 
process concludes, F 'm chooses the maximally actlvatod node 
In F "~ as the 3-D object  being viewed. 

output nodes b ~. The 2-D view and 3-D object 
category nodes are linked together by an associative 
m e m o r y / ~  that is called the Map Field (Figure 12). 
In supervised learning mode, Fuzzy ARTMAP 
receives a sequence of input pairs (ae, be) where b e 
is the correct 3-D object class given the analog 2-D 
view input pattern a e. The ARTa module classifies 
analog input vectors a e into categories and the Map 
Field makes associations from the ART~ categories to 
the outputs b e in /~.  This simplified architecture thus 
does not include an ARTb module for independently 
clustering the outputs b e into their own categories. 

Under supervised learning conditions, if a e is 
categorized into an ARTa category that predicts an 
incorrect output b e, then the mismatch between actual 
and predicted b e causes a memory search within ART~ 
via the match tracking mechanism. Match tracking 
raises the ARTa vigilance parameter p~ by the 
minimum amount that will trigger a memory 
search. In particular, Pa grows until it just exceeds 
the match value between the input vector a e and the 
prototype of the active ART~ category. Since low 
vigilance leads to learning of large, coarse categories 
and high vigilance leads to learning of small, fine 
categories, match tracking sacrifices the minimum 

amount of category compression that is needed to 
correct each predictive error. Memory search by 
match tracking continues until a pre-existing ARTa 
category that predicts the correct ARTb category is 
found, or a new ARTa category is chosen. 

After one of these conditions is satisfied, learning 
takes place both within ARTa and from the chosen 
ARTa category to the Map Field. Match tracking 
assures that predictive error is minimized while 
maintaining maximum generalization during fast or 
slow incremental learning conditions. Between 
learning trials, vigilance relaxes to its baseline 
vigilance ~a. In test mode, input vectors ap are 
classified by ARTa and the chosen category reads out 
its prediction to the Map Field. The index of the 
maximally activated node in the Map Field is taken 
to represent the predicted output class. 

The input vector ap is complement coded before it 
activates ARTo. This preprocessing step enables the 
network to code both input features that are critically 
present and input features that are critically absent. In 
response to an input vector ap, complement coding 
delivers an input vector Ap : (ae, a~) to ARTa, where 
a~ = 1 - ap. Complement coding also normalizes the 
total input Ap to ARTa such that IIApllt -- 1. It thereby 
prevents a category proliferation problem that could 
otherwise occur (Carpenter et al., 1991). Complement 
coding means intuitively that an input vector turns 
ON the cells corresponding to ap as it turns OFF the 
cells corresponding to a~, much as in the ON and OFF 
channels of the CORT-X 2 filter. The algorithm is 
mathematically defined in Appendix B. 

Fuzzy ARTMAP parameters were chosen to allow 
for on-line slow learning from ARTa F~ to the Map 
Field nodes. A maximal ARTa vigilance level, Pmox 
was introduced such that an error at the Map Field 
triggers match tracking only if match tracking leads 
to a vigilance po ~<Pmox. This bound prevents 
categories from becoming too small. In response to 
an error that would otherwise cause pa to exceed 
Pmox, learning takes place instead from the active 
node in ~2 to the Map Field. By setting the Map Field 
learning rate /~ab, baseline (p) and maximal (P,,ox) 
vigilance levels appropriately, weights from P~2 nodes 
to the Map Field may begin to approximate the 
conditional probability of the true class (the 3-D 
object) given the selected ~ category (the 2-D view 
category). A related approach to slow probability 
learning is described in Carpenter et al. (1993b). 

7. SIMULATION RESULTS 

A computer simulation was run on the airplane 
database using the CORT-X 2 parameters shown in 
Table 1. The database was processed twice by CORT- 
X 2, once with a large pair of large and small oriented 
filters and once with a smaller pair of large and small 
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filters. The large oriented filter pairs consisted of 
elliptical receptive fields with axes 16 x 8 and 10 x 5 
pixels. The small oriented filter pair consisted of 
oriented ellipses with axes 10 x 5 and 6 x 3 pixels. 
This was done so that recognition results could be 
compared when images were processed at different 
scales. Coarse coding was done with both simple 
spatial averaging and Gaussian averaging, reducing 
the image down to 16 x 16, 8 x 8, and 4 x 4 pixels 
from an original size of  128 x 128. The window for 
simple spatial averaging was square with a width 
twice the sampling period T; that is, a window 
centered at one pixel extended until it just touched its 
neighboring pixels. The standard deviation for 
Gaussian averaging was set to T/2, as discussed in 
Section 5. Training and testing sets were assembled as 
discussed in Section 2 with even numbered images 
forming the training set and odd numbered images 
forming the testing set. Except where explicitly 
mentioned, the simulations were run with the 
parameters shown in Tables 1 and 2. 

The data were presented to the network in two 
different ways: (1) 2-D views were presented in the 
"natural"  order in which they would appear if 
viewing the actual object in motion; (2) 2-D views 
were presented in random order. These two methods 
of data presentation were used to test whether 
presenting views in natural order helps recognition 

TABLE 1 
The Parameter Set Used for CORT-X 2 in the Simulations 

Parameter Description 

t%n c = 7.0 
etonC = 1.3 
~o#S = 3.333 
~ottS = 1.875 
D = B = I . 0  
B = D = 0 . 5  
S = 0 . 2  
A = 134 

Or1 = ~ 2  = 1.1 
/5'1 = / ~  = /3  = 0.003 
F = 0 . 5  
~ = 0.1 
# = 5 . 0  

= 0.004 
= 0.001 

~ / 8  
(a2, b2)~rge=(16,8) 
(a,,b,)~,ge=(10,5) 
(a2, b2)sma,=(lO;5) 
(al,bl)sma#=(6,3) 
G1 = 2a l /3  
G2 = 2a2/3 
U = 2a2/5 

0=3a2 /5  

On-center magnitude 
On-center standard deviation 
Off-surround magnitude 
Off-surround standard deviation 
Shunting values 
Shunting values 
Spontaneous activity level 
Shunting decay 

Threshold contrast parameters 
Threshold noise parameters 
Complex cell scaling constant 
Hypercomplex cell divisive offset 
Hypercomplex cell convolution 
scaling 
Hypercomplex cell threshold 
Long range cooperation threshold 

Oriented kernel orientation spacing 
Large set, large ellipse axis 
Large set, small ellipse axis 
Small set, large ellipse axis 
Small set, small ellipse axis 
Hypercomplex small kernel diameter 
Hypercomplex large kernel diameter 
Multiple scale interaction kernel 
diameter 
Long-range cooperation kernel 
length 
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TABLE 2 
The Fuzzy ARTMAP Parameter Set Used for the Simulations 

Parameter Description 

c~ = 0.6 
/3a = 1.0 
/5'ab = 1.0 
,5 = 0.1 
~raax = 1 .0  
D a b  = 1 . 0  

Fuzzy ART search order 
Fuzzy ART learning rate 
Map Field learning rate 
Baseline Fuzzy ART vigilance Pa 
Maximum AR'fa vigilance 
Map Field vigilance 

scores. Training in natural order consisted of 160 
runs of  from 1 to 50 views over each object. Training 
in random order consisted of  a series of  40 runs of 
100 training set views over each object. Recognition 
scores are taken as an average of  fifteen separate 
training-test cycles. 

