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comparing symptom expression during sentences with either all voiced or voiced and voiceless consonants. How-
ever, empirical research examining the effects of phonetic context on symptoms is sparse. The purpose of this
study was to examine whether symptom probabilities varied across voiced speech segments in an all-voiced sen-
tence, and whether this variability was systematic with respect to phonetic features.
Methods. Eighteen speakers with AdLD read aloud a sentence comprised entirely of voiced speech sounds.
Speech segment boundaries and AdLD symptoms (phonatory breaks, frequency shifts, and creak) were labeled
separately, and speech segments were coded as symptomatic or asymptomatic based on their temporal overlap.
Generalized linear mixed effects models with a binomial outcome variable were used to compare the probability
of symptom expression across: 1) all speech segments in the sentence, and 2) four speech sound classes (vowels,
approximants, nasals, and obstruents).
Results. Significant symptom variability was found across voiced speech segments in the sentence. Furthermore,
the estimated probability of a symptom occurring on vowels and approximants was significantly greater than that
of nasals and obstruents.
Conclusion. These results indicate that AdLD symptoms are not uniformly distributed across voiced speech
segments with systematic variation across speech sound classes.To explain these findings, future work should
investigate how the complex interactions between the vocal tract articulators and glottal configurations may influ-
ence symptom expression in this population.
Key words: Adductor laryngeal dystonia−Phonetic context−Differential diagnosis−Source-filter interaction.
INTRODUCTION
Laryngeal Dystonia (LD; also known as Spasmodic Dys-
phonia) is a focal dystonia of neurological origin affecting
the laryngeal musculature during vocalization.1 Adductor
LD (AdLD) comprises 85% of LD cases2 and is character-
ized by a harsh, strained-strangled vocal quality and inter-
mittent phonatory breaks due to overadduction of the vocal
folds.3,4 In contrast, abductor LD (AbLD) accounts for
about 10% of cases and is typified by a breathy vocal quality
and breaks in phonation caused by excessive abduction of
the vocal folds.3,4 Although the exact pathophysiology
underlying LD is unknown, it is associated with altered neu-
ral structure and function,5,6 as well as abnormal sensory
processing.7,8 Typically emerging around age 45-50,2,3 this
disorder has a significant negative impact on communica-
tion, mental health, and quality of life.9−11 Due to the rarity
of LD (estimates are as low as 1 in 100,000),12 individual
variability and overlap in features with other voice disor-
ders,13 diagnostic reliability is often low, even among expe-
rienced clinicians.14 Consequently, the delay between the
initial clinician interaction and accurate diagnosis is about
5 years,15,16 which can prolong communication challenges.
ted for publication October 5, 2022.
the *Boston University, Boston, Massachusetts; and the yStanford Univer-
ford, California.
ss correspondence and reprint requests to Saul A. Frankford, PhD, Depart-
Speech, Language, & Hearing Sciences, Boston University, 677 Beacon St.,
MA 02215. E-mail: saulf@bu.edu
l of Voice, Vol.&&, No.&&, pp.&&−&&
997
2 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
/doi.org/10.1016/j.jvoice.2022.10.002
Differential diagnosis is typically carried out by speech-
language pathologists, otolaryngologists, and neurologists
using a combination of auditory-perceptual, laryngoscopic,
and neurological evaluation.1 Auditory-perceptual speech
evaluation is usually based on two key features of LD −
task-specificity and variation across phonetic contexts.17

