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Abstract:  

Auditory signals of speech are speaker-dependent, but representations of language meaning are 
speaker-independent. The transformation from speaker-dependent to speaker-independent 
language representations enables speech to be learned and understood from different speakers.  A 
neural model is presented that performs speaker normalization to generate a pitch-independent 
representation of speech sounds, while also preserving information about speaker identity. This 
speaker-invariant representation is categorized into unitized speech items, which input to 
sequential working memories whose distributed patterns can be categorized, or chunked, into 
syllable and word representations. The proposed model fits into an emerging model of auditory 
streaming and speech categorization.  The auditory streaming and speaker normalization parts of 
the model both use multiple strip representations and asymmetric competitive circuits, thereby 
suggesting that these two circuits arose from similar neural designs.  The normalized speech 
items are rapidly categorized and stably remembered by Adaptive Resonance Theory circuits. 
Simulations use synthesized steady-state vowels from the Peterson and Barney [J. Acoust. Soc. 
Am. 24, 175-184 (1952)] vowel database and achieve accuracy rates similar to those achieved by 
human listeners. These results are compared to behavioral data and other speaker normalization 
models.   
 
 
PACS numbers: 43.71.An, 43.71.Es, 43.72.Bs 
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I. INTRODUCTION: SPEECH LEARNING, NORMALIZATION, AND IMITATION  
Fundamental variations in speech exist both between speakers and within the speech of a single 
speaker.  Intra-speaker variability is mainly concerned with the different pronunciations of the 
same phoneme by a single speaker.  These variances can result from differences in phonemic 
context, including coarticulation effects, accent, and the emotions or stress level of the speaker.  
Inter-speaker variability concerns the variation of speech across speakers and these variations 
generally have a much larger effect on perception (Nearey, 1989).  Despite this variability, a 
listener is able to identify and understand speech spoken by different speakers on the first 
encounter with a speaker and on nearly the first utterance.  It seems that, not only does the 
listener’s brain learn to store a speaker-invariant representation of speech, but that somehow the 
speech encountered is transformed, or speaker normalized, into a speaker-invariant 
representation for the purpose of understanding.  
 The process of speaker normalization enables a baby to begin to imitate sounds from 
adult speakers, notably parents whose spoken frequencies differ significantly from those that the 
baby can babble. A circular reaction from endogenously babbled to heard sounds enables a baby 
to learn a map between the auditory representations of its own heard babbled sounds to the motor 
commands that caused them (Piaget, 1963; Grossberg, 1978; Cohen et al., 1988; Bullock et al., 
1993; Guenther, 1995; Guenther et al., 2006). Speaker normalization enables sounds from adult 
caretakers to be filtered by this learned map and to thereby enable the baby to begin to imitate 
and refine heard sounds in its own language productions. Learning in such an imitative map 
needs to remain active for many years in order to enable an individual’s changing voice through 
puberty and adulthood to continue to activate and update this map.  

Speaker normalization also enables language meanings that were learned from one 
teacher’s voice to be readily understood when uttered by another speaker. More generally, 
speaker normalization helps the brain to overcome a combinatorial explosion that would 
otherwise occur if the brain needed to store every instance of every speaker utterance in order to 
understand language meaning.  

A similar problem of combinatorial explosion is overcome by the visual cortex as it 
learns to recognize visually perceived objects in the world. In vision, object category 
representations are learned that are relatively insensitive to object size, location, and orientation 
on the retina (Bradski and Grossberg, 1995; Ito et al., 1995). Such invariance is built up across 
several processing stages, with invariance only appearing in the inferotemporal cortex and 
beyond. Likewise, speaker normalization is just one stage in the development of  rate- and 
speaker-independent representations of language meaning. For example, Boardman et al. (1999) 
and Grossberg et al. (1997) have modeled how rate-invariance may develop across several 
processing stages. 

Although speaker normalization and rate-invariance are important for learning to speak 
and understand language, humans and other animals are also exquisitely sensitive to the voice 
quality and prosody of individual speakers. A similar dichotomy occurs during visual learning 
and recognition, where positionally-invariant object recognition categories coexist with cortical 
representations that enable manipulation of objects in space. In both audition and vision, this is 
accomplished through interactions across What and Where cortical processing streams 
(Ungerleider and Mishkin, 1982; Goodale and Milner, 1992; Hickok and Poeppel, 2007; Fazl, 
Grossberg, and Mingolla, 2008). Such interactions have been predicted to compute 
computationally complementary properties (Grossberg, 2000): The properties needed to compute 
one such property prevent a complementary property from being computed in the same cortical 
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processing stream, and conversely. Interactions between cortical processing streams that 
compute such complementary properties enable them to overcome their complementary 
deficiencies and thus to generate adaptive and creative behaviors. Thus, the present article’s 
focus on speaker normalization is in no way contradicted by the fact that the brain can process 
many individual features of speaker identity and prosody. In fact, one property of the present 
speaker normalization model is that, while it generates a speaker-independent representation, it 
also marks the speaker-dependent frequencies of the selected speaker from which speaker-
dependent properties can be computed in a complementary processing stream. 
 Another important issue concerns the specificity or generality of speaker-independent 
language categories. In certain environments, it is essential to distinguish fine differences 
between speaker utterances that can change language meaning across speakers. In other 
environments, considerable variability across utterances can lead to a similar meaning. Our 
model clarifies how such variability can naturally emerge during incremental learning of 
individual language exemplars. Thus, the fact that humans and animals can sometimes 
distinguish individual speech exemplars does not imply that language learning is exemplar 
learning, with all the problems of combinatorial explosion and biologically-implausible 
exhaustive search that such a model can create. Recognition categories can, instead, be learned in 
a way that tracks the task demands and statistics of each unique environment and that seems to 
conjointly maximize category generality and minimize predictive error. Neurophysiological data 
in the visual cortex support this viewpoint (Spitzer et al., 1988; Zoccolan et al., 2007) in a 
manner predicted by neural models (Carpenter and Grossberg, 1987, 1991; Carpenter, 1997; 
Grossberg, 1999). Learned category prototypes in such models can represent either individual 
exemplars or abstract knowledge, as each learning situation uniquely demands. Vowel category 
simulations in the present article illustrate this property. 

Speaker normalization is also an important technique used in engineering for building 
automatic speech recognition (ASR) systems.  Vowel classification rates in ASR systems can be 
improved if features are speaker-normalized before classification (Nearey, 1989).  The Formant 
Ratio Theory is a foundation for many speaker normalization techniques.  The Formant Ratio 
Theory states that vowel quality depends on the log frequency intervals between formants 
(defined as ratios), and that shifting activations along a log frequency axis will generate the 
invariant representation (Lloyd, 1890a, 1890b, 1891, 1892; Peterson, 1961; Bladon et al., 1984; 
Sussman, 1986; Sydral and Gopal, 1986; Miller, 1989; Sussman et al., 1997).  Formant ratios 
can be calculated by averaging across formant values for many utterances of a single speaker.  

Despite its heuristic appeal, in its classical formulation, Formant Ratio Theory faces two 
types of problems. First, no mechanism has been proposed to explain how the human auditory 
system could perform these calculations.  How does the brain align cell activities corresponding 
to the formant frequencies for each utterance?  Second, this method requires information 
contained in many speech samples of a single speaker and thus is not able to account for our 
ability to understand a speaker in the first utterance that we encounter.  It is not biologically 
feasible for the brain to perform computations across all speech samples it encounters from a 
speaker, store this information, and then use it to normalize each new utterance encountered for 
each speaker.   

The inability of ASR systems to understand speech in real situations and environments 
may be due to their lack of adherence to biological auditory principles.  As Dusan and Rabiner 
(2005) pointed out, perhaps it is now time to take a closer look at how the brain performs speech 
recognition and apply these insights to design novel ASR systems.  The modeling work 
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presented in this paper proposes a new method for speaker normalization that makes use of the 
functional architecture of the brain and builds upon previous modeling work that explains a large 
amount of data in acoustics, speech perception, and language.   

The well-documented existence of tonotopic organization in the auditory cortex, which 
gives rise to strips of frequency selective cells, serves as the functional architecture within which 
the speaker normalization transformation is proposed to occur; see Section II.  Frequency-
selective strips provide more representational space within which finer computations can occur. 
They share some properties with the hypercolumn organization that is ubiquitous in the visual 
cortex (Hubel and Wiesel, 1962). In vision, hypercolumns occur in cortical maps that represent 
multiple features of visual objects in physical space. In audition, they occur in cortical maps that 
represent multiple features of acoustic objects in frequency space.  

Such strip maps have earlier been shown capable of explaining key data about auditory 
streaming, or the separation of acoustic sources (Grossberg et al., 2004). Speaker normalization 
and streaming circuits may have arisen from similar underlying neural designs. In particular, the 
streaming model circuit and the speaker normalization circuit described herein use both strip 
maps and asymmetric competition across frequency-selective channels to realize a kind of 
“exclusive allocation.”  During auditory streaming, exclusive allocation enables spectral 
information to be allocated to a specific source or stream (Bregman, 1990). Here we predict that 
the exclusive allocation properties that are familiar in streaming research also play a role in 
generating a speaker-independent representation of speech. Strip maps have also been used to 
explain other cortical processes, such as how place-value number systems may be learned 
(Grossberg and Repin, 2003). Strip maps may thus be a cortical design that has been specialized 
during brain evolution to accomplish multiple tasks. 