7.1. Fast Learning Without Noise 

No clear advantage results from ordered presentation 
as compared to unordered presentation using noise- 
free data (C = 0) and fast learning, as shown by the 
results in Table 3. It can be seen that the smaller 
CORT-X 2 filter set resulted in better recognition 
performance overall and did better given more detail 
(less coarse coding). 

Figures 13 and 14 analyze an example of  a 
recognition error. In Figure 13, the left and middle 
columns show two different views of  an F-16 in 
sequence. The left view activated ART,, category 26 
which was correctly associated with F-16 in the Map 
Field. The middle F-16 image activated ART= 
category 28 which is associated with HK-1, resulting 

TABLE 3 
Recognition Results on a Noise-free Database (C = 0) CORT-X 2 

Filter Sizes Refer to the Size of the Oriented Receptive Field 
Filters 

Coarse code using spatial avg/ 
Gaussian avg 

CORT-X 2 Data 
filter set presentation 4 x 4 8 x 8 16 x 16 

Small Ordered 81.0/83.1 84.4/86.4 86.7/90.5 
Small Unordered 80.3/83.9 84.9/86.5 86.8/89.3 
Large Ordered 76.8/78.7 79.0/81.6 79.1/80.1 
Large Unordered 77.4/79.7 80.5/81.5 77.1/80.5 

CORT-X 2 was run twice using a larger and a smaller set of 
its large and small elliptical oriented filters. In the table, 
"large" refers to the run with the larger set of oriented 
ellipses with axes 16 x 8 and 10 x 5 pixels; "small" refers to 
the run with the smaller set of oriented ellipses with axes 
10 x 5 and 6 x 3 pixels. Views were presented either in 
natural order or in random order. Data was coarse coded 
from 128 x 128 down to 4 x 4, 8 x 8, or 16 x 16 using 
simple spatial averaging or Gaussian averaging. 
Recognition scores refer to the percent of 2-D views 
correctly associated with a 3-D object. 
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FIGURE 13. Analysis of an error in categorization I: The left and the middle column show two images of the F-16 Jet in sequence. The F-16 
image in the left column activated ARTe category 26 (~s)  which is associated with the Map Field node representing the class of F-16 
jets. The F-18 image in the middle column activated ARTa category 28 (88)  which is associated with the Map Field node representing 
the class of the HK-1. The right column shows one of the HK-1 Images that correctly activates ARTa category 28. Thus, the left end right 
images were correctly recognized, the middle F-16 image was incorrectly recognized as an HK-1. (e) Shows the raw jet images. (b) 
Shows the results of CORT-X 2 processing with the larger set of filters and parameters given in Table 1. (c) Shows the results alter a log- 
polar transform followed by centering. (d) Shows the Inverse log-polar transform of the images in (c) where the confusion of the middle 
image with the right image becomes more apparent. 

in a recognition error. The right column shows an 
HK-1 image typical of those which correctly activate 
ARTa category 28. Figure 13(a) shows the raw 
images, Figure 13(b) shows the images after CORT- 
X 2 filtering with the large scale set of filters, and 
Figure 13(c) shows the results of a centered, log-polar 
transform of the image. Figure 13(d) shows the 
inverse of the images in Figure 13(c) so that the 

confusion between the middle and the right columns 
becomes more apparen t~u i te  a bit of the two 
images overlap. 

The coarse coded representations of the invariant 
spectra show the confusion more clearly. Figure 14(a) 
shows the results of Gaussian coarse coding the log- 
polar images in Figure 13(c) followed by complement 
coding where the top half of each image is the normal 
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FIGURE 14. Analysis of an error in categorization I1: (a) Shows images from Figure 13(c) which have been Gausslan coarse coded down 
to 8 × 8 pixels and then complement ceded for input into the Fuzzy ARTMAP module. The bottom half of each image is the complement 
cede of the top half in accordance with eqn (32). (b) Shows the fuzzy minimum activations of the three inputs of columns (1-3) in (a) with 
the weight vector in column four, e.g. A0_s)Aw~2 e. Note that the Jeff input caused stronger activations (not shown) to category 26. The 
weights of ART, category 28 are shown at far right. The F-16 image input at left caused category 26 to be chosen which in turn correctly 
activates the F-16 node in the Map Field. The F-16 input in the middle image caused category 28 to be chosen which activates the node 
for the HK-1, causing an error in recognition in this case. An HK-1 input that correctly activates category 28 is shown in the third column. 
It can be seen that the second column and third column activations are a perfect match (are a fuzzy subset) with the weights W~:e in the 
fourth column, but the activation in the first column differs in the complement ceded response, in this figure, darker shades indicate 
higher activations. 

code and the bottom half is the complement code as 
in eqn (32). It can be seen again that the F-16 
(middle) and HK-1 (right) coarse-coded images are 
more similar to one another than to the F-16 (left) 
image. In these images, darker shades represent 
higher activities. In Figure 14(b), the weights of 
ARTa category 28 are shown at right. This category 
nodes for HK-1 in the Map Field, but was also 
activated by the F-16 image in the middle column. 
The three column images in Figure 14(b) show how 
each image in Figure 14(a) activates the weights of 
category 28 according to eqn (34), which computes a 
normalized minimum that is closely related to the 
measure of fuzzy subsethood (Carpenter et al., 
1992a). The patterns for the noncomplement coded 
input (top halves of Figure 14(b)) are all nearly 

identical, meaning that they all lie above the 
template in value. The problem shows up in the 
complement coded part of the input (bottom halves 
of Figure 14(b)) where the left image is clearly 
different from the nearly identical middle and 
rightmost images. This problem was caused by 
combining loss of too much detail by the larger set 
of CORT-X 2 filters with rotation by the log-polar 
transform of the HK-1 and the middle F-16 until 
they maximally overlapped. These coarse coded 
patterns were combined with the weights of the 
more general (larger fuzzy set) HK-1 category via 
the fuzzy AND operation [see eqn (34)]. The 
resulting values were not sufficiently different to 
choose different categories for the two coarse coded 
versions of the segmented and rotated spectra. 
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TABLE 4 
Percent of Additive White Noise Surviving Processing by CORT-X 2 and Coarse Coding 