LD is task-specific in nature, presenting most prominently
during volitional speech production, with notable reduc-
tions in severity during whispered speech, singing/humming,
non-modal phonation, and innate vocalization like laughing
and crying.18−20 This criterion can be useful for distinguish-
ing LD from muscle tension dysphonia (MTD), which is
expressed more consistently across vocalization types.14,21
−23 In addition, symptoms in LD vary across phonetic con-
texts,13 which may help to distinguish between AdLD,
AbLD, and MTD. Specifically, speakers with AdLD tend
be more symptomatic on voiced-loaded phrases,14,24,25

speakers with AbLD show increased speech sound dura-
tions on voiceless consonants,25−27 and those with MTD
tend to be consistent across contexts.14,17,24 The general
voiced/voiceless distinction has provided meaningful guid-
ance for developing diagnostic stimuli,17 and points to the
link between intrinsic laryngeal muscle use (ie, adduction
during voiced sounds and abduction during voiceless
sounds) and symptom expression. The simple theory that
emerges is that more voicing and, thus, more vocal fold
adduction will lead to increased symptom expression in
AdLD. However, a clear characterization of how other pho-
netic features may interact with voicing can inform the
development of novel diagnostic stimuli that can maximally
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elicit symptoms to aid in reliable diagnosis. Furthermore,
understanding the effects of phonetic context on voicing
has the potential to provide insight on the physiological
manifestation of symptoms. Therefore, research aimed at
defining the phonetic contexts associated with symptom
expression in LD is warranted.

Relatively few studies have examined the specific pho-
netic components of stimuli that are associated with speech
features in AdLD. In one of the earliest studies to do so,
Ludlow and Connor28 found that speakers with AdLD were
notably slower to repeat /a/ than /pa/ or /pata/, with a
greater amount of time spent on the laryngeal closure
between repetitions.28 Although this was not strictly related
to AdLD symptoms, it indicated a dissociation between the
effects of voiced and voiceless sounds on laryngeal move-
ment control in this population. Erickson29 provided the
first empirical evidence that voicing environment can affect
AdLD symptom expression using controlled stimuli. More
specifically, Erickson found that sentences with a high ratio
of voiced to voiceless consonants evoked significantly more
symptoms than sentences with a low ratio.29 They further
singled out voiced plosives as particularly related to the
number of AdLD symptoms across sentence categories and
“The Rainbow Passage,” although this observation was not
statistically verified.29 To better assess this suggestion, Can-
nito et al,25 asked speakers with AdLD to read sentences
contrasted by consonant voicing (voiced vs. voiceless) and
manner of articulation (continuant vs. plosive).25 Although
the voiced sentences were judged as more dysphonic than
the voiceless sentences in AdLD, there were no significant
main effects of, or interactions with, manner of articula-
tion,25 indicating that symptoms do not vary across these
classes of consonants. The careful control of stimuli used in
these studies was critical in uncovering phonetic patterns
that influence symptom expression in AdLD. However,
because symptom expression was aggregated across sets of
phrases with variable phonetic content,29 or auditory-per-
ceptual ratings were based on whole phrases,25 these studies
did not provide information regarding the phonetic contexts
in which symptoms actually occurred or the probability and
variability of symptoms occurring in these contexts. This
fine-grained linking of symptom expression and context is
necessary for determining what phonetic factors contribute
to increased symptom expression, as well as how these fac-
tors can be exploited to develop maximally informative
diagnostic speech samples.

To date, only one study has examined symptom expres-
sion related to specific phonetic contexts in AdLD. Lorch
and Whurr30 analyzed portions of conversational speech
samples from six native French speaking participants with
AdLD. Their data provide some evidence that syllables
with consonant clusters are likely to yield phonatory breaks,
and that harsh voice quality was found more on open and
mid-vowels (eg, /ɔ/, /ɑ/, /ɛ/) than closed and neutral vowels
(eg, /u/, /y/, /ə/). They also found that harsh vowels, com-
pared to vowels not judged to be harsh, were more likely to
be preceded by voiced consonants.30 However, the small
sample size and lack of controlled stimuli in this study make
it difficult to draw strong conclusions, especially cross-lin-
guistically. Thus, in order to infer the relationship between
phonetic context and symptoms across speakers with
AdLD, statistical analysis of a larger sample is necessary.
Furthermore, although it is clear that voiced speech sound-
loaded and voiceless speech sound-loaded sentences lead
to different levels of symptom expression in AdLD, it is
unclear how symptoms vary across sounds within these
utterances.