As explained below, a simple transformation from speaker-dependent to speaker-
independent speech information can be performed within strip maps in a way that is consistent 
with neurobiological data. The speaker-independent representations are then categorized via a 
process of fast incremental learning.  Results from synthesized steady-state vowel categorization 
simulations are presented to validate the performance of the speaker normalization model.  The 
results have been briefly reported in Ames and Grossberg (2006, 2007). 
 
II. TONOTOPIC ORGANIZATION AND MULTIPLE STRIP MAPS 
The auditory system contains spatially organized maps of frequency selective cells called 
tonotopic maps.  The frequency representations are arranged logarithmically.  Tonotopy is 
preserved in the auditory system from the level of the cochlea to the auditory cortex of humans 
and other mammals (Tunturi, 1952; Merzenich and Brugge, 1973; Imig et al., 1977; Reale and 
Imig, 1980; Romani et al., 1982; Seldon, 1985; Luethke et al., 1988; Pantev et al., 1988; Morel 
and Kaas, 1992; Morel et al., 1993; Cansino et al., 1994; Heil et al., 1994; Rauschecker et al., 
1995; Bilecen et al., 1998; Wessinger et al., 1998; Lockwood et al., 1999; Talavage et al., 2000, 
2004; Rauschecker and Tian, 2004).  In the auditory cortex, these tonotopic maps consist of iso-
frequency contours which can be defined as strips of cortical cells that respond to a specific 
frequency, or best frequency.  

 In addition to spectral information that is explicitly in acoustic inputs, missing 
fundamental frequencies (F0) of harmonic sounds activate the tonotopic maps of the primary 
auditory cortex of mammals. Single-unit extracellular recordings in marmosets have shown that 
complex tones with missing fundamentals activate tonotopic areas corresponding to the missing 
fundamental (Bendor and Wang, 2005).  These maps were found in the low frequency-selective 
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areas on the border of core areas AI and R and the lateral belt areas AL and ML, but did not 
extend into the entire tonotopic representation of any of these areas.  Fishman et al. (1998) found 
an implicit representation of the missing fundamental in AI based on population neuronal 
responses in awake macaque monkeys.  Missing fundamental activations have also been seen in 
auditory cortical areas of gerbils (Schulze et al., 2002) and cats (Whitfield, 1980; Qin et al., 
2005).   

In humans, fMRI has been used to show that the lateral Heschl’s gyrus is sensitive to the 
F0 differences of iterated rippled noise (IRN) when subjects listened to noise with temporally 
varying patterns (Patterson et al., 2002).  Penagos et al. (2004) confirmed the existence of this 
F0-selective region by using fMRI to show that missing fundamental complex tones containing 
only low frequency harmonics causes a stronger activation in this region than if the tones 
contained only high frequency harmonics.  This difference is attributed to the unresolvability of 
the high frequencies for listeners.  Langner et al. (1997) found that a topographically ordered F0 
map in human auditory cortex (where F0 was described as the periodicity of the complex sound) 
may be found orthogonally to the topographically ordered spectral map. 

These data confirm that cells in auditory cortex respond selectively to frequencies and F0 
in a spatially organized manner, but the exact placement of an F0-sensitive map with respect to a 
spectral map is unclear.  For the purpose of our speaker normalization model, it is assumed that 
the F0-sensitive map may lie near or within the spectrally activated maps. Simulations were 
performed to manipulate the amount energy at the F0 filters in order to test the role of F0 in the 
speaker normalization transformation.  The advantages and disadvantages of using F0 for 
speaker normalization are discussed below.   

Our speaker normalization model builds upon the fact that multiple tonotopic maps of 
frequency-selective strips are found in the auditory cortex of both humans and other mammals 
(Merzenich and Brugge, 1973; Imig et al., 1977; Morel and Kaas, 1992; Morel et al., 1993; 
Hacket et al., 1998; Kaas and Hackett, 1998; 2000; Formisano et al., 2003; Rauschecker and 
Tian, 2004; Petkov et al., 2006). Interactions between such maps are core design features of our 
speaker normalization model.  Map boundaries are defined by frequency reversals such that the 
low frequency endpoint of one map is adjacent to the low frequency endpoint of the next map.  
The same occurs for the high frequency endpoints.  Talavage et al. (2004) used fMRI and 
frequency-swept stimuli to identify six tonotopic mappings in the superior temporal plane, 
suggesting that there are at least five areas in the human auditory cortex that exhibit at least six 
tonotopic organizations.  However, the number of maps that exist in the human brain is still 
uncertain and is difficult to determine with the resolution available in imaging technologies.   

The speaker normalization model presented in this paper assumes that at least two of 
these tonotopic strip maps have an orthogonal, or at least non-parallel, spatial arrangement.  The 
overlapping interactions between these two spectral maps allow the spectral information from 
different speakers to be aligned along a diagonal map.  This diagonal map arrangement underlies 
the computations needed to shift the speaker-dependent speech information into a speaker-
independent representation.   
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Figure 1: Box diagram of the ARTSPEECH perception system.  The boldface boxes contain 
components discussed or simulated in this paper. 

 
III.  AN EMERGING AUDITION, SPEECH, AND LANGUAGE MODEL 
The model presented in this paper called the Neural Normalization Network, or NormNet for 
short. NormNet is part of an architecture for speech perception and recognition that is being 
developed by Grossberg and colleagues (Cohen et al., 1995; Cohen and Grossberg, 1997; 
Grossberg et al., 1997; Boardman et al., 1999; Grossberg and Myers, 2000; Grossberg, 2003b; 
Grossberg et al., 2004); see Figure 1.  At the periphery of this architecture, a Spatial Pitch 
NETwork (SPINET) processes acoustic information and converts the temporally-occurring 
auditory signals into spatial representations of pitch (Cohen et al., 1995; see Figure 2).  
Harmonically-related spectral components (see Stages 6 and 7 in Figure 2) can activate a given 
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pitch category through an adaptive filter.  The selection of harmonics is due to learning that is 
driven by the natural grouping of frequencies in early auditory processing.  SPINET hereby 
creates both spatial representations of pitch and harmonically related spatial activations.  This 
mapping is a crucial feature for the proposed speaker normalization technique.   

 

 
Figure 2: SPINET Model.  The processing stages transform a sound stream into activations 
of spatially distributed pitch nodes. [Reprinted with permission from Cohen, Grossberg, and 
Wyse 1995] 

 
SPINET provides a natural front end for a more comprehensive model of pitch-based auditory 
streaming that is called the ARTSTREAM model (Grossberg et al., 2004; see Figure 3).  Both 
the spectral and pitch representations in SPINET are defined by strips of frequency and pitch.  
The frequency strips in the spectral maps are selective for a particular frequency and are ordered 
on a log frequency axis.  These frequency selective strips are a key organizational structure in 
ARTSTREAM that allows the model to parse acoustical information into distinct auditory 
streams that intersect the strips at an orthogonal, or at least non-parallel, angle. 
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Figure 3: ARTSTREAM Model.  The spectral and pitch layers of the SPINET model (layers 
6 and 7) are elaborated in the ARTSTREAM Model into multiple representations, or strips 
of cells, and top-down ART matching also occurs.  Bottom-up signals group harmonically-
related spectral components into activations of pitch categories.  Inhibition within each 
pitch stream enables only one pitch category to be active at any time in a given stream.  
Asymmetric inhibition across streams in the pitch stream layer is biased so that the winning 
pitch cannot be represented in another stream.  The winning pitch category feeds back 
excitation to its harmonics in the corresponding spectral stream.  This stream also receives 
nonspecific top-down inhibition from the pitch layer.  ART matching is hereby realized.  It 
suppresses those spectral components that are not harmonically related to the active pitch.  
Inhibition across spectral streams then prevents the resonating frequency from being 
represented in other streams as well. [Reprinted with permission from Grossberg 2003] 

 
ARTSTREAM derives its name from Adaptive Resonance Theory, or ART (Grossberg, 1976a, 
1976b, 1978, 1980).  ART principles and mechanisms have been used to explain and predict data 
about visual and auditory perception, category learning and object recognition, cognitive 
information processing, cognitive and emotional interactions, and their underlying brain 
mechanisms (Carpenter and Grossberg, 1991; Grossberg, 1994, 1999, 2003a; Grossberg and 
Merrill, 1996; Chey et al., 1997; Grossberg, Boardman, and Cohen, 1997; Grunewald and 
Grossberg, 1998; Grossberg and Williamson, 1999; Vitevitch and Luce, 1999; Page, 2000; 
Grossberg and Myers, 2000; Bowers, 2002; Goldinger and Azuma, 2003; Hawkins, 2003; Fazl et 
al., 2008; Grossberg and Versace, 2008).  ART claims that resonant states between top-down 
expectations and bottom-up input drive stable learning of perceptual and cognitive 
representations, while preventing catastrophic forgetting of previously learned information.   
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In the domain of audition, speech perception, and language, models based on ART 
mechanisms have been used to explain, in addition to auditory streaming, word recognition and 
recall (Grossberg and Stone, 1986), manner distinctions in consonant perception (Boardman et 
al., 1999), consonant integration and segregation in VC-CV syllables (Grossberg et al., 1997), 
and interword integration and duration-dependent backward effects (Grossberg and Myers, 
2000).  These models mechanistically embody such design principles as storage in working 
memory of temporal order information derived from phonemic representations, automatic gain 
control to maintain rate invariance, and top-down matching of learned expectations with  bottom-
up patterns of information in order to focus attention on expected combinations of acoustic 
features and to stabilize fast auditory learning.  See Grossberg (2003b) for a review.  