% Noise surviving CORT-X 2 filtering and coarse coding: 

16 x 16 
8 x 8  
4 x 4  

16 x 16 
8 x 8  
4 x 4  

Large CORT-X 2 filters (16 x 8, 10 x 5) Small CORT-X 2 filters (10 x 5, 6 x 4) 
1.79 2.42 

After Gaussian coarse coding from 128 x 128 down to: 
0.33 0.34 
0.23 0.29 
0.19 0.26 

After spatial average coarse coding from 128 x 128 down to: 
0.40 0.40 
0.28 0.30 
0.21 0.28 

7.2. Fast Learning Simulation With Noise 

The system was next tested with noisy data using 
additive white noise scaled by C = 1.0; that is, each 
pixel could have noise added to it less than or 
equal to the value of  the maximum activity of  
pixels ( =  1.0) in the original image. Table 4 shows 
what percent of  the additive noise survives proces- 
sing by CORT-X 2 alone, and by CORT-X 2 and 
coarse coding together, for two different filter sets 
and three different coarse codings. The percent 
noise surviving these transformations was measured 
by the following formula: 

max/~(Ir + N)  - e(z)/l x 100, (6) 
v(x,v) L C J 

where I is the image, N is the noise image, ~ is the 
CORT-X 2 filter, C > 0 is the noise scaling parameter 
and (x ,y)  is the pixel index in the images. Table 4 
represents the average results from ten measurements 
using eqn (6). 

It can be seen that the combination of  CORT-X 
2 filtering followed by coarse coding is effective in 
reducing additive noise. Using a fast learning 
paradigm, the recognition results shown in Table 5 
were similar to those for the noise-free case in 
Table 3, except for some minor falling off of  
recognition scores at the lowest level of  coarse 

TABLE 5 
Recognition Results on Noisy Data (C = 1) with Fast Learning 

(l~',b = 1.0) 

Coarse code using spatial avg/ 
Gaussian avg 

CORT-X 2 Data 
filter set presentation 4 x 4 8 x 8 16 x 16 

Small Ordered 80.1/83.3 84.5/85.9 84.2/89.1 
Small Unordered 79.4/83.2 83.9/86.4 84.3/88.0 
Large Ordered 76.6/79.4 79.3/80.8 75.8/79.3 
Large Unordered 76.0/79.7 78.4/80.7 75.5/79.0 

These results differ little from the noise-free results in Table 
3 (no noise condition) with the exception of some 
consistent reduction in scores for the 16 x 16 coarse 
coding. 

coding (the 16 x 16 case). Less coarse coding has 
the same effect on noise as raising the cutoff 
frequency of  a low pass filter. Thus, as seen in 
Table 4, more noise gets through with less coarse 
coding, yielding slightly lower recognition perfor- 
mance. 

Table 6 shows the number of  nodes created by the 
network after training for the no-noise (left entry) 
and noise (right entry) results reported above. Noise 
causes a small increase in the number of categories 
formed on average as the network attempts to correct 
a greater number of  noise-induced errors during 
supervised training. 

TABLE 6 
Average Number of ART, Categories Formed During Training for the Simulations of Table 3 

(No-noise) and Table 5 (Noise) 

Coarse code using spatial avg/Gaussian avg 

CORT-X 2 Data 
filter set presentation 4 x 4 8 x 8 16 x 16 

Small Ordered [172,184]/[165, 169] [77,73]/[70, 73] [34, 33]/[33, 35] 
Small Unordered [191,198]/[175,179] [76,77]/[73,76] [34,35]/[35,36] 
Large Ordered [168,179]/[160,162] [71,68]/[67,71] [31,33]/[30,31] 
Large Unordered [183,192]/[169,174] [73, 75]/[69, 72] [32, 32]/[33, 32] 

The format in the table is as follows: [spatial avg]/[Gaussian avg] 
= [no - noise, no ise ] / [no-  noise, noise]. 
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TABLE 7 
Recogn#lon Resulta on Noisy Data (C = 1) with Slow Learning to 

the Map Field (~,b = 0.2, ~ = 0.95) 

Coarse code using spatial avg/ 
Gaussian avg 

CORT-X 2 Data 
filter set presentation 4 x 4 8 x 8 16 x 16 

Small Ordered 79.9/83.1 84.0/85.6 84.7/89.9 
Small Unordered 78.8/83.3 83.2/85.7 84.9/89.1 
Large Ordered 76.3/78.2 78.5/81.5 77.0/78.8 
Large Unordered 77.4/80.2 79.6/80.41 75.8/79.2 

Due to the low levels of noise surviving preprocessing, the 
recognition results here are not substantially different than 
those found using fast learning in noise in Table 5 except 
where noise was highest as in the 16 x 16 coarse coding. 
As noise increases, slow learning becomes more important 
for maintaining good recognition scores. 

7.3. Slow Learning Simulation With Noise 

For  the final set of  computer simulations, the 
network was run on the noisy data using slow 
learning to the Map Field ~ab = 0.2 in eqn (44)]. 
Fast  learning was still used within the ARTa module 
itself however ~ = 1.0 in eqn (43)]. In addition, a 
maximum vigilance level in ARTo (P,,,ox = 0.95) was 
set so that when match tracking due to error feedback 
attempts to create an ARTa category smaller than a 
given size, no new category forms and learning takes 
place for the current category instead. With noisy 
inputs, rather than continually making new cate- 
gories to correct for the noise, ART°  categories below 
a set prescribed size begin to learn the conditional 
probability of  the true class (the 3-D object) given the 
selected/IRTa category (the categorical 2-D view). 

Note that for Pma~ = 1.0, the results for slow 
learning and fast learning (Section 7.2) to the Map 
Field are equivalent. They are equivalent because, with 
Map Field vigilance set to p~b = 1.0 as in Table 2, the 
slightest mismatch at the Map Field will invoke match 
tracking and a new category will be created. The main 
difference between slow and fast learning using 
Pmox = 1.0 is that ARTo categories may learn their 
associations to nodes in the Map Field at different 

rates. The weights from an b~2 node in ARTa to the 
correct node in the Map Field will always have a value 
of  1.0, however, since any error  is corrected by forming 
a new category. Weights to the other nodes in the Map 
Field will be less than 1.0 (slow learning) or equal to 0.0 
(fast learning). Recognition results on the test set are 
not hereby affected, since a winner-take-all field 
chooses the maximum activation in the Map :Field 
as the recognition code via eqn (45) in Appendix B. 