The purpose of the present study was to examine the
probability of AdLD symptom expression at the level of
individual speech sounds and classes of speech sounds when
speakers with AdLD read an all-voiced sentence aloud. Fol-
lowing detailed labeling of symptoms and speech segment
boundaries in recordings of 18 speakers with AdLD,
generalized linear mixed effects models were used to
investigate: 1) whether symptom probabilities varied over
the course of the sentence, and 2) whether this variability
was systematic with respect to speech sound classes. It was
hypothesized that AdLD symptoms would be expressed
with higher frequency during the production of vowels and
sonorant consonants (ie, nasals and approximants), which
require continuous phonation, and lower frequency during
obstruents (ie, stops and fricatives) which typically include
gaps in phonation.
METHODS

Participants
Eighteen speakers (13 female, 5 male) participated in this
study*. Their ages ranged from 55 to 69 years (females:
mean = 63.3, SD = 4.06; males: mean = 59.0, SD = 2.91).
All speakers were diagnosed with AdLD by the same
board-certified laryngologist. At the time speech samples
were collected, the disorder had been present in all partici-
pants for at least 6 months. Speakers did not exhibit any
coexisting vocal tremor or other sites of dystonia and, with
exception of the diagnosis of AdLD, self-reported that they
were in good general health. All speakers exhibited a range
of AdLD severity and were receiving ongoing Botox treat-
ment for their AdLD. To ensure that speakers were symp-
tomatic at the time of testing, all recordings took place
before their scheduled Botox injection. Participants pro-
vided informed consent to voluntarily participate in accor-
dance with Western University’s Research Ethics Board
(REB #18588E). Participants were not compensated for
their time.
Recording procedure
Recordings took place in a sound-attenuated recording
environment under consistent conditions using a cardioid
condenser microphone (SHURE PG81) positioned 15 cm
from the mouth, preamplifier, and Kay-Pentax Sona Speech
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II software (Pine Brook, NJ). Samples were digitized at a
44.1 kHz sampling rate with all samples collected by the
same clinician. Experimental stimuli were displayed to
speakers in large print. Speakers were seated comfortably
during all speech tasks. Participants were asked to read two
productions of a sentence comprised solely of voiced pho-
nemes (“Early one morning a man and a woman were
ambling along a one-mile lane running near Rainy Island
Avenue")31 using their typical pitch and loudness. This sen-
tence was examined because several publications have previ-
ously used it to elicit AdLD symptoms,32−38 and it contains
multiple instances of the voiced speech sound classes under
investigation.
Speech segment boundary marking
Speech segment boundaries were identified using an open-
source forced alignment toolkit (P2FA.39) This toolkit uses
acoustic models of the phonemes in American English to
find the best match between the recorded speech sample and
a pre-defined text string. The text string for each recording
was modified to exactly match what was said (eg, clinician
talking in the background, reading errors). Boundary timing
information from each recording was then imported as a
textgrid into Praat (Version 6.2.09,40) and manual adjust-
ments were made by the first author based on correspon-
dence with the waveform, spectrogram, and audio. Across
all recordings, there were two instances of minor reading
errors, and adjustments for these errors are described as fol-
lows. One participant produced a repetition (“a one-mile
lane” ! “a one- a one-mile lane”) on the second reading of
the sentence; the first “a one-” was marked as silence and
not included in the analysis. A second participant omitted
the word “a” (“a man and a woman” ! “a man and
woman”) during the first reading of the sentence; this seg-
ment was removed from the textgrid and was treated as
missing data in the statistical model (see Statistical analysis
below). Speech segment labels were kept consistent across
all speakers; no adjustments were made for dialectical and
phonetic variation.
Symptom labeling
As reported in an earlier study,41 two trained technicians
independently identified and labeled AdLD symptoms from
the acoustic waveforms and spectrograms in Praat40 for
each sentence repetition. AdLD symptoms were defined
using the criteria from Sapienza et al.23 Phonatory breaks
were defined as absence of voicing that typically occurs dur-
ing a phonetic segment. Frequency shifts were defined as a
change of 50 Hz or more in a fo that occurs within 50 ms.
Other irregularities in fo were labeled as “creak,” which was
used as an umbrella term following Keating et al.42 In
instances in which the original two technicians did not agree
(approximately 16% of all identified symptoms), a third
technician (a voice specialized speech-language pathologist)
worked with the original two technicians to derive consen-
sus judgments.
Data extraction
Following independent speech segment and AdLD symp-
tom labeling, the determination of whether a symptom
occurred during each produced speechsegment was carried
out. The presence of any symptom (ie, a phonatory break, a
frequency shift, or creak) occurring during a given segment
was coded as a binary outcome − 1 if the symptom was
present during a segment, 0 if it was not. Because of this
binary coding strategy, it was possible that a minor segment
boundary labeling error could lead to erroneous identifica-
tion of a symptom occurring on a given segment (eg, symp-
tom onset occurring within a few milliseconds of a segment
boundary, erroneously leading to coding both adjacent seg-
ments as symptomatic). Therefore, symptoms had to either
occur within the time-boundaries of the segment or overlap
in time with the segment by at least 15 ms.
Statistical analyses
All statistical analyses were carried out in R (version 4.1.2).
To test whether AdLD symptoms varied across the all-
voiced sentence (as opposed to the null hypothesis that they
occurred uniformly across speech segments), a generalized
linear mixed effects analysis with a binomial outcome vari-
able was performed using the glmer function (package
lme4).43 The outcome variable in this analysis was the pres-
ence of any symptom occurring during the segment. In this
analysis, segment position was modeled as a categorical
fixed effect with 69 levels (for each of the 69 segments in the
sentence) with random intercepts allowed for each speaker.
Because segments vary in duration and, therefore, in the
amount of time during which a symptom can occur, dura-
tion was included as an additional fixed effect control covar-
iate. Type III analysis of deviance Wald chi-square tests
were then used to assess the main effect of segment position.