ARTSTREAM includes a bottom-up adaptive filter, or “harmonic sieve,” that groups 
together harmonics of an auditory source into learned pitch categories.  In addition, a top-down 
filter encodes the expectations of the learned pitch categories.  Each expectation consists of the 
harmonics of the learned pitch category, which competitively inhibit other frequencies.  Both 
psychological and neurobiological data support the existence of such “biased competition” in the 
selection of attended data (Grossberg, 1980; Desimone, 1998; Grossberg, 1999; Kastner and 
Ungerleider, 2001; Grossberg, 2003a).  An auditory stream forms when a bottom-up adaptive 
filter and its top-down expectation interact to generate a spectral-pitch resonant state.  Through 
such resonant dynamics, ARTSTREAM is able to coherently select pitch-consistent frequencies, 
corresponding to both F0-related harmonics and formant frequencies, while suppressing other 
frequencies.  This ARTSTREAM process along with asymmetric competition across streams 
realizes the property of “exclusive allocation” (Bregman, 1990). Although ARTSTREAM has 
discussed only the special case of how pitch categories may be learned from spectral information 
and thereby used to separate distinct acoustic sources, the same ART mechanisms can learn to 
categorize other speaker-specific properties that can be used for speaker identification.   

The spectral information in the selected stream can be the input to the speaker 
normalization model, since the spectral-pitch resonances, or other speaker-specific resonances, 
isolate different speaker’s sounds from one another; see Figure 1.  Moreover, the spatially 
organized frequency-selective strips of ARTSTREAM provide the computational substrate that 
is needed to initiate speaker normalization.  The key design principle of frequency-selective strip 
maps allows these models to seamlessly connect and interact. Isolated vowels are the inputs to 
NormNet in the current simulations, so the stream-separating mechanisms are neither needed nor 
simulated. 

After speaker normalization is accomplished and the invariant vowels are categorized by 
an ART network, the speaker-independent vowel categories are in a form that can naturally input 
to the ARTWORD model of variable-rate speech categorization and word recognition 
(Grossberg and Myers, 2000).   
 
IV. MODEL DESCRIPTION 
Peripheral processing in the NormNet model is based on the SPINET model (Figure 2) of Cohen 
et al., (1995) with a few modifications.  The gammatone filterbank (see Stage 2 in Figure 2) 
consists of a cascade of fourth order gammatone filters (Holdsworth et al., 1988; Patterson et al., 
1988; Cohen et al., 1995):  
 4)](/)(1[)( −−+= ii fbffjfGT .       (1) 

The center frequencies (fi) of the filters range from 10 to 8000 Hz and are equally spaced in ERB 
(equivalent rectangular bandwidth) units (Patterson and Rice, 1987; Patterson et al., 1987; 
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Patterson  et al., 1988; Holdsworth et al., 1988; Slaney, 1998; Slaney, 1993).  The dynamic 
range corresponds to data measuring the dynamic range in human listeners (Hudspeth, 2000; 
Plack and Oxenham, 2005). The ERB of a filter at the center frequency (fi) 

is a function of the 
filter center frequency (Glasberg and Moore, 1990):  
 ii ffERB *108.07.24)( += ,        (2) 
and the bandwidth b(fi) of a filter is defined by: 

 
982.0

)()( i
i

fERBfb =  .         (3) 

The output signal from the filterbank is then mapped onto a logarithmic scale, half-wave 
rectified, and low-pass filtered.  This signal serves as the input to the speaker normalization 
model. 

The speaker normalization transformation is proposed to occur in auditory cortex by 
using at least two intersecting tonotopic strip maps that are assumed, for simplicity, to align 
orthogonally.  The names of these maps are the Anchor Log Frequency Map (Anchor Map) and 
the Stream Log Frequency Map (Stream Map); see Figure 4.  Because both maps are composed 
of strips of frequency-selective units, the activations in these maps spread along the strips into an 
inter-strip area where strips from both maps are superimposed upon each other.  Both the 
Anchor Map and Stream Map receive spectral information from the speech sound.  In the full 
architecture, this spectral information is predicted to be the streamed output from a process like 
ARTSTREAM.  In the current simplified model, SPINET preprocessing generates the model’s 
spectral input pattern.   

Asymmetric competition occurs in the Anchor Map to choose the cell with the lowest 
active frequency in the speech sound, which typically contains the largest amount of spectral 
energy (see Figure 4a).  This cell is called the anchor frequency coding cell.  As the anchor 
frequency coding cell wins the asymmetric competition, it inhibits any activations corresponding 
to higher frequencies in the Anchor Map.  This form of “exclusive allocation” is predicted to be a 
key step in speaker normalization.  The asymmetric competition is governed by the following 
on-center, off-surround shunting equation (Grossberg, 1973, 1980); see Figure 4a: 

 ∑
<

−+−+−=
ki

kiiiii
i xfxxfIxBAx

dt
dx )()]()[( 000000

0 ,    (4) 

where x
i0

 is the activity of the ith frequency-selective cell in the Anchor  Map, and I
i0

 is the input 

to this cell in the Anchor Map.  In equation (4), A = 0.1, B = 1, and 2)( xxf = .  Since 2)( xxf =   
is a faster-than-linearly increasing signal function, the activities of cells corresponding to the 
lowest frequency will increase as the activities of the other cells decrease, resulting in contrast 
enhancement and winner-take-all choice of the cell whose activity corresponds to the lowest 
active frequency (Grossberg, 1973).  

The cell that codes the anchor frequency triggers coincidence detection along its strip in 
the inter-strip area where both the Anchor Map and the Stream Map activate their corresponding 
frequency-selective strips.  The coincidence occurs in the strip corresponding to the Anchor 
Frequency of the Anchor Map (ith row) and all the active strips corresponding to spectral 
activations in the Stream Map (jth columns); see Figure 4b.  The activity, xij, of the cell in the ith 
row and the jth column obey:   

 jiij
ij IxgAx

dt
dx

)( 0+−= ,        (5) 
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where xi0 is the activity of the ith strip in the Anchor Map, I
j
 is the spectral representation of the 

speech sound at the jth strip of in the Stream Map, the decay rate A= 0.1, and the Anchor Map 
sigmoid signal function  

 b
i

b

b
i

i xc
xxg

0

0
0 )(

+
= ,         (6) 

where the choices b = 100 and c = 0.5 enable g(xi0) to approximate 1 at the anchor frequency and 
0 elsewhere.  Due to coincidence detection g(xi0)Ij in (5), the Stream Map shifts into the Anchor 
Frequency Strip and becomes the Anchored Stream. 
 

 
 
Figure 4: (a) Anchor Map and Stream Map.  These Maps are organized orthogonally and 
superimpose on each other.  Both maps receive spatially organized spectral information 
from the streamed sound.  The activations spread along their corresponding strips into the 
inter-stream area.  (b)  Coincidence detection.  The winning Anchor Frequency Coding 
Cell triggers a coincidence detection along its Anchor Frequency Strip.  This coincidence 
detection moves the activations of the Stream Map into the Anchor Frequency Strip. 
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Because the Anchor Map and the Stream Map have connections which superimpose 
orthogonally, their coincidences can create diagonally connected strips; see Figure 5.  These 
diagonal connections transform the Anchored Stream into a speaker-invariant representation, S.  
In particular, each cell in the S field sums inputs from all the cells along a diagonal created by the 
maps.  The activity, sm, of the mth diagonal map cell is thus 

 ∑
=

−=
n

j
jmjm xs

1
,  ,         (8)  

where  n is the number of filters in the gammatone filterbank and m is the cell number in the S 
field.  The speaker-independent spectrum is then categorized into unitized item representations.  
These learned recognition categories are used for vowel identification.   

 

 
Figure 5: Creation of speaker-independent working memory item information.  The 
diagonal strips are sampled to create the speaker-independent working memory item 
information which is then feed into an ART network which learns to categorize the item 
information. 