To derive benefit from slow learning, in the case 
Pab = 1.0, we set ~m~x = 0.95. For  Pab = 1.0, we may 
then compare the results of  fast learning to the Map 
Field using ~,,,~x = 1.0 with the results of  slow 
learning to the Map Field using ~mox = 0.95. Table 
7 records the results using slow learning in large 
amplitude noise ( C =  1). Where noise levels after 
preprocessing were very small, the results were 
approximately the same as in the fast learning case 
shown in Table 5. Slow learning begins to help when 
the noise level increases, as with the 16 × 16 coarse 
coding. Table 8 records the average number of  
categories formed for the noisy data case using fast 
learning and slow learning. Slow learning with 
~ m ~ = 0 . 9 5 ,  caused approximately 10% fewer 
categories to be formed than with ~ma~ = 1.0, since 
noise-induced errors do not  always cause the 
formation of  a new category in the former case. 

8. EVIDENCE ACCUMULATION BY V O TING 
OR VIEW TRANSITIONS? 

For  a recognition system that can gather information 
from successive 2-D views, a key question is" given 
that an error occurs, how many successive errors will 
follow on average? For  the airplane data set as 
processed by VIEW~NET, it was found that the 
average overall length o f  an error sequence was 1.31 
2-D views with a standard deviation of  0.57 views. On 
average then, when an error occurs, collecting two 
more views will usually be sufficient to correct the 
error. Thus, as in Seibert and Waxman's system, 
better 3-D object predictions may be derived by 

TABLE 8 
Average Number of Nodes Formed During Training for the Simulations of Tables 5 (Noise 

with Fast Learning) and ? (Noise with Slow Learning) 

Coarse code using spatial avg/Gaussian avg 
CORT-X 2 Data 
filter set presentation 4 x 4 8 x 8 16 x 16 

Small Ordered [184, 165]/[169, 150] [73, 67]/[73, 66] [33, 30]/[35, 32] 
Small Unordered [198, 180]/[179, 163] [77, 69]/[76, 70] [35, 32]/[36, 33] 
Large Ordered [179,160]/[162, 147] [68,61]/[71,66] [33,30]/[31,29] 
Large Unordered [192, 175]/[174, 160] [75, 69]/[72, 67] [32, 30]/[32, 30] 

The format in the table is as follows: [spatial avg]/ [Gaussian avg] 
= [fast learning, slow learning]/[fast learning, slow learning]. It can be seen that 
slow learning reduced the number of nodes formed by approximately 10%. 
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accumulating evidence from 2-D views. This is 
accomplished in VIEWNET in perhaps the simplest 
way by using a working memory whose unordered 
states are updated whenever a new 2-D view category 
is chosen. The working memory is realized as an 
integration field (F~ ~t) between the Map Field (F) 
that codes 3-D object categories and the winner-take- 
all field (F wta) in Figure 12. The equation for the 
integrator field is updated each time ARTa chooses a 
new 2-D view category: 

xk J -~ , i , t~  + -Pi~t)[x~ ) , (7) 

~t is an integrator node for the kth 3-D where x k 
object, flint is the integration rate each time the 
equation is stepped, and x~ b is the kth Map Field 3-D 
object category. The integration node with the largest 
activation represents the prediction of  the 3-D object 
being viewed by the system. This maximum 
activation in the integration field is chosen by the 
winner-take-all field (F ~ta) as the network's predic- 
tion of  the 3-D object. 

Figure 15 shows a simulation of  the integrator field 
where eqn (7) is stepped once each time ARTa 
chooses a category. Three integrator nodes are 
shown along the ordinate, one for each of the 
airplanes. Grey shading in the figure shows which 
3-D object is "winning". In this simulation, the 3-D 
object being viewed is an F-16. The sequence of 
ARTa P2 categories that occurred is shown along the 
abscissa. The first two categories, 1 and 22 were in 
error since they were associated with the F-18 node in 
the Map Field. Categories 21 and 26 code correctly 
for the F-16 followed by category 48 which codes for 

F - 1 6  

o 
F - 1 8  

H K - 1  
1 2 2  2 1  

{ F - I g )  ( F - 1 8 )  ( F - 1 6 )  

I n t e g r a t o r  field,  t r u e  c lass  is F - 1 6 ,  
s e q u e n c e  s t a r t s  wi th  2 e r r o r s  

2 6  4 8  7 1  4 1  4 0  
(F -16)  ( H K - I )  (all) ( F - 1 6 )  ( F - 1 6 )  

A R T a  Ca t ego r i e s  

FIGURE 15. Simulation of the Integration field. The ordinate axis 
contains the integrator nodes representing the 3-D objects: F-16, 
F-18, and HK-1. The abscissa represents ART, F;: categories 
chosen by the preprecessed 2-D views being presented to 
VIEWNET. Black horizontal l ines denote activity of the 
corresponding Integrator node through time. Gray shading in 
the f igure Indicates the Integrator node with maximal activation 
which represents the VIEWNET decision as to which object is 
being presented. Categories 1 and 22 erroneously code for the 
F-10 here. Category 48 erroneously codes for  the HK-1. Category 
71 has not been chosen before and so selects all objects 
simultaneously. The rest of the categories cede correctly for the 
F-10. The Integration step size was set to ~lnt = 0.2. 

the HK-1. Next, category 71 is selected. It is an 
uncommitted category that has never been activated 
before. By default, it gives equal activation to all 
integrator nodes. The remaining categories code 
correctly for the F-I 6. 

Implementing evidence accumulation in this way is 
similar to voting for the 3-D object over a sequence of  
2-D view inputs, but with recent views being given 
more weight. For  1 >//~t /> 0, the closer flint is to 
one, the more weight is given to recent votes. To 
measure performance on the test set with voting, the 
integrator field was allowed to collect first two (for 
the two votes score), or three (for the three votes 
score) activations before VIEWNET's  recognition 
decision was recorded. The integrator field was then 
cleared and two or three more activations were again 
collected before the next decision was made. This 
process was repeated until 1000 views had been seen 
in the test set for each object at which time the 
percent correct recognition score was computed. 