To test whether the presence of LD discontinuities varied
according to speech sound class, an additional binomial lin-
ear mixed effects model was constructed. For this analysis,
fixed-effects terms were included for speech sound class and
segment duration, and random intercepts allowed per
speaker. Speech sound class was a categorical variable with
four levels for vowels, approximants, nasals, and obstruents
(Table 1 for a breakdown of their occurrence in the sen-
tence). Type III analysis of deviance Wald chi-square tests
were used to assess the main effect of speech sound class. If
this effect was found to be significant, post-hoc pairwise
comparisons were calculated with a Tukey correction for
multiple comparisons.
RESULTS
For the assessment of the impact of segment position on the
presence of AdLD symptoms, the analysis of deviance
revealed that there was a significant effect of segment posi-
tion (x268 = 167.4, P < .001) and segment duration
(x21 = 72.2, P < 0.001) on AdLD symptom expression. The
estimated marginal mean and 95% confidence intervals for
symptom expression in each segment position (after reverse-



TABLE 1.
Speech Sound Inventory From the Stimulus Sentence.

Speech Sound
Class

Inventory Frequency

Approximant /r/, /l/, /w/ 14
Nasal /m/, /n/, /E/ 21
Obstruent /d/, /b/, /v/ 4
Vowel /ɚ/, /i/, /ʌ/, /ɔ/, /ɪ/, /ə/,

/æ/, /ʊ/, /aɪ/, /ɛɪ/
30

Speech sounds are written using the International Phonetic Alphabet
(IPA).

FIGURE 2. Estimated marginal means of each speech sound
class category, accounting for segment duration, reverse-trans-
formed from the logit scale to the probability scale. Error bars
indicate 95% confidence intervals.
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transforming from the logit scale to the probability scale)
can be found in Figure 1. Estimated marginal mean proba-
bilities for symptoms occurring on individual segments
ranged from 28.8% to 87.4%.