 
In this paper, vowel categorization is carried out by a fuzzy ARTMAP network with default 
parameters (Carpenter et al., 1992); see Figure 6.  Fuzzy ARTMAP is a neural network that 
incorporates two fuzzy ART modules, ARTa and ARTb, where ARTa learns to map the speaker-
independent vowel spectra to vowel categories.  An intervening map field, Fab, learns to 
associate the vowel categories to category names in ARTb . See the Appendix for the fuzzy ART 
equations. 
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Figure 6:  Fuzzy ARTMAP.  The ARTa complement coding preprocessor transforms the Ma 
vector a into the 2Ma vector A = (a,ac) at the ARTa field aF0 .  A is the input vector to the 
ARTa field aF1 .  Similarly, the input to bF1  is the 2Mb vector B = (b,bc).  When a prediction 
by ARTa is disconfirmed at ARTb, inhibition of map field activation induces the match 
tracking process.  Match tracking raises the ARTa vigilance (ρa) to just above the aF1  to aF0  
match ratio |xa|/|A|.  This triggers an ARTa  search which leads to activation of either an 
ARTa category that correctly predicts b or to previously uncommitted ARTa category node. 
[Reprinted with permission from Carpenter et al., 1992] 

 
When a vowel category is activated during category learning, it reads out a learned top-down 
expectation that is matched against the input vowel frequency spectrum.  A vigilance parameter, 
ρa, determines whether the match is good enough. Learning occurs only if the match is good 
enough. Then a resonant state can develop that supports the learning process. A predictive failure 
in category naming at ARTb increases ρa by the minimum amount needed to trigger a memory 
search. Such a memory search automatically leads to learning and/or selection of a new vowel 
category in ARTa that can better match the vowel frequency spectrum. This process is called 
match tracking (Carpenter et al., 1992).  It enables learning of the most general vowel categories 
that can minimize predictive errors in ARTb.  Match tracking is realized in the Fab map field. 
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 The speaker-independent spectral input vectors A to the F1
a field of ARTa are 

transformed into complement-coded vectors A=(a,ac) before being further processed by ARTa.  
Complement coding means that both the activities a of the network’s ON cells and the activities 
ac = 1- a of its OFF cells form the input vector.  The inputs B to bF1 field of ARTb are 
complemented-coded representations of vowel names: B=(b,bc).  The values of all components 
in these input vectors lie between 0 and 1.  The activity in the aF1  field activates a vowel 
category node, J, in the aF2  field which, in turn, sends top-down signals to the aF1  field, where 
matching between the bottom-up input and the top-down weight vector, a

Jw  of the expectation 
occurs.  If the match is good enough, as determined by the vigilance criterion: 
 ρa A < A ∧ wJ .         (9) 
then learning occurs.  Inequality (9) describes the balance between excitation and inhibition at a 
novelty-sensitive orienting system such as the nonspecific thalamus or hippocampus (Carpenter 
and Grossberg, 1993; Grossberg and Versace, 2008). Term ρa A  describes the total amount of 
excitation that reaches the orienting system. Term A ∧ wJ describes the total amount of 
inhibition that reaches the orienting system. In all, inequality (9) says that inhibition is greater 
than excitation, so that the orienting system does not fire. The matched patterns are thus allowed 
to resonate and learning is enabled. When excitation exceeds inhibition, the currently active 
category is reset and the network continues searching for a better category with which to encode 
the speaker-independent spectrum. The vigilance ρa value in (9) this term is a gain control term 
that determines the network’s sensitivity to excitation from the bottom-up total input A .  
Increasing vigilance makes the network more sensitive to mismatches, and thus leads to finer 
categories. At very high vigilance, the network can learn individual exemplars. At low vigilance, 
it can learn abstract categories that enable many exemplars to be coded by the same recognition 
category. 
 During learning, the speaker-independent input pattern A is encoded by a vowel category 
in aF2  , while the vowel name input pattern B is encoded by a name category K in bF2 .  In the 
present simulations, name category labels are directly input to bF2  without loss of generality.  
The map field Fab associates these categories unless J has previously learned to predict a 
different K category.  If this occurs, then match tracking proceeds until an appropriate new ARTa 
category is chosen and learned.  During testing, the speaker-independent input signal A activates 
a name category in ARTb through Fab, which is the prediction of the system.  Mathematical 
details about fuzzy ARTMAP are found in the Appendix.   

 
V. METHODS 
A. Stimuli 
In order to evaluate the performance of NormNet, the Peterson and Barney (1952) database 
(Peterson and Barney, 1952; Watrous, 1991) was chosen because it has been widely used as a 
benchmark database for studying vowel identification.  Peterson and Barney originally tape 
recorded 76 speakers (33 males, 28 females, and 15 children) each speaking 10 vowels twice in a 
/hVd/ context, resulting in 1,520 tokens.  The vowels used are found in Table 1.  The recorded 
vowels were analyzed and the steady state measurements for F0, F1, F2, and F3 were preserved 
in the dataset.  Listeners in this original study achieved 94% accuracy in recognition tasks when 
evaluating these vowels in /hVd/ context. 
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Number  ARPAbet 

symbol  
IPA 
Symbol 

/hVd/  

1  IY   Heed  
2  IH   Hid  
3  EH   Head  
4  AE   Had  
5  AH   Hud  
6  AA   Hod  
7  AO   Hawed  
8  UH   Hood  
9  UW   Who’d  
10  ER   Heard  

 
TABLE I.  The ten vowels in the Peterson and Barney (1952) database. 

 
Hillenbrand and Gayvert (1993) synthesized steady-state values corresponding to the values of 
the formants in the database in order to determine how well listeners can identify vowels based 
on static spectral cues.  Seventeen listeners achieved 72.7% accuracy for the synthesized vowels 
with flat F0 contours, which hold F0 constant for the duration of the sound stimulus.  When F0 
movement was added, performance only slightly improved to 74.8% correct.  For the purposes of 
the simulations in this paper, the Hillenbrand and Gayvert (1993) performance will be used as a 
basis of comparison and the methods of these simulations will attempt to adhere to the methods 
presented in that paper. 
 
B. Procedure 
A vowel synthesizer (Slaney, 1998) was used to generate steady-state versions of all 1,520 
tokens in the Peterson and Barney (1952) database.  Formant frequencies and F0 were held 
constant for the full duration of the stimulus, similar to the synthesized vowels used by 
Hillenbrand and Gayvert (1993).  The sampling frequency was set at 16 kHz and the formant 
bandwidth was set at 50 Hz.  Waveforms for a sample synthesized vowel, ‘IY’ for a man, 
woman, and child are shown in Figure 7. 

In order to assess the performance of the system, several types of simulations were 
performed.  Simulations were conducted by varying vowel lengths, the dynamic range and 
number of filters of the filterbank, the training set size, and spectral inputs with and without F0 
information combined in the mappings. 

In order to simulate the natural variances across human listeners, the dynamic range of 
the filterbank and the number of filters were varied for the simulations.  The inputs were 
presented to the model in random order.  The simulations were run on a workstation PC using a 
dual core AMD Opteron Processor 246 with 1.99 GHz and 3.18 GB of RAM.  Matlab v.7.1 and 
the auditory toolbox (Slaney, 1998) were used to run the simulations.  Statistical analysis was 
conducted using Statistics To Use (Kirkman, 1996) and Wessa.net (Wessa, 2007) software.  
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Figure 7: Waveforms for synthesized steady-state vowel ‘IY’.  The top plot corresponds to a 
male, the middle to a female, and the bottom to a child. 

 
VI. RESULTS  
A.  Number of filters for the filterbank 
Simulations were performed by varying the number of filters (100, 150, 200, 250, 300, 350, 400) 
while keeping the filter range constant at 50-7500 Hz, 400 tokens in the training set, and three 
runs for each filterbank size.  These simulations were performed both with and without adding 
F0 information to the input-activated spectral information in the Anchor Map.  The results from 
these simulations are illustrated in Figure 8.  Interestingly, adding F0 caused model performance 
to deteriorate by approximately 5%.  An analysis of variance (ANOVA) did not show a 
significant effect for filterbank size (F[6,14]=0.338, p<0.91).    
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Figure 8: Filterbank size.  The filterbank size was varied from 100-400 filters.  The dataset 
was tested both with and without F0 information added to the spectral information of the 
Anchor Map.  Three runs were performed with each filterbank size.  The dynamic range 
was from 50-7500 Hz and the training set size was set to 400 tokens.  The dashed line 
shows the results without F0 information and the solid line shows the results with F0 
information in the spectral map.  The * indicates the mean plus error bars and the • indicates 
the best performance for that filterbank size. 