Recognition results with voting 
G a u s s i a n  c o a r s e  c o d i n g :  
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Number of votes 

Spatial average coarse coding: 
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Number of votes 
. . . . . . . .  Processed with CORT-X small scale filters 
- -  P r o c e s s e d  wi th  C O R T - X  large  scale  f i l ters  

FIGURE 16. Recognition results for voting with an integration 
rate of ~lr~ = 0.2. The graphs show the recognition results after 
gathering evidence over one, two and three 2-D views for data 
preprocessed using large (solid line) and small (dotted line) 
scale CORT-X 2 filters. Results from beth Gausalan and spatial 
averaging coarse ceding methods are shown where the images 
were reduced from 128 x 128 down to 4 x 4, 8 x 8 and 16 x 16 
pixels. The circles and squares represent recognition scores 
resulting from using view transit ions as discussed in Section 8.1. 
The black circles represent the recognition scores using view 
transitions for preprocessing with the large scale CORT-X 2 
filters, the black squares represent recognition scores using 
view transitions for  preprocessing with small scale CORT-X 2 
filters. 
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Figure 16 shows the average recognition scores for 
voting with/~/,t = 0.2 over one, two, and three views 
under CORT-X 2 preprocessing with large- and 
small-scale filter sets and coarse coding to 4 x 4, 
8 x 8 and 16 x 16 pixels using both Gaussian and 
spatial averaging. Voting over three frames improves 
recognition results by an average of 10% with the 
best results being 98.5% correct for small-scale 
filtered, 16 x 16 Gaussian coarse-coded data. The 
black dots and squares in the figure show recognition 
results from using 2-D view transition information as 
explained below. 

8 . 1 .  D o  View Transitions Lead to Better Recognition? 

The advantage of voting over using 2-D view 
transitions is that, given N 2-D views, the O(N 2) 
cost for learning view transitions is avoided. To 
compare how well voting over view sequences does 
relative to using view transitions, an architecture was 
simulated that incorporates view transition informa- 
tion into 3-D object recognition. Figure 17 shows 

View Sequence  Recogn i t i on  A r c h i t e c t u r e  
ARTs 
I I WS. m F m "I Teach 3D object 

ri i J ~ x  m ~ b [ : ~ s l  , ~  ! 
i-2 r ., 

IF0[ " ' "FS" "" R = (r,r~ "Lw~J ~r xs ' ~ [' . . . . . .  --q - -~- - - -  J 

/ 
Working ] 2 items Memory 

I at  a time 
. . . . . . .  , 

:F:I Y" I " I 
? ~ h '  match track 

t t ir°l A~(a"aC) ~ I  

/ 

I a i 
2D view input 

FIGURE 17. VIEWNET 2 architecture modified to learn 3-D object 
categories from 2-D view category sequences that are 
sequen§ally stored In working memory. ART, categorizes 2-D 
views which are then Input into a working memory called STORE 
that encodes the order In which Items entered memory in an 
activation gredienL The working memory only keeps two Items 
active In a spatial pattern where activation levels cede for order 
of Item entry into the memory. In this way, two different 
activations in working memory represent a transition from one 
ART, categorical 2-D view to another. The pattern of activations 
is learned by ART, which takes the working memory activations 
as Input after complement coding them. ART, then associates its 
learned categorical 2-D view transitions with the 3-D object 
represented in the Map Field. This architecture was used to 
compare using view lransitions versus using evidence accumu- 
lation over two views for 3-D object recognition. 

such a modified VIEWNET 2 architecture in which a 
working memory is installed above the ARTa  module, 
and another Fuzzy ART module, ARTs ,  categorizes 
the sequential information represented by the work- 
ing memory and makes associations to 3-D object 
nodes in the Map Field. 

The working memory that we use transforms the 
temporal sequence of categorical activations f in 
A R T a  layer ~ into an evolving spatial pattern of 
activation. This type of working memory does not 
explicitly code view transitions. Rather, it explicitly 
codes the 2-D view categories in terms of which 
working memory nodes are active (the "item" 
information), and implicitly codes view transitions 
in terms of their relative activity (the "order" 
information). Such "item and order" working 
memories are suggested by a variety of cognitive 
data. Grossberg (1978a, b) developed an explanation 
of such data as emergent properties of a design that 
enables a self-organizing feature map or ART system 
to stably learn to categorize item and order 
information as new items continue to be stored. 
Bradski et al. (1992, 1994) showed how to realize such 
a working memory design in a class of neural 
networks called STORE (Sustained Temporal Order 
REcurrent) models. 

In the present application, the model is designed to 
store only two active views at a time to simulate 
encoding of the temporally ordered transition from 
one categorical ARTa  view to another. The following 
system of STORE model equations implements this 
design goal 

dx---2= [ A A + y i - x i x - B x i ] L  
dt 

(8) 

and 

dY---2~= [x,h[x,-r] -y,lr ,  
dt 

(9) 

where xi are Yi are activities of nodes in the bottom 
and top layers, respectively, of the STORE working 
memory, li is the ith input into the working memory, 
x -- ~'~k Xk, I -- ~ k  lk, 1 c ~ 1 - L and h[xi - r ' ]  = 1 if 
xi - F > 0, else h[xi - r ]  = 0. TO keep only two items 
active at a time, parameters were set to A = 1.1, 
B = 0.5, and F = 0.3. 

Fuzzy ART module A R T s  receives inputs from the 
STORE model and makes associations to the Map 
Field nodes, which represent the possible 3-D objects 
being viewed. Match tracking operates only on 
ARTa.  The vigilance in A R T s  was set to 1.0 so that 
it learned each pattern of view transitions represented 
in the STORE model. To make A R T a  categories 
more general, the maximum possible ARTa  vigilance 
was limited to ~,,,ax = 0.95 during match tracking. In 
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this way, the architecture used sequences of  length 
two for recognition, thereby incurring the possible 
cost of  generating up to O(N 2) sequence recognition 
nodes in ARTs. 

In Figure 16, the black circles represent the 
recognition scores using view transitions for pre- 
processing with the large scale CORT-X 2 filters, the 
black squares represent recognition scores using view 
transitions for preprocessing with small scale CORT- 
X 2 filters. Comparing recognition scores from using 
view transitions with those using evidence accumula- 
tion or voting over two views, it can be seen that the 
results are similar. Since evidence accumulation does 
not  require the temporal order information encoded 
by ARTs, evidence accumulation over view transi- 
tions seems preferable in the present application. 

This conclusion should not be construed as 
implying that temporal order information is never 
useful in 3-D object recognition. Indeed, it is known 
from cognitive data that working memories which 
encode temporal order information occur in the 
brain. Whether an explicit encoding of  order 
information, as in the Seibert-Waxman model, or 
an implicit encoding, as in a STORE model, are 
preferable remains to be seen in those situations 
where the tradeoff between preprocessor, categorizer, 
and working memory does require temporal order 
information for enhanced performance. 