Assessing whether the effect of segment position was sys-
tematic across speech sound classes, the analysis of deviance
again revealed that there was a significant effect of speech
sound class (x23 = 82.5, P < 0.001) on AdLD symptom
expression. Post-hoc pairwise comparisons with a Tukey
correction found significant differences between approxim-
ants and nasals (P < 0.001, odds ratio [OR] 2.2, 95% CI 1.6-
3.1), between approximants and obstruents (P = 0.03, OR
1.8, 95% CI 1.0-3.1), between nasals and vowels (P < 0.001,
OR 0.40, 95% CI 0.31-0.53), and between obstruents and
vowels (P = 0.002, OR 0.49, 95% CI 0.29-0.83). To summa-
rize, the probability of an LD discontinuity occurring dur-
ing either a nasal or an obstruent was less than during either
a vowel or an approximant (Figure 2).
DISCUSSION
In this study we examined the relative probability of symp-
toms associated with AdLD (ie, phonatory breaks, fre-
quency shifts, or creak) occurring across segments in an all-
FIGURE 1. Estimated marginal means of each segment category, acc
scale to the probability scale. Speech sounds are labeled using Internatio
boundaries. Error bars indicate 95% confidence intervals.
voiced sentence. In contrast with previous English-language
studies that evaluated symptom expression across
sentences,25,29 the present study used generalized linear
mixed effects models to estimate the probability of symp-
toms occurring at the level of individual segments and
speech sound classes. Furthermore, this was the first study
to do so using formal statistical analysis in a cohort of
English-language speakers. The results showed that: 1)
within an all-voiced sentence, symptoms do not occur with
an equal probability across all segments, and 2) in particu-
lar, nasal consonants (ie, /m/, /n/, /E/) and obstruents (ie, /d/,
/b/, /v/) were less likely to contain symptoms than either
vowels or approximants (ie, /r/, /l/, /w/). The following sec-
tions will discuss these results in relation to current under-
standing of the interaction between phonetic and laryngeal
control in speakers with and without AdLD, as well as limi-
tations and future directions for this research.
ounting for segment duration, reverse-transformed from the logit
nal Phonetic Alphabet (IPA) symbols. Vertical lines indicate word
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Effects of phonetic environment on symptom
expression in AdLD
Previous work has sought to explain the effects of phonetic
environment on laryngeal control as related to the demands
of rapid laryngeal adduction during speech. Ludlow and
Connor’s28 finding that speakers with AdLD have phona-
tion delays when rapid laryngeal control is necessary pro-
vided an initial suggestion that certain contexts could
facilitate atypical voicing. Following this, Erickson29 sug-
gested that sentences loaded with voiced consonants were
more symptomatic because of the preponderance of voiced
stop consonants which require more rapid laryngeal onsets
to achieve appropriate voice onset. Subsequent work, how-
ever, found that in AdLD, symptoms were not differentially
increased in voiced-loaded sentences (compared to voice-
less-loaded sentences) when they predominantly featured
voiced stop consonants versus approximants.25 Thus, it was
posited that producing an all-voiced sentence requires main-
taining the vocal folds in position near the midline, and that
this posturing that differs from that of rapid laryngeal con-
trol, is the critical feature of speech that facilitates hyperad-
duction in AdLD.25