 
B.  Dynamic range of filterbank 
The dynamic range of the filterbank was tested; see Figure 9.  The low frequency was varied 
from 20-180 Hz while the high end was held constant at 7500 Hz.  The results of these 
simulations are illustrated in Figure 9a. 
 These simulations were performed without adding F0 information, with 250 filters, and 
with a training set size of 400 vowel tokens.  The performance of the system was best when the 
low frequency end was below 100 Hz (approximately 80% correct on average).  These data were 
found to be well fit by a linear model with a negative slope (for the low frequency value: mean 
performance R2 = 0.87 and best performance R2 = 0.94).   Performance deteriorated gradually as 
the lowest frequency was increased from 20 Hz because some of the lower frequency vowels in 
the databank contain frequency information below 100 Hz.   
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Figure 9: Dynamic range of filterbank.  250 filters were used in the filterbank, the training 
set contained 400 tokens, and three runs were performed for each variation.  No F0 
information was added to the spectrum for these simulations.  The * indicates the mean plus 
error bars and the • indicates the best performance for that variation in the filterbank.  (a) 
The low frequency endpoint was varied from 20-180 Hz while the high frequency endpoint 
was held constant at 7500 Hz.  (b)  The high frequency endpoint was varied from 5-8 kHz 
while the low frequency endpoint was held constant at 50 Hz. 
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The high frequency was also varied from 5-8 kHz while the low end was held constant at 50 Hz.  
The results of these simulations are found in Figure 9b.  The high frequency manipulation caused 
less of an effect.  When these data were fit to a linear model (for the high frequency value: mean 
performance R2 = 0.722 and best performance R2 = 0.629), the slope was nearly zero (mean 
performance = 0.00036 and best performance = 0.00067) indicating that there is little change in 
performance across the different high frequency endpoint values.  This is because the high 
frequency range takes into account information above the F3 values and the vowels used in these 
simulations were synthesized with only F0-F3 information. Generally, the effect of manipulation 
of the higher formants of the vowel (F3-F5) has a much a smaller effect on vowel identification 
(Johnson, 2005; Slawson, 1968; Nearey, 1989) and thus we expect that it would have less effect 
on the model even if we were to test items that contained such information.  This prediction has 
yet to be tested, however.   
 
C.  Training set size 
Training set size was varied (100, 200, 300, 400, 500, 600) with and without adding F0 
information contained in the Anchor Map.  The training set was chosen randomly without 
replacement.  The remainder of the dataset was used for testing.  The simulations used a 
filterbank that consisted of 250 filters ranging from 50-7500 Hz.  Figure 10 shows the overall 
performance results from the different training set sizes.  When the training set contained only 
100 tokens, performance was the worst near 73% correct.  Based on these results, a training set 
size of 400 achieves the best performance without adding F0 information (82.23 % correct).  
Again, the model performed better without adding F0 information in order to anchor the spectral 
map.   

 
Figure 10: Training set size. The overall performance when the training set size is varied 
from 100 to 600 vowels.  The dataset is also tested both with and without F0 information 
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added to the spectral information of the signal at the Anchor Map.  Five runs were 
performed for each training set size.  The filterbank consisted of 250 filters ranging from 
50-7500 Hz.  The best performance, mean, and standard deviation results were recorded.  
The dashed line shows the results without F0 information added and the solid line shows the 
results with F0 information added to the spectral map.  The * indicates the mean plus error 
bars and the • indicates the best performance for that training set size. 

 
D.  Vowel duration 
Vowel duration was varied to determine if steady state vowel duration affects model 
performance.  Three vowel durations were tested (62.5, 300, 600 msec).  No additional F0 
information was used.  The filterbank consisted of 240-260 filters, the dynamic range varied 
from 20-100 Hz on the low end and 7-8 kHz on the high end.  The training set size was held 
constant at 400 vowel tokens.  Four simulations were run for each vowel duration.  Table 2 
shows that varying vowel duration had little effect (F[2,9] = 0.2428, p < 0.8).  However, the 
small effect may be because these vowels are steady-state. Varying the duration of naturally-
produced vowels there may lead to a different outcome.  

 
Vowel Duration(msec) Best Performance  Mean 

 
Standard Deviation 

62.5  81.61 79.96 0.81 
300  79.91 79.28 0.49 
600  80.80 79.96 0.87 

 
TABLE II.  The overall performance when the vowel duration varied from 62.5msec, 300 
msec, and 600 msec.  The filterbank varied from 240-260 filters, and the dynamic range 
varied from 10-100 Hz at the low end and 7-8 kHz at the high end.  The training set size 
contained 400 tokens and four runs at each vowel duration were tested.   No F0 information 
was added to the spectrum for these simulations.  Percent correction classification in terms 
of best performance, mean, and standard deviation are recorded. 

 
E.   With and without adding F0 information 
Three types of F0 simulations were performed.  The first did not include any additional F0 
information.  In the second set, F0 information was only added to the Anchor Map and the 
Spectral Map received only spectral information.  In the last type of simulations, F0 information 
was added to the spectral representation and this combination was redundantly mapped as input 
into both the Anchor Map and Spectral Map.  F0 information was added to the spectrum to 
increase the energy at the filter corresponding to F0.  These simulations used a training set of 400 
vowel tokens of 62.5 msec in duration, a filterbank of 240-260 filters, a low frequency from 20-
100 Hz, a high frequency of 7-8kHz, and 14 runs of each simulation type.  Table 3 summarizes 
the results of these simulations.  The best performance of 81.61% was found with no F0 
information added. The simulations did find a highly significant effect across these conditions 
(F[2,39] = 41.58,  p < 0.001) indicating that adding F0 information impaired performance. 
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F0 information Best Performance Mean Standard Deviation 
Without F0 81.61 79.96 0.81 
Only in the Anchor Map 77.68 76.45 1.54 
In both the Anchor and 
Stream Maps 

78.04 77.33 0.64 

 
TABLE III.  The overall performance without F0 information added to either map, F0 
information only added to the Anchor Map, and F0 information added to the spectrum and 
redundantly mapped into both the Anchor Map and the Stream Map.  The filterbank varied 
from 240-260 filters, and the dynamic range varied from 10-100 Hz at the low end and 7-8 
kHz at the high end.  The training set contained 400 tokens.  The vowel duration was set at 
62.5 msec.  Fourteen runs were performed for each simulation type.  Percent correction 
classification in terms of best performance, mean, and standard deviation are recorded. 

 
VII. DISCUSSION 
A.   Comparison to human listeners 
 
Comparisons of human identification rates and those of the model can only hope to show a 
qualitative correspondence, because human speakers come to such experiments with full 
knowledge of a language, and may thus contextually process even reduced speech cues in a way 
that a model that learns only those cues cannot. In particular, humans may experience filtering 
and competitive interference properties that a simple model may not. Despite this caveat, 
human/model comparisons illustrate many similar properties, as noted below. 
 Simulated identification rates for the synthesized vowels are shown in Table 4a along 
with the identification rates reported by Hillenbrand and Gayvert (1993) for flat F0 stimuli.  
Table 4b shows the results broken down across speaker groups (men, women, and children) from 
Hillenbrand and Gayvert (1993) and the model.  The identification rates across speaker groups 
for the simulations was significant (F[2,39] = 147.1105, p < 0.001).  The error rate was lowest 
for child speakers for both humans and the model.  The model had the lowest error rate for the 
women speakers and the human listeners performed the best for male speakers.  This difference 
may be due to learning in which the model was exposed to randomly chosen synthesized vowel 
samples from all three speakers groups whereas human listeners are exposed to a much wider 
variety of samples in varying context. 

The confusion matrices for the Hillenbrand and Gayvert (1993) study are shown in Table 
5a and for the simulations in Table 5b.  The simulations performed in this study found an overall 
accuracy measure of 79.96%, which is better than the 72.7% reported by Hillenbrand and 
Gayvert (1993).   
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Vowel  Simulation results  Hillenbrand and 

Gayvert (1993) Flat F0  
IY  95.53 ± 1.10 96.2  
IH  86.90 ± 4.91 67.0  
EH  70.28 ± 3.13 65.8  
AE  81.98 ± 1.53 63.2  
AH  83.96 ± 3.81 74.7  
AA  80.39 ± 1.83 55.0  
AO  70.99 ± 7.03 67.2  
UH  81.35 ± 1.97 62.0  
UW  66.10 ± 3.84 89.1  
ER  82.03 ± 4.11 86.6  
TOTAL:  79.96 ± 0.81 72.7  

(a) 
 

Talker 
group 

Simulation results  Hillenbrand and 
Gayvert (1993) Flat F0  

Men 80.35 ± 1.78 74.4 
Women 82.76 ± 0.54 72.2  
Children 72.71 ± 2.10 70.0  

(b) 
 

TABLE IV.  (a) Percent correct identification rates for the flat-formant synthesized vowels 
and (b) Percent correct identification rates for the three talker groups (men, women, and 
children) with flat F0s in both the simulations performed in this study and in the 
Hillenbrand and Gayvert (1993) study.  