9. DISCUSSION AND GENERALIZATION TO  
IMAGE UNDERSTANDING 

Using the smaller set of  CORT-X 2 filters, a 3-D 
object recognition rate of  approximately 90% may be 
achieved from single 2-D views alone without 
recourse to more elaborate methods of  generating 
aspect graph models of  the 3-D objects. When 
evidence integration or voting over an unordered 
sequence of  views is added, recognition rates reach 
98.5% within three views. Voting over two views did 
as well as using view transitions on this database, but 
without the drawback of needing to learn O(N 2) view 
transitions given N 2-D views. In addition, it was 
shown that the above recognition rates can be 
maintained even in high noise conditions using the 
preprocessing methods described here. 

These high recognition rates are achieved by using 
a different preprocessor and supervised learning to 
create more optimal category boundaries than in the 
Seibert and Waxman studies. As reported in their 
discussion of  results in Seibert and Waxman (1992), 
their unsupervised clustering of  coarse-coded max- 
imal curvature data created general categories that 
unambiguously selected for the correct 3-D object 
only 25% of  the time. In so doing, their network 
created 41 categories during training. In order to 
overcome the ambiguity of  their general ART  2 

categories, Seibert and Waxman used explicitly coded 
2-D view category transitions to help identify the 3-D 
objects. 

Using this approach, the network must be able to 
represent possible cross-correlations between every 
categorical 2-D view in the view transition matrices, 
one for each object, even if no correlations are 
eventually found between some of  the categories. 
This is because a view transition matrix represents a 
definite network structure that explicitly codes the 
particular sequence of  view transitions that ends up 
coding a prescribed 3-D object. Thus, such an 
algorithm is committed to represent all possible 
correlations between each node of  the 41 2-D view 
categories. The total number of  correlations is then 
( 4 1 2 - 4 1 ) / / 2 = 8 2 0 ,  since transitions and their 
reverse are equivalent and there are no self- 
transitions, this is done for each object, then a total 
of  820 x 3 = 2460 correlation matrices would be 
needed. Add to this the 41 A RT 2 categories and 
up to 2501 activations could be needed to recognize 
the three jets. As seen in Table 6, VIEWNET needs 
only 35 nodes to categorize this database since, by 
using unordered voting, it avoids the O(N 2) penalty 
for using view transition information given N 2-D 
views. If  a version of VIEWNET were used that 
incorporates a STORE working memory, then ART 
sequence recognition nodes would also be needed. 
However, these nodes do not  need to be prewired in 
the network. They are self-organized by learning. 
Only as many sequences as are actually used for 
prediction would need to be represented as sequence 
nodes in ARTs. 

A number of enhancements of  the VIEWNET 
family of  architectures may be contemplated. For  
example, the Fuzzy A R T M A P  architecture computes 
goodness of  fit information that may be used to 
enhance its power in future applications. In 
particular, the match or choice equation, (37) or 
(34), respectively, in Appendix B may be used to 
measure the quality of  the recognition. If  VIEWNET 
recognizes a 3-D object, but its ARTa category 
prototype provides a poor  fit to the input vector, 
then the goodness of fit information could be used to 
cause VIEWNET to collect more data before a final 
recognition decision is made. Likewise, if VIEWNET 
is embedded in an active vision system, then a poorly 
fitting view could be used to trigger the system to 
move its focus of  attention to get a better perspective. 

VIEWNET architectures may also be upgraded in 
several ways to handle more complex scene under- 
standing problems. These enhancements could 
include: 

(a) Boundary Segmentation. A more powerful 
boundary segrnenter than a CORT-X filter, such as 
a BCS model (as in Grossberg et al., 1995), can 
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much sparser and noisier images. The BCS feedback 
network typically converges in a few iterations of 
feedback, so processing speed would not be impaired 
in appropriate hardware. 

(b) Surface Representation. A system complementary 
to the BCS, called the Feature Contour System, or 
FCS, computes filled-in surface representations of a 
scene (Arrington, 1994; Grossberg and Todorovir, 
1988). These surface representations can also be used 
to separate figures from their backgrounds (Gross- 
berg, 1994; Grossberg and Wyse, 1991, 1992). Fusion 
of boundary and surface representations can, in 
principle, achieve better recognition than boundary 
segmentation alone in cases where surface properties, 
such as color and relative contrast, are important. See 
Grossberg (1994) for a review of human psychophy- 
sical data about such data fusion. 

(c) Fush)n ARTMAP.  In order to categorize data 
from multiple boundary and surface representations, 
a generalization of Fuzzy ARTMAP, called Fusion 
ARTMAP, can be used (Asfour, 1994, 1995; Asfour 
et al., 1995; Asfour et al., 1993a, b). This architecture 
is designed to autonomously search for that 
combination of input channels that correctly 
classifies each output prediction. 

(d) What-and-Where Filter. In order to more 
effectively utilize the form information within the 
surface representation, a different invariant filter than 
the log polar filter can be used; for example, a What- 
and-Where filter (Carpenter et al., 1992b, 1993a). The 
output of log-polar-Fourier preprocessing is an 
invariant representation, but one that has lost 
information about the form of the object, as well as 
about the object's place in a larger scene. The What- 
and-Where filter is a filter-based invariant transform 
system in which information about the position, size, 
and orientation of the object is retained, and no form 
information is lost. 

The strategy leading to this system is suggested by 
the brain's use of parallel streams in the visual cortex 
to compute where an object is and what the object is 
(Goodale & Milner, 1992; Mishkin et al., 1983; 
Ungerleider and Mishkin, 1982). The What-and- 
Where filter consists of a Where channel that 
computes the position, orientation, and size of a 
target figure, and a What channel that uses the 
information provided by the Where channel to 
encode an invariant object representation. Subse- 
quent object recognition is based upon output from 
the What channel. The Where channel includes banks 
of spatial filters of varying sizes and orientations. 
Competition between filters yields a spatial map 
whose cell activations multiplex a representation of 
the position, orientation, and size of the figure. This 

information is utilized within the What channel to 
generate an invariant object representation. That is, 
the figure is transformed so that it is centered at the 
origin with canonical size and horizontal orientation. 

(e) Image Understanding. The What-and-Where filter 
can be used to generalize VIEWNET for image 
understanding. The Where filter defines a spatial map 
whose nodes multiplex information about the 
position, size, and orientation of every figure in an 
image. In particular, activation of a node, or cell 
population, in this map implicitly represents all three 
spatial properties of the corresponding image figure. 
The Where filter nodes are thus distinct channels that 
each process at most one figure. Each channel, in 
turn, inputs to its own What invariant filter and 
recognition network. Thus the Where map of each 
figure is linked, or bound, to the corresponding What 
recognition of the figure, even though the What 
recognition strips the figures of its spatially variant 
properties. Due to this linkage, the Where spatial 
map and the What recognition categories can be 
combined into a total input vector in a more general 
image interpretation network (Figure 18). Such a 
network learns to combine information about the 
identities of each object with information about the 
objects' spatial relationships to derive a more global 
interpretation of scenic meaning. 

