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Hey Siri: How Effective are Common Voice Recognition Systems
at Recognizing Dysphonic Voices?

Matthew L. Rohlfing, MD ©©; Daniel P. Buckley, MS, CCC-SLP; Jacquelyn Piraquive, MD;
Cara E. Stepp, PhD; Lauren F. Tracy, MD

Objectives/Hypothesis: Interaction with voice recognition systems, such as Siri™ and Alexa™, is an increasingly impor-
tant part of everyday life. Patients with voice disorders may have difficulty with this technology, leading to frustration and
reduction in quality of life. This study evaluates the ability of common voice recognition systems to transcribe dysphonic
voices.

Study Design: Retrospective evaluation of "Rainbow Passage" voice samples from patients with and without voice
disorders.

Methods: Participants with (n = 30) and without (n = 23) voice disorders were recorded reading the “Rainbow Passage”.
Recordings were played at standardized intensity and distance-to-dictation programs on Apple iPhone 6S™, Apple iPhone
11 Pro™, and Google Voice™. Word recognition scores were calculated as the proportion of correctly transcribed words. Word
recognition scores were compared to auditory-perceptual and acoustic measures.

Results: Mean word recognition scores for participants with and without voice disorders were, respectively, 68.6% and
91.9% for Apple iPhone 6S™ (P <.001), 71.2% and 93.7% for Apple iPhone 11 Pro™ (P <.001), and 68.7% and 93.8% for
Google Voice™ (P <.001). There were strong, approximately linear associations between CAPE-V ratings of overall severity of
dysphonia and word recognition score, with correlation coefficients (R%) of 0.609 (iPhone 6S™), 0.670 (iPhone 11 Pro™), and
0.619 (Google Voice™). These relationships persisted when controlling for diagnosis, age, gender, fundamental frequency, and
speech rate (P < .001 for all systems).

Conclusion: Common voice recognition systems function well with nondysphonic voices but are poor at accurately tran-
scribing dysphonic voices. There was a strong negative correlation with word recognition scores and perceptual voice evalua-
tion. As our society increasingly interfaces with automated voice recognition technology, the needs of patients with voice

disorders should be considered.

Level of Evidence: IV

Key Words: Dysphonia, voice recognition, hoarseness, mobile phone, technology.
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INTRODUCTION

There is increasing prevalence of voice disorders,
with a 2012 National Health Interview Survey reveal-
ing that 1 in 13 adults reported voice problems.! 2
Voice disorders impair communication and contribute
substantially to decreased quality of life and
increased healthcare costs. Dysphonia has been
shown to negatively impact many aspects of health,
including functional, social, emotional, and physical
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well-being.?~® In addition to decreased quality of life,
patients with voice disorders often report poor overall
health. Benninger et al compared dysphonia to other
chronic diseases and found that dysphonic individ-
uals reported lower social functioning relative to
those with sciatica, back pain, and angina.® Another
study found that patients rated moderate dysphonia
equivalent to monocular blindness using health state
utility values.”

The decreased quality of life experienced by dys-
phonic speakers may be attributed to difficulty being
understood, in addition to difficulty with voice pro-
duction. Speakers with voice disorders have been
repeatedly shown to be more difficult to understand
relative to speakers without voice disorders.®~!* Dis-
ordered voice production is associated with a number
of deviations that may contribute to decreased intelli-
gibility, including decreased vocal intensity,® and
noisy turbulent airflow.® In the setting of incomplete
glottic closure, speakers have more errors in stop con-
sonant production, as well as increased turbulence
during high-frequency sounds,'! which can impact
the ability of listeners to differentiate between
sounds.®
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Voice recognition technology enables the transla-
tion of voice input to text or to programed actions. This
technology is intended to streamline communication
by enhancing mobility, multitasking, and information
gathering. Over the past decade, substantial advances in
computational power via cloud computing and machine
learning have enabled voice recognition technology to
make unprecedented strides in accuracy and utility.
Smartphones have become the primary everyday compu-
tational device for the vast majority of people. Further-
more, smart speakers and voice recognition assistants
such as Apple’s Siri™, Google Assistant™, and Amazon’s
Alexa™ have emerged to further integrate the experience
of data acquisition and programmable tasks. According to
Google, 29% of the global online community uses their
voice to search on mobile devices, regardless of device
type.'® Voice recognition technology has many applica-
tions beyond accessing information, including driving
with hands-free mobile access, routing customer service
queries, and refilling pharmacy prescriptions. Voice rec-
ognition technology grants additional opportunities for
individuals with physical impairments or poor literacy to
have access to the internet and other assistive tasks.

Given that disordered voices result in impaired
intelligibility among human listeners, and with the
increased utilization of voice recognition technology, it is
important to investigate the impact of dysphonia on
voice recognition technology. We hypothesize that the
accuracy of voice recognition technology will be reduced
for individuals with voice disorders relative to individ-
uals without voice disorders and that voice recognition
technology accuracy will be decreased relative to the
overall severity of dysphonia. Therefore, the objective of
this study is to assess the accuracy of common voice rec-
ognition systems in transcribing dysphonic voices. Sec-
ondarily, we aim to evaluate which auditory—perceptual
or acoustic measures impact the accuracy of voice recog-
nition technology.