  
The confusion matrices for both the Hillenbrand and Gayvert (1993) study and the simulations 
reported here show that most errors occurred near the diagonal.  The layout of the confusion 
matrix roughly corresponds to the layout of the vowels in F1/F2 space; see Figure 11. F1/F2 
space is considered a rough perceptual mapping of vowels in that there is a relationship between 
the intended vowel and the formant frequency pattern (Peterson and Barney, 1952).  Figure 11a 
shows the vowels that were classified correctly and Figure 11b shows the vowels that were 
classified incorrectly.  The ellipses are drawn based on the Peterson and Barney (1952) dataset.  
In Figure 11b, it is apparent that the majority of the vowel classification errors are near misses 
which occurred on vowel boundaries in the perceptual F1/F2 space.  Fuzzy ARTMAP did a good 
job of correctly classifying vowels in overlapping F1/F2 space because the system does not 
cluster vowel boundaries in only F1/F2 space.  Rather it takes into account the entire normalized 
spectra of the vowels. 
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 IY  IH  EH  AE  AH  AA  AO  UH  UW  ER  
IY  96.2  3.1  0.6  0  0  0  0  0  0  0  
IH  25.1  67.0  6.7  0.3  0.1  0  0  0.6  0  0.1  
EH  1.3  23.7  65.8  7.2  0.3  0  0  0.4  0.1  1.1  
AE  0.1  0.6  28.0  63.2  2.0  4.0  0  0.3  0  1.9  
AH  0  0.1  0.9  0.7  74.7  12.8  6.8  2.7  0.1  1.2  
AA  0  0  0.2  0.1  13.6  55.0  30.5  0.6  0.1  0  
AO  0  0  0  0  8  5.9  67.2  13  5.9  0  
UH  0  0.2  0.1  0  5.2  0.1  3.1  62.0  28.4  0.9  
UW  0.2  0.2  0  0  0.7  0  0.7  9  89.1  0.2  
ER  0.3  4.1  4.0  0.3  0.9  0  0  3  0.7  86.6  

(a) 
 IY  IH  EH  AE  AH  AA  AO  UH  UW  ER  
IY  95.53 4.47 0  0  0  0  0  0  0  0  
IH  7.24 86.90 4.28 0  0 0  0  0  0  1.58 
EH  0 16.79 70.28 7.03 0 0  0  0  0  5.90 
AE  0  0 9.25 81.98 7.76 0.31 0  0.12 0  0.56 
AH  0  0 0 2.22  83.96 10.26 3.07 0.25 0 0.25 
AA  0  0  0 2.40 13.50 80.39 2.90 0.81 0  0  
AO  0  0  0  0.33  14.56 8.49 70.99 4.62 1.01 0  
UH  0  0 0 0  0.90 0  4.48 81.35 9.02 4.25 
UW  0  0.12 0.31  0  0  0  1.73 29.21 66.10 2.53 
ER  0 2.72 3.06 3.54 2.72 0  0  5.53 0.41 82.03

(b) 
 

TABLE V. (a) Confusion matrix reported by Hillenbrand and Gayvert (1993) for 
synthesized steady state vowels with flat F0 contours.  (b)  Confusion matrix for 
synthesized steady state vowels with flat F0 contours generated with the model.  The 
simulation results reported here are the mean results from fourteen runs.  In each run, the 
filterbank was randomly chosen to be from 240-260 filters, and the dynamic range from 10-
100 Hz at the low end and 7-8 kHz at the high end.  The training set contained 400 tokens.  
The vowel duration was set at 62.5 msec. 

 
Hillenbrand and Gayvert (1993) found that confusions between ‘IY’ and ‘IH’, where ‘IH’ was 
heard as ‘IY’; between ‘UH’ and ‘UW’, where ‘UH’ was heard as ‘UW’; and between ‘EH’ and 
‘AE’ where ‘AE’ was heard as ‘EH’ are tense-lax asymmetries.  They hypothesized that, when 
the subjects listened to vowel stimuli without durational cues, they had a tendency to misclassify 
the vowels as long rather than short vowels.  The ‘IH’ and ‘IY’ confusions were consistently 
encountered with the model.  However, the model was not as susceptible to the ‘EH’ and ‘AE’ 
confusions.  This may be due to the shorter vowel duration (62.5 msec) used by the model as 
compared to the longer duration (300 msec) used by  Hillenbrand and Gayvert (1993) such that 
the short ‘AE’ was not misclassified as the long ‘EH’ when presented with shorter stimuli. 

In the simulations with differing vowel durations these confusions were reversed with 
‘UW’ heard as ‘UH’.  These differences may be due to the initial stimulus set-up.  When an 
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analysis of variance (ANOVA) is performed at the vowel durations of 62.5 msec, 300 msec, and 
600 msec, it was found that the correct classification of ‘UH’ differs significantly across the 
different durations (F[2,9] = 4.315, p < 0.05) and almost significantly for the correct 
classification of ‘UW’ (F[2,9] = 3.320, p < 0.09).  The best classification was found at the 300 
msec vowel duration, which is the same duration used by Hillenbrand and Gayvert (1993).   
Thus, the 300 msec stimuli seems to provide the best performance for classification of ‘UH’ 
where the human subjects had a tendency to classify these vowels as long.  When the model was 
presented with much shorter stimuli (62.5 msec), it classified these vowels as short, with 
performance improving at the longer vowel durations.   

One other difference between Hillenbrand and Gayvert (1993) and the simulations 
concerns the classification of the vowel ‘AA’.  Hillenbrand and Gayvert (1993) found that 
human listeners frequently misclassified ‘AA’ as ‘AO’ whereas the model frequently 
misclassified ‘AA’ as ‘AH’, ‘AH’ as ‘AA’ and ‘AO’ as ‘AH’.  All three of these vowels are back 
vowels for which the tongue is placed near the back of the mouth and roughly corresponds to a 
smaller difference between F1 and F2 (Lindau, 1978).  ‘AA’ is differentiated from ‘AH’ and 
‘AO’ in that it is slightly more open and unround, with ‘AH’ unrounded and ‘AO’ rounded.  
Thus, ‘AA’ and ‘AH’ differ only by a slight variation in openness, whereas ‘AA’ and ‘AO’ also 
differ in rounding.  Finally, Figure 11 shows that all three of these vowels significantly overlap 
in F1/F2 space.  The confusions made by both human listeners and the model are consistent with 
the close proximity of these vowels in perceptual space and that both types of confusions are 
valid.  

The last group of differences involves taking into consideration the better classification of 
‘AE’ and ‘EH’ by the model versus the better classification of ‘IY’ by human listeners.  It seems 
that the model is biased towards lower values for F1 than human listeners.  This may be due to 
the fact that the low frequency endpoint of the filterbank was varied from 10-100 Hz, which may 
be lower than what is typically found in humans.  These differences may also be attributed to the 
training effects where the model had more exposure to lower harmonics than do humans when 
learning to speak.  In making this comparison, it is also worth noting that the model experienced 
only the vowel data, whereas humans respond with potential competition from the entire 
language. 

The classification results show that the speaker normalization circuit helped to recognize 
vowels in the Peterson and Barney (1952) dataset.  The training results of the fuzzy ARTMAP 
classifier also produce important information.  During training, fuzzy ARTMAP learns 
categories corresponding to the vowel categories.  In these simulations, only ten categories were 
learned, corresponding to the ten vowels in the dataset.  Therefore, there is a one-to-one mapping 
between the learned categories and the vowel categories, which indicates the success of the 
system in creating invariant representations of the vowel categories.  If the normalization scheme 
did not perform well, fuzzy ARTMAP would have learned to select many more categories 
corresponding to each vowel category.  For example, without speaker normalization pre-
processing, the classifier generated learned, on average, thirty categories and the vowel 
classification performance dropped to 71.95%.  The classification rate of the system without 
normalization was slightly lower than human performance of 72.7% as reported by Hillenbrand 
Gayvert (1993). 
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Figure 11: F1/F2 vowel space.  The ellipses correspond to the confidence intervals reported 
over the entire Peterson and Barney (1952) database where ‘IY’ is blue, ‘IH” is green, ‘EH’ 
is red, ‘AE’ is light blue, ‘AH’ is pink, ‘AA’ is yellow, ‘AO’ is black, ‘UH’ is dark blue, 
‘UW’ is green, and ‘ER’ is black.   (a) The individual data points correspond to the 
locations of the correctly classified vowels in the simulations.  (b) The individual data 
points correspond to the misclassified vowels.  The color of the data points corresponds to 
what the vowel should have been classified as and the vowel label at the data point 
corresponds to what it what misclassified as. 
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As summarized above, the vowel identification rates of the model are comparable to those 
reported by Hillenbrand and Gayvert (1993), with most of the misclassifications lying in adjacent 
F1/F2 space.  The identification rate of 72.7% of Hillenbrand and Gayvert (1993) and the 
79.96% reported in these simulations is still significantly less than the 94% accuracy reported by 
Peterson and Barney (1952) in a vowel recognition task because of the use of 3-formant steady 
state synthesized vowels.  These stimuli are more difficult for listeners and the model because of 
their lack of context, durational variation, and natural fluctuations of speech.  Accuracy greatly 
improves from 57%-95% for isolated vowel recognition to 83%-96% in /cVc/ context (Nearey, 
1989).  Listeners achieved 79% accuracy when listening to vowel recordings, but when the 
vowels were synthesized with a fixed duration and steady-state formants, only 61% accuracy was 
achieved (Lehiste and Meltzer, 1973).  Listeners could achieve 89% accuracy when vowels were 
synthesized with their original formant trajectories, but would only achieve 74% accuracy when 
the vowels were synthesized with flat formants (Hillenbrand and Nearey, 1999). 