The present results appear to undermine aspects of both
suggestions. In contrast with Cannito et al,25 data from the
present study reveal that different classes of voiced speech
sounds are associated with different levels of AdLD symp-
toms. Furthermore, obstruents (a category that includes
stop consonants) were found to be less symptomatic than
approximantsy, which counters the hypothesis offered by
Erickson29 that increased symptoms in voice-loaded senten-
ces are primarily due to increased voiced stop consonants.
There are two factors that could explain these seeming dis-
crepancies. First, the present study relates speech sound
classes with symptoms based on whether the symptom
occurs within the duration of the speech segment. That is,
previous results may have captured information related to
the effect of consonant voicing on subsequent voiced pro-
ductions rather than during the segments themselves. If
articulatory events are responsible for triggering (or at least
influencing) AdLD symptom expression, there could be an
important effect of the phonetic characteristics of surround-
ing segments. In fact, there may be some additive and inter-
action effects between these two factors that influence
symptom expression. In the present study, stimuli were not
controlled with respect to phonetic environment. Indeed,
obstruents were particularly limited in their phonetic con-
text due to the small number of tokens. In contrast with
Cannito et al, and Erickson, in which plosives were largely
in pre- or post-vocalic positions (eg, dog, buried), most plo-
sives were preceded by nasal consonants in the present
study. Given that nasal consonants had reduced symptom
expression, coarticulatory effects may have led to similar
findings in obstruents. Thus, we could not disentangle the
yNote that because symptom probability is determined across subjects and sentence
repetitions, the low prevalence of obstruents in the sentence should not affect the
probability of a symptom occurring for this category of sounds.
effects of phonetic identity and phonetic context. Second,
the outcome variables for Cannito et al.25 included percep-
tual judgment of overall voice quality and sentence duration
which by themselves, may have a non-linear relationship
with the carefully labeled symptoms in the present study.
Future work that can account for and/or systematically
vary phonetic environments, and includes both symptom-
level and auditory-perceptual outcomes will be necessary to
reconcile these findings.

The results of the present study may best be understood
through studies that examine the interaction between the
vocal tract and the glottal source. Experimental and model-
ling work suggests that increased obstruction of the vocal
tract (as in fricatives and stop consonants) can facilitate effi-
cient phonation due to increased supraglottal back pres-
sure.44−46 This is exemplified by the use of semi-occluded
vocal tract exercises in both voice therapy and training for
singers.44,47 Indeed, recent work using electroglottography
(EGG) provides evidence that voiced obstruents are pro-
duced with a reduced closed quotient (CQ), indicating a less
adducted glottis,48−50 a behavior which could help to
counter the hyperadduction found in AdLD.

Evidence of a similar effect in nasal consonants in speech,
however, is more equivocal. Nasal consonants exhibit
decreased intensity relative to vowels and
approximants,51,52 but intraoral pressure and EGG CQ
remains virtually the same45,48,50,51; this finding is likely due
to unimpeded airflow through the nasal passages.50 Further
insight can be gleaned from studies comparing humming
(ie, prolonged nasal consonant production) and vowel pro-
duction in speakers with typical voices and speakers with
voice disorders. Consistent with the aforementioned studies
explicitly examining speech, these studies found that EGG
CQ was not different between humming and vowel produc-
tion in speakers with typical voices,53,54 and that CQ actu-
ally increased during humming in speakers with MTD.53

However, vocal roughness (assessed by experienced laryng-
ologists) and the cycle-to-cycle variation in CQ were signifi-
cantly decreased in both groups during humming.53 This
also was shown to be the case in speakers with dysphonia
secondary to structural changes of the vocal folds.55 It was
suggested that humming has an immediate effect of reduc-
ing supraglottic compression in speakers with MTD and
typical voice,56 which in turn can alter glottal airflow and
vocal fold vibration.57−59 Increased supraglottic constric-
tion is also a common symptom of AdLD60 and it can con-
tribute to altered vocal quality.61 Humming has been found
to significantly improve phonatory symptoms in speakers
with AdLD,18 however, no attempts have been made to
explore this instrumentally. It is plausible that, similar to
humming, nasal consonant production in a spoken phrase
can reduce AdLD symptoms like vocal roughness or creak.