Fusion ARTMAP is being designed to handle just 
such problems of multidimensional data fusion, 
classification, and prediction. In this image under- 
standing application, Fusion ARTMAP would be 
used to learn those combinations of spatial and visual 
information that predict a desired image interpreta- 

Image 
Interpretation 

~ e - ~  WHAT 
Recognition 
Categories 

O , ° e  WHERE 
Spatial 
Map 

FIGURE 18. Reciprocal Interactions of a Where spatial map and 
What recognition categories with an image interpretation 
network can learn scenic interpreteUons that combine informa- 
tion about mulUple objects and their spatial relations. Fusion 
ARTMAP can be used for supervised learning of those 
combinations of object categories and spatial relations that 
reliably predict a prescribed scenic interpretation. [Reprinted 
with permission from Carpenter et el. (1993a).1 
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tion. From this broader computational perspective, 
VIEWNET 1 can be viewed as perhaps the simplest 
example of  a family of self-organizing neural 
architectures for both 3-D object recognition and 
image understanding. 
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A P P E N D I X  A: CORT-X 2 EQUATIONS 

The equations for the CORT-X 2 filter as described in Section 3 are 
discussed below. Figure 5(a) shows the model flow chart and Figure 
5(b) shows the kernels used in the CORT-X 2 filter algorithm. 
Table 1 summarizes the parameters used in the simulations. 

A.1. Step 1. Discoun t ing  the I l l uminan t  

The ID cross-sections of the on and off kernels are shown in Figure 
5(a). 

A.I.I. ON-C and OFF-C Network. The activation x# at node ~)ij at 
position (i,j) obeys the shunting on-center off off-surround 
equation 

d 
~ x 0 = -Axq + ( B - xO)C q - (x 0 + D)Eij, (10) 

and xe obeys the off-center, on-surround equation 

d 
~,j = -A(#,j-s) + (n-~,j)e,j - (~o +n)t.j (11) 

where Ce, C~j, Eij,/~ij are discrete convolutions of the input with 
Gaussian kernels of the form 

K 0 = E I p , K m o  (12) 
P,q 

with 

x,~, = ,, exp{-~ -~ log 2[0, - i) ~ + (q -~3~] }. (13) 

The on-center kernel of 2ij is the off-surround kernel of xij, and the 
off-surround kernel of 2q is the on-center kernel of xe._Then 
C'~ = Eo, Eo = Ci/. Also in eqns (10) and (11),/~ = D and D = B. 
At equilibrium in the ON-C network 

X i j =  (P'q) (14) 
A + ~ (c,,~ + E,,o)I,,, 

o~,q) 

and in the OFF-C network. 

As + ~ (nE.~,,. - n c . . 3 ~ . ,  

gij = (pa) (15) 
A + ~ (c,.o + E,.o)t,~ 

O,,q) 

A.2. Step 2. CORT-X 2 Filter 

Oriented receptive fields are elliptical as shown in Figure 5(b) so 
that 

f x 2 
~- + ~- = 1, (16) 

where a, is the major axis and b, is the minor axis with a, ~b,. Two 
sizes of receptive fields were used, indexed by the subscript s with 
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1 = small and 2=large  scale. Orientations were chosen at angles 
spaced every lr/8 degrees indexed below by the subscript k. 

Simple Cells. The output o f  the pair o f  simple cells o f  scale s with 
activation variable x = x 0 and receptive field orientation k is 
defined by 

SjL(i,j,k) = max[L,(x,k) - a,R,(x,k) - B,, O] (17) 

a n d  

S, tc(i,j,k) = max[R,(x,k ) - a,L,(x,k) - £,0], (18) 

where L,(x,k)  and R,(x,k) are the image inputs to the left- and 
right-oriented receptive fields: 

E XpqWpq 
L,(x,k) = (t,.,t)¢~,)'"" 

wpq 
~¢l)El,(ij,k) 

(19) 

and 

XpqWpq 
R,(x. k) = O,.q)e,.(i.il,) 

O,a)er.(U~) 

(20) 

and wpq is a weighting factor proportional to the area of  a cell 
covered by the receptive field. L and R in S,L and S,R indicate that 
each receptive field is sensitive to the opposite direction-of-contrast 
from its companion. The ON and OFF  networks have separate sets 
o f  simple cells with the ON simple cells denoted by ST, L and Sj',R, and 
the O F F  simple cells denoted by S;-,L and SJ-,R. 

Complex Cells. The complex cell output Cs(x, k) is defined by 

C~(i,j,k) = F[~L(i,j,k ) + S~a(i,j,k ) + S~L(i,j,k ) + S~a(i,j,k)]. (21) 

These cells are sensitive to the spatial scale s and amount-of- 
contrast x with orientation k, but are insensitive to direction-of- 
contrast. 

Hypercomplex Cells (First Competitive Stage). The hypercomplex 
cells Ds(i,j, k) receive input from the spatial competition among the 
complex cells 

D~(i,j, k) = max C,(i,j,k) - % 0]. 
c + # E E C,(p,q,m)G,(p,q,i,j,k) 

m y 

(22) 

The circular oriented competition kernel G,(p,q, i , j ,k) shown in 
Figure 5(b) is normalized such that 

EG,(p,q,i,j,k) = 1. (23) 
P , q  

Partial cells at the kernel periphery are weighted in proportion to 
their area (taken to be one square unit). Grey areas in Figure 5(b) 
are inhibitory. Cells with centers within the one unit wide band 
through the middle of the kernel do not contribute to the 
inhibition. In our simulations, the small and large scale kernels 
were 2/3 the diameter of  the small and large scale major  axes of  the 
elliptical filters, respectively. 

Hypercomplex Cells (Second Competitive Stage). Hypercomplex 
cells Ds(i,j) compute the competition among oriented activities 
Ds(i,j,k) at each position. This process is simplified as a winner- 
take-all process 

D, (i,3) = D2 (i,j, I0 = mksx D, (i,j, k), (24) 

where K denotes the orientation of  the maximally activated cell. 

Multiple Scale Interaction. The interaction between the small and 
large scales is defined by 

BI2 (i , j)  = D1 (i,J~ E D2 (p, q) U(p, q, i,j), (25) 
P , q  

where the unoriented excitatory kernel U(p, q, i,j) is circular as in 
Figure 5(b) and is normalized so that 

E U(p, q, i,j) = 1. (26) 
P , q  

In our simulations, U(p, q, i,j) had a diameter 2/5 as large as the 
major axis o f  the large-scale elliptical filter. Cells covered by the 
kernel contribute to the excitation to the extent that their area is 
covered by the kernel. The smaller kernel D1 (i,j) in (25) localizes 
boundary segments and suppresses noise near the boundary, while 
the larger kernel D2(p, q) suppresses noise far from the boundary. 