The ART modeling framework, of which the NormNet forms a part, promises to 
generalize to more complex speech. Variability in human speech such as durational cues and 
context cues are best captured by a dynamical system that catches sources of variation in time, 
that is able to learn from local knowledge available in the speech signal, and that learns in real 
time.  Previous modeling studies have quantitatively simulated speech categorization and word 
recognition data with these properties (e.g., Grossberg et al., 1997; Boardman et al., 1999; 
Grossberg and Myers, 2000). The NormNet circuit, when integrated within this emerging theory, 
will enable it to begin to simulate variable speech perception properties of multiple speakers.  

Many studies have shown that speaker normalization is an active process such that 
listeners are better and faster at word and vowel recognition in single talker lists than in multi-
talker lists (Creelman, 1957; Summerfield and Haggard, 1975; Verbrugge et al., 1976) and that 
listeners retain memory of speaker-specific acoustic detail that influences their memory of 
previously spoken words (Palmeri et al., 1993; Church and Schacter, 1994; Goldinger, 1996, 
1997).  Although some authors have suggested that this is evidence against automatic speaker 
normalization, these results are consistent with the NormNet model.  The increased reaction time 
and decreased performance in the multi-speaker lists can be attributed to the switching cost of 
moving to a new stream and to a new anchor and location within the maps.  More generally, such 
effects may be due to a range of additional interactions between speaker-dependent and speaker-
independent processes. This hypothesis is further supported by the study performed by Kato and 
Kakehi (1988), which showed that accuracy in syllable recognition monotonically increases from 
the first to the fifth presentation and that accuracy no longer increases on successive 
presentations.  Furthermore, listeners are influenced by expectation of gender either through 
auditory cues (Eklund and Traunmüller, 1997; Johnson et al., 1999) or visual cues (Walker et al., 
1995; Strand and Johnson, 1996; Schwippert and Benoit, 1997; Johnson et al., 1999).  Taken 
together, these studies may probe how the Anchored Stream serves as a frame of reference for 
understanding a speaker and that mismatched expectations or switching between speakers affects 
reaction time and performance as the model adapts to the variation in the location of the 
Anchored Stream.   

Kraljic and Samuel (2007) recently reported that although listeners may adjust their 
internal representations of phonemic categories based on the speaker, this is not always the case.  
In fact, some of these categorical adjustments are not related to the speaker but may be primed 
by other cues (e.g., rate in VOT of stop consonants).  Therefore, it is necessary for the phonemic 
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categories to learn in real time to adjust to fluctuations both within the speech of a single speaker 
and across speakers. Such adaptations can occur at multiple levels of the speech perception 
system.   

Johnson (1997a, 1997b, 2005, 2006) suggests that the above-mentioned evidence is 
supportive of an episodic/exemplar coding model that bases speech perception on a set of stored 
exemplars that adapt to the perceived identity of the talker.  The exemplar models do not make 
use of speaker normalization and instead rely on the large repertoire of exemplars to feed into 
category nodes describing the recognized speech sample.  However, the limited data simulated 
with these models fails to show how they can scale up to natural speech and the large variety of 
speakers encountered in everyday life.  To assume that the exemplars are created for each 
different mode of speaking the same speech sound would assume that the human brain has a 
massive capacity to store these exemplars, and a way to search among these exemplars in real 
time.  The simulations reported by Johnson (1997b, 2006) do not report the number of exemplars 
or categories that are learned for each of the words tested. Furthermore, the learning of the word 
categories based on the set of exemplars requires the use of teacher-based knowledge to create 
the mapping between the exemplars and the category nodes.  The category nodes cannot be 
created based on local knowledge and in real time.   

NormNet is not subject to these sources of criticism.  The speaker normalization circuit 
does not require the storage of instances or exemplars of speech sounds and can learn a single 
categorical representation for each speech sound.  The creation of the invariant speech 
representations described herein does not require the use of a teaching signal and can be 
performed in real time with only local knowledge available to the system. The simulation results 
without normalization show that vowel categorization was poorer (71.95%) and that more vowel 
categories were created (30.29 nodes generated). Hence, the addition of speaker invariance 
creates more stable categories and better performance.  

More generally, ART-based categorization can, where task demands require, learn both 
specific, concrete categories, even individual exemplars, as well as general, abstract categories. 
This learning process enables ART models to selectively pay attention to the learned prototype 
of critical feature patterns that predict successful performance. High vigilance leads to concrete 
categories, whereas low vigilance leads to general categories (see Section IV and the Appendix). 
Thus, one does not need to store all exemplars to learn fine distinctions when, in fact, a language 
requires them. Thus, in several senses, the NormNet circuit and the larger ART speech 
perception network to which it belongs (Figure 1), embody the phonological principle which 
states “that languages have basic building blocks, which are not meaningful in themselves, but 
which combine in different ways to make meaningful forms” (Pierrehumbert, 2006).   
 
B.  Comparison to other speaker normalization techniques 
Other speaker normalization techniques have been applied to a variety of vowel recognition tasks 
using different classifiers.  Two cues, vocal tract length and F0, are important in these speaker 
normalization techniques.  Inter-speaker variability is often attributed to the difference in the 
shape and length of the vocal tracts, with males typically having longer vocal tracts then females 
(Lee and Rose, 1998; Stevens, 1998). The correlation between the vocal tract length and the 
position of the vowel formants contributes to differences perceived by the listener (Fant, 1973).  
Vocal tract length normalization (VTLN) is based on the assumption that the speech spectrum of 
one speaker differs from another due to stretching or compression along the frequency axis (Eide 
and Gish, 1996; Wegman et al., 1996; Lee and Rose, 1996, 1998; McDonough and Byrne, 1999; 
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Dognin and El-Jaroudi, 2003; Glavitsch, 2003).  The speech sound is normalized by warping the 
frequency axis onto a standard vocal tract length.  It is, however, unclear how speakers could 
estimate vocal tract length during naturally occurring language experiences. 

Nonlinear (e.g. Eide and Gish, 1996), linear (e.g. Zahorian and Jagharghi, 1991), and 
bilinear (e.g. Glavitsch, 2003) transformations have all been used in VTLN techniques.  The 
resulting transformation has the same Fourier transform as the original except that it is warped 
along the frequency axis. Both linear and bilinear transformations have led to increased 
performance in systems performing speech related tasks (Lee and Rose, 1996; Wegmann et al., 
1996; Zhan and Westphal, 1997; Zhan and Waibel, 1997).   

Wegmann et al. (1996) used a VTLN method in which the frequency warping was done 
using a piecewise linear transformation of the frequency axis with fixed points at 0 kHz and the 
Nyquist frequency.  Ten warp scales were constructed and each map scale was applied to the 
speech sound.  The best warp scale was chosen through a comparison to a generic voiced speech 
model.  Wegmann et al. (1996) reported a 12% reduction in word error rate as compared to 
unnormalized gender-independent models and a 6% reduction as compared to unnormalized 
gender-dependent models when tested on the standard Switchboard Corpus (NIST).   

Zahorian and Jagharghi (1991) evaluated the effect of both a linear transformation of 
spectral features and a speaker-dependent frequency warping procedure to evaluate improvement 
on vowel classification.  In both, the normalization parameters were chosen to minimize the 
mean squared error between the normalized features and the target features.  They found an 8-
15% increase in accuracy, where the accuracy level ranged from 69-91%.   

It is difficult to compare the performance across these different speaker normalization 
techniques because of the different data sets and vowel classifiers that were used.  A meaningful 
metric is to compare the performance of each technique to human listeners on comparable tasks.  
The Peterson and Barney (1952) database contains only steady state vowel information and 
human listeners are not as good at recognizing steady-state vowels as vowels containing 
durational and contextual cues.  Taking this into account, if the results from the simulations of 
this paper, 79.96% correct, are compared to the human listeners of the Hillenbrand and Gayvert 
(1993) study, 72.7% correct, the simulations reported by Nearey (1979), with 81%-92% correct, 
Sydral and Gopal (1986), with 81.8%-85.7% correct, and Turner and Patterson (2003), with 79-
84%, it seems that these other systems may overfit human data, whereas the simulations from 
this paper adhere more closely to the reported human data.  
 
C.  Role of F0 in speaker normalization 
F0 is determined by the rate of vibration of the vocal cords of the speaker and thus correlates 
with the size of the speaker’s vocal folds (Titze, 1994).  The average values of F0 are lowest in 
males, around 100 Hz, 200 Hz in females, and up to 400 Hz in infants (Kent and Read, 1992).  
Because the harmonics of the speech sound correspond to integer multiples of F0, F0 can, in 
principle, be inferred by the human brain from the spectrum of harmonics even if it is “a missing 
fundamental” in the signal (Pantev et al., 1989; Ragot and Lepaul-Ercole, 1996).   

The distance between F1 and F0 in critical bandwidth is an important cue for perception 
of vowel openness (Traunmüller, 1981).  Speaker-dependent information contained in F0 has 
also been found to be important in both the recognition of vowels and Mandarin Chinese tones 
(Johnson, 1990; Moore and Jongman, 1997).   