Finally, despite significant differences in symptom expres-
sion between the speech sound classes, the estimated proba-
bility of a symptom occurring was greater than 28% on
every segment in the phrase. This is likely due to the fact
that this experimental phrase contained only voiced sounds,



ARTICLE IN PRESS

6 Journal of Voice, Vol.&&, No.&&, 2022
an environment that is most conducive to symptom expres-
sion in this population.13,24 It is unclear at present how the
absolute level or the relative probabilities of symptom
occurrence would differ in speech that contained both
voiced and voiceless sounds. Phonetic context is sometimes
characterized as having an environmental effect on symp-
toms in AdLD.25,29 That is, voiceless consonants are
thought to reduce the occurrence of symptoms and the per-
ceived severity of dysphonia during voiced segments by
altering laryngeal position during the dynamic transition to
these voiced segments.25,29 However, as most previous stud-
ies have only examined symptom severity at the phrasal
level, this has yet to be directly tested. As an alternative, it is
possible that in phrases containing both voiced and voiceless
speech sounds, the total duration of voiced sounds is simply
reduced (compared to all-voiced phrases). Under the theory
that vocal fold adduction makes symptoms more likely to
occur (or be detected), phrases with less voicing provide
fewer opportunities for symptom expression. Consequently,
future work comparing symptom expression on stimuli
matched phonetically except for the voiced or voiceless
quality of the preceding segment is needed to determine
how voiceless speech sounds may reduce symptoms in
AdLD.
Limitations and future directions
A potential limitation of the present work was that we only
analyzed speech from participants with AdLD, and not
from speakers with typical voices or with other voice disor-
ders. It is possible that differences found between sound
classes are not specific to AdLD but are characteristic of the
general population and simply amplified by the severity of
dysphonia of the speakers in this population. By including
speakers with other voice disorders and with typical voices,
a future study would be better equipped to determine
whether this effect is specific to AdLD. If it is specific, dis-
crimination analyses could be carried out to assess how well
individual speech sound classes discriminate between popu-
lations, which could help determine optimal phonetic pat-
terns in diagnostic speech stimuli to maximize efficiency.

Additionally, analyzing speech from a single all-voiced
phrase precluded comparing symptom expression between
voiced and voiceless speech sound classes and among other
sub-classes of speech sounds (ie, stops, fricatives, liquids,
and glides). Further, the limited contextual variability and
size of the stimulus sentence hindered generalizability of
these findings. A more varied and extensive speech sample
would allow for detailed analyses using narrower phonetic
transcription (rather than using broad phonemic catego-
ries). These analyses could better take into account co-artic-
ulatory effects and hypoarticulation which occur in natural
speech. In addition, a larger speech sample would provide
more variability to quantify, and control for, word- and sen-
tence-level prosodic effects (eg, fundamental frequency,
voice intensity, and emphatic stress) that may influence
symptom expression in AdLD. Finally, because the present
study only included the acoustic speech recordings, it was
not possible to relate the occurrence of symptoms or the rel-
ative expression of symptoms across segments to differences
in the physical configuration of the larynx. Thus, it will be
important for future studies to include methods like electro-
glottography, electromyography, and/or high-speed video-
endoscopy to provide a more comprehensive
characterization of how different classes of speech sounds
impact laryngeal structures in speakers with AdLD and to
potentially determine whether somatosensory feedback
plays a role in symptom expression. There is a great deal of
evidence that somatosensation is altered in dystonia,62

including LD,8 and that external sensory stimulation can
relieve symptoms.3,63 More direct instrumental measure-
ment of the larynx has the potential to determine whether
phonetic context effects are related to changes in sensory
stimulation during the running speech.
CONCLUSION
This study used a new approach to characterize differences
in symptom expression across phonetic contexts in AdLD.
It is anticipated that further examination of the phonetic
contexts that yield increased or reduced symptoms in speak-
ers with AdLD will be helpful in developing novel speech
stimuli to improve differential diagnosis. In addition, under-
standing the relationship between the phonetic context and
glottal configuration in this population may provide clearer
insights into the pathophysiology of AdLD symptom
expression and variability.
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