Boundary Completion. The large detectors D2(i,j), are capable of  
responding at locations where pixel signal strength has been 
reduced by noise. Such boundary signals may, however, be poorly 
localized. To overcome this tradeoff between boundary completion 
and localization, large-scale cells interact cooperatively as 

B2(i,j)= D2(i,j)max[p~.qD2(p,q,K)O(p,q,i,j,K)-~5, 0]. (27) 

Kernel O(y,x,k)  is defined by the one-unit-wide white strips in 
Figure 5(b). Cells with centers lying within the one unit wide band 
contribute to the cooperative process. The kernel is normalized so 
that 

E O(p, q, i,j, k) = I. (28) 
(o,q) m kernel 

In the simulations, the length of  the kernel is 3/5 as long as the 
major axis of  the large-scale ellipse. 

CORT-X 2 Output. The final output of  the CORT-X 2 filter is the 
sum of  the multiple scale interaction and the cooperative process: 

B(i,j) = Bl2(i,j) + B2(i,j). (29) 

A P P E N D I X  B: F U Z Z Y  ARTMAP EQUATIONS 

In the following, all architectural references are to Figure 12. 
Figure 19 provides a flow chart describing the operation of  the 
architecture during the presentation of  input vector a to Fuzzy 
ART module ART°. Three parameters determine Fuzzy ART 
dynamics: a choice parameter c~ > 0; a learning rate parameter 
Ba E [0, 1]; and a vigilance parameter po C [0, 1]. 

Input Preprocessing. lnput  A into a Fuzzy ART module is 
normalized by preprocessing the vector A as 
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FIGURE 19. Flow-chart describing the operation of Fuzzy ARTMAP during the presentation of input vector a to Fuzzy ART module ART. 
and the subsequent processing that causes the network to predict the 3-D object represented by the Input 2-D view. 

[A^~[ A = ]-~, (30) ~(A) : ~ ,  (34) 

where the norm operator, [*l is defined as 

M 

[a] -= ~ ]at]- (31) 
k = l  

Inputs are then complement coded by setting A = (a, a c) where 

--= 1 - ak. (32) 

where w~j is the template belonging to the jth b~2 node, and the 
operator A is defined as the fuzzy AND operation 

(pAq)k=--min(pkqk) (35) 

for M-dimensional vectors p and q (Zadeh, 1965). If more than one 
is maximal, the category j with the smallest index is chosen. 

When category J is chosen, the node representing that category has 
activation y~ = 1. y~ = 0 for j ~ J. The F~ activity vector x ° obeys 

Category Choice. Category choice is determined by choosing the 
maximum choice function ~ ,  

7~l = max{ 7~/ : j =  l . . . . .  N} (33) 

where N is the number of nodes in ~ ,  and ~ is defined by 

x~ = [ A if F~2 is inactive 
(36) L A A w~ if the Jth ~ node is chosen. 

Match Resonance and Mismatch Reset. A match and resonance are 
said to occur if 

IA^~I 
IAI >~P°' (37) 



1080 G. Bradski and S. Grossberg 

Otherwise, a mismatch reset occurs. When a reset occurs, the 
currently active node J is set to zero for the duration of  the current 
input presentation and a new maximal node is found until the 
chosen node J satisfies eqn (37). 

Map Field. The Map Field F ~ becomes active whenever one or 
both of ARTo or the supervised input b is active. Supervised inputs 
bk are in one-to-one correspondence with nodes in the Map Field. 
If node J o f  ~ is active, then its weights w f  activate F ~ .  If  a 

~ input bk becomes active, it directly activates P ~  node 
t an activation level o f  bk = 1. The F "° activity vector x ~ 

obeys 

f b A w~ if the Jth F~ node is active and b is active, 
x ~ =  / i ~  if the Jth F~ node is active and b is inactive, (38) 

if F~z is inactive and b is active, 
if F~ and b are inactive. 

Match Tracking. At the start o f  an input presentation to ART°, the 
vigilance parameter is set to a baseline vigilance po = ~. Parameter 
p~, is the Map Field vigilance parameter with 0 ~<pob ~< 1. If  

Ix~'l < Poblbl, (39) 

then subject to 

P° <-- P . . . .  (40)  

match tracking causes po to be increased so that 

IA^~I 
p° : - - ] X T - -  + ~, (40 

where ~ is a small positive constant. If  match tracking causes ¢qn 
(40) to be violated, then match tracking is inhibited and learning 
takes place. If  after match tracking, eqn (40) is still satisfied, then a 
new search cycle in ART° leads to a different F [  node J with 

IA ix w~l _> PolAI and Ib ̂  w~l ~>P°blbl, (42) 

or, if no such node exists, ART° is shut down until it next gets an 
input. 

Learning. Once search ends and a winning node ~ is chosen in 
ARIa, the Fuzzy A R T  weight vector w~ of  the winning node is 
updated according to 

anew aoM 
(w,) =/~,(AA(w~)°~)+(I-/~o)(Wy) , (43) 

where w~(0) = 1. The weight vectors w~, j # J of  non-winning 
nodes are not  updated. 
The weight vectors from the Fuzzy ART modules to the Map Field 
are updated according to 

{ /~obh[X'ffk ] +(1--/~ob)(w~jt) °u i f j=J  

1 initially, 

(44) 

where h[x~] = l if x~t > 0, else h[x~k ] = 0. When /~ob = 1, Fuzzy 
ARTMAP is said to be in fast learning mode; when 0 ~<~ob < 1, 
Fuzzy A R T M A P  is in slow learning mode. 

Winner-take-all. A choice, or winner-take-all network F ~ta sits 
above the Map Field/;,t , .  A winner-take-all field is needed above 
the Map Field when slow learning has been in effect from ART° to 
the Map Field because it is then possible that a chosen ~ node may 
read out activation to more than one node in the Map Field during 
test mode. 

The winner-take-all field is implemented algorithmically as 

xTt° = ( 01 otherwise.ifJ = argmaxk[x~k ]' (45) 

Since nodes in F "° are in one-to-one correspondence with nodes in 
the supervized field F b, the winning node in F "° represents 
VIEWNET's  choice of  the 3-D object given the single 2-D view 
that the network has experienced. When evidence accumulation is 
used, a working memory, as in Section 8, interpolates the Map 
Field and the winner-take-all 3-D object recognition field. 