F0 varies greatly amongst speakers and the range of F0 in human speakers can vary from 
50-800 Hz (Hess, 1983; Ferreira, 2007).  The high end of this range, found in female and child 
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speakers and in singing, can result in F0 being comparable to or higher than F1.  In addition, it 
may be the case that the vowel’s spectrum may contain a sufficiently small amount of energy for 
F0.  In both of these situations, the asymmetric competition in the model may be compromised.  
In order to test this concern, additional F0 information added into the speaker normalization 
model to anchor the spectral information, which caused performance to decrease.  Thus, the F0 
information contained in the original vowel spectrum is sufficient for speaker normalization. 

F0 has been found to be slightly helpful in understanding speech in both speech 
recognition systems and human listeners (Glavitsch, 2003; Magimai-Doss et al., 2003).  For 
example, Nearey et al. (1979) classified the Peterson and Barney (1952) database with a linear 
discriminant classifier to identify vowels.  They reported 81% correct when the system was 
trained on log-transformed F1 and F2, 86% correct when F0 and F3 were included, and 92% 
correct when speaker mean log formant values were subtracted from the individual log formant 
values.  Sydral and Gopal (1986) also used a linear discriminant classifier in which they achieved 
81.8% correct when trained on F0 and F1-F3 and 85.7% correct when also trained on three bark-
transformed spectral differences (F3-F2, F2-F1, and F1-F0).  Turner and Patterson (2003) used a 
Mellin transform to look at the variation of vocal tract length and achieved 79-84% correct.  
These improvements using F0 are small or modest.  In the case of Nearey et al. (1979), the 
classification used F0 information as an additional feature for the classifier rather than for use 
with the normalization scheme.  Sydral and Gopal (1986) used F0 information only to normalize 
the first formant.  Thus, although F0 contains important cues that are useful for human listeners 
to evaluate the meaning of a speech utterance, F0 may not be needed to normalize typical speech 
sounds.  However, F0 may be more useful in normalizing more extreme cases such as singing or 
infant-directed maternal speech which in some cases has a very high F0.  These cases have yet to 
be thoroughly tested in NormNet.  

 
 
Figure 12: Unification of multiple streams and their speaker normalization circuit.  Three 
potential streams and their anchor maps are illustrated.  The first stream is chosen when its 
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pitch category wins a competition with other streams and uses a harmonic top-down 
expectation to select the frequencies that are compatible with that pitch.  Asymmetric 
competition with the other streams causes the selected frequencies to be exclusively 
allocated to that stream.  Other streams select their frequency spectra from the remaining 
frequencies.  This selection process determines the anchor frequency for each stream and 
thereby initiates speaker normalization within each stream by again using asymmetric 
competition to normalize each selected frequency spectrum in its stream. 

 
VIII. CONCLUSION 
The NormNet model provides a proof of principle for a new insight into how speaker 
normalization may be carried out by the brain.  The speaker normalization model was able to 
achieve accuracy of 79.96% correct, on average, which is comparable to the results obtained 
with human listeners identifying similar vowel stimuli.  The model proposes that tonotopic strip 
maps of frequency-selective auditory cortical cells and asymmetric competitive interactions are 
used both to define the auditory streams that characterize acoustic sources, and to normalize the 
frequency spectra of these streams so that they can be understood across multiple speakers.  
Figure 12 depicts a hypothetical brain map that unifies multiple streams and the speaker 
normalization circuit.  The way in which strip maps and asymmetric competition may be used in 
both streaming and speaker normalization circuits is a worthy topic of future research to clarify 
the predicted shared mechanisms that may be at work.   
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APPENDIX: FUZZY ARTMAP EQUATIONS 
ARTMAP is a neural network that is capable of both unsupervised and supervised incremental 
learning in response to sequences of binary input vectors presented in real time (Carpenter et al., 
1991).  Fuzzy ARTMAP can learn stable recognition categories in response to binary or analog 
input vectors (Carpenter et al., 1992).  Learning always converges because all adaptive weights 
are monotonically increasing.   
 The fuzzy ARTMAP system consists of two adaptive resonance theory modules, ARTa 
and ARTb that are linked together by an inter-ART module, Fab, called a map field (see Figure 
6).  During supervised learning, both modules receive a stream of input patterns: {a(p)} and {b(p)} 
where b(p) is the correct prediction given a(p).  The inputs to the ART modules are A = (a,ac) for 
ARTa and B = (b,bc) for ARTb.  These inputs are in a complement-coded form.  Complement 
coding combines ON-cell and OFF-cell responses to prevent category proliferation by 
normalizing the amplitudes of the input feature vectors while preserving the amplitude of 
individual feature activations.  To define complement coding, consider the ARTa module in 
which the input vector, a, is the ON-response.  Then the complement of a is the OFF-response 
defined as: 
 i

c
i aa −=1 .          (A1) 

    
Hence, the complement coded input A is a 2M dimensional vector: 
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Each ART module contains a field, aF0 and bF0 , of cells that represent a current input vector a 
and b, respectively.  The aF1  and bF1  feature fields receive complement-coded inputs A and B 
from aF0 and bF0 , respectively, and top-down learned expectations from the aF2 and bF2  active 
learned categories.  The number of cell populations in each field is arbitrary.  For ARTa, 
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the kth ARTb adaptive weight vector.  The adaptive weight vectors are associated with each F2 
category cell population j (j = 1,…, 2Na) for ARTa and k (k = 1,…, 2Nb) for ARTb.  Each 
adaptive weight, or long-term memory (LTM) trace, of the weight vector is initially set to one 
indicating an uncommitted category.  After the category is selected for coding, it becomes 
committed.  In the present simulations, only the bF2

 
field is implemented and its nodes are 

directly activated by category name labels. 
The fuzzy ART module, ARTa, requires three parameters to be specified.  These 

parameters are a choice parameter α > 0, a learning rate parameter β є [0,1], and a vigilance 
parameter ρ є [0,1].   
 Category choice also occurs in both ART modules.  The notation for the ARTa module 
will be listed.  The equations are the same for the ARTb module except that the superscript is b 
and the j subscript in the F2 field is k.  For each input A and aF2  node j, the choice, Tj, is defined 
by: 
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where the fuzzy and operator ∧  is defined by: 
),min()( iii qp=∧qp ,             (A4) 

and the norm | | is defined by: 
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for any M-dimensional vectors p and q.   
The ARTa module makes a category choice when at most one aF2  cell population is 

active at a given time.  This category choice is indexed by J: 
},...,1:max{ NjTT jJ == .               (A6) 

If more than one Tj is maximal, then the category j with the smallest index is chosen.  These cells 
become committed in order of j = 1, 2, 3, …  When the Jth category is chosen, yJ = 1 and yj = 0 
for all j ≠ J.  The aF1  activity vector, x = A when aF2  is inactive and a

JwAx ∧=  if the Jth 
aF2 node is chosen. 

Resonance and reset are governed by the match value: 
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If (A7) is greater than or equal to the vigilance, ρ, then resonance occurs and learning ensues, as 
defined below.  Otherwise, mismatch reset occurs, which results in the choice function TJ being 
set to zero for the duration of the input presentation to prevent persistent selection and learning 
of that category.  A new index J is then chosen by (A6) and the search continues until a chosen J 
achieves resonance. 
 Resonance triggers learning such that, once the search ends, the chosen weight vector,  a

Jw  is updated: 
)()()( )1()( olda

J
olda

J
newa

J wwAw ββ −+∧=   .            (A8) 
Fast learning, as was used in the simulations in this paper, occurs when β = 1. 
 The map field, Fab, links the two ART modules and is used to form predictive 
associations between ARTa and ARTb categories and to perform match tracking.   The map field 
becomes active whenever one of the ARTa or ARTb categories is active, or when both are active 
only if ARTa predicts the same category as ARTb through the weights ab

Jw .    The output vector 
of the Fab map field, ab

J
bab wyx ∧=  if the Jth aF2  category is active and bF2  is active; 

ab
J

ab wx = if the Jth aF2  category is active and bF2  is inactive; bab yx = if aF2  is inactive and bF2  
is active; and 0x =ab if aF2  is inactive and bF2  is inactive.  Thus, 0x =ab

 when the prediction 
ab
Jw  is disconfirmed by yb.  This mismatch triggers an ARTa memory search, or hypothesis 

testing, for a better match via match tracking. 
During match tracking, the vigilance parameter of ARTa, ρa, increases in response to a 

predictive mismatch with ARTb in order to ensure that predictive errors are not repeated on 
subsequent presentations of the input.  The parameter ρa calibrates the minimum confidence that 
ARTa must have in a recognition category activated by the input A in order for the ARTa module 
to accept that category.  Smaller values of ρa lead to broader generalization and higher code 
compression.  By match tracking, the minimum amount of generalization necessary to correct a 
predictive error is sacrificed.  In other words, the ARTMAP system embodies a minimax 
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learning rule in which the system strives to minimize predictive error while maximizing 
predictive generalization.   

At the start of the input presentation, ρa equals the baseline vigilance and the map field 
vigilance parameter is ρab.  If  

|||| b
ab

ab yx ρ< ,                    (A9) 
then ρa is increased until it is slightly larger than the match value in (A7).  Reset occurs and a 
memory search discovers the next ARTa category to learn.  With fast learning, the map field 
weights 1=ab

jkw  for all time when J learns to predict the ARTb category name K.  
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