MATERIALS AND METHODS
Study Design, Setting, and Patient Selection

After receiving approval from the Institutional Review
Board at Boston Medical Center, the Otolaryngology-Head and
Neck Surgery department voice recording catalog was searched
for English-speaking patients with dysphonic voices who had
undergone comprehensive voice assessment and were recorded
reading the “Rainbow Passage”. Additional recordings of both
dysphonic and nondysphonic voices were sourced from existing
recordings of study participants at the Stepp Lab for Sensorimo-
tor Rehabilitation Engineering at Boston University, all of whom
completed informed consent in compliance with the Boston
University Institutional Review Board. All available voice sam-
ples were considered for inclusion. Samples were excluded if they
did not include a “Rainbow Passage” reading, if they did not com-
plete the first 99 words of the “Rainbow Passage”, if the speaker
had impaired articulation, or if the speaker spoke English with a
nonnative accent. One subject was excluded for mild ataxic dys-
arthria in the setting of Parkinson’s disease. The voice recordings
utilized in the study represent a variety of dysphonia severity,
diagnoses, and patient demographic characteristics. All voice dis-
order diagnoses were made by fellowship-trained laryngologists.
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All microphone signals were digitally recorded, and analy-
sis occurred offline. Participants were recorded in one of two set-
tings: the first was a quiet room at Boston Medical Center with
an omnidirectional headset condenser microphone (model Beta
53; Shure, Niles, IL). These recordings took place between
December 19, 2018, and September 4, 2019. The second setting
was a quiet room at the Stepp Lab using a unidirectional headset
condenser microphone (model SM35XLR; Shure). These record-
ings were conducted between July 5, 2016, and August 20, 2019.
All participants were recorded with the microphone at 7-10 cm
from the lips and at a 45-degree angle from midline. Microphone
signals were sampled at 44.1 kHz with 16-bit resolution at both
locations. In each setting, participants were instructed to read
the “Rainbow Passage” in a comfortable speaking voice. As the
recordings were accessed retrospectively, the speakers were not
aware that their samples would be transcribed with voice recog-
nition technology.

Demographic, Treatment, and Outcome
Variables

Demographic variables and potential contributors to intelli-
gibility were documented for each case. These included age, gen-
der, diagnosis, fundamental frequency (f,), standard deviation of
fo, and cepstral peak prominence, smoothed (CPPS). The CPPS
has been demonstrated as a marker of dysphonia, with lower
CPPS values corresponding to more severe dysphonia.!” The f,,
standard deviation of f,, and CPPS were calculated with Praat
software.'® Speech rate, in words per minute, inclusive of pauses
in speech, was also calculated.

Each recording of the “Rainbow Passage” was played at
standardized intensity for each voice recognition software sys-
tem. The recordings were played at an intensity between 65 and
70 decibels through a Bose SoundLink Wireless speaker (Bose
Corporation, Framingham, MA) to a device 12 inches from the
source. The passages were played and processed one sentence or
phrase at a time. After completion of the first paragraph
(98 words) of the “Rainbow Passage”, the number of correct
words was tallied and divided by the total to calculate the word
recognition score. This process was repeated with Apple iPhone
6S speech dictation (Apple, Cupertino, CA), Apple iPhone 11 Pro
speech dictation (Apple), and Google Voice online dictation soft-
ware (Google, Mountain View, CA) using an Apple MacBook Air
laptop computer (Apple). No software updates occurred during
the study, and all devices were cleared of data prior to study ini-
tiation. To control for the potential of machine learning, the accu-
racy of word recognition was compared throughout time for all
three studied devices. There was no difference in scores through-
out the duration of the study period for any device. A fourth sys-
tem, the Microsoft Windows 10 talk-to-type dictation (Microsoft,
Redmond WA), was also attempted. The system was unable to
recognize and transcribe nondysphonic “Rainbow Passage”
recordings, so further testing was not pursued.

Two trained listeners (authors M.L.R. and D.P.B.) conducted
independent perceptual evaluation of voice for each voice sam-
ple using the Consensus Auditory-Perceptual Evaluation of
Voice (CAPE-V).!® The CAPE-V provides a standardized and
validated approach to the evaluation of vocal quality, including
six specific vocal attributes: overall severity, roughness,
breathiness, strain, pitch, and loudness.!® For the purpose of
this study, loudness was not included as volume was standard-
ized. The listeners were blinded to the diagnosis and to the
word recognition scores. Per described technique, a visual ana-
log scale was used to rate the overall severity, roughness,
strain, pitch, and loudness.!® The scale was converted to a
numeric value from 0 to 100 by measuring the relative position
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TABLE I.

Word Recognition Scores (WRS) using iPhone and Google Voice Dictation Systems to Transcribe the “Rainbow Passage”, According to
Categorical Patient Factors. Q1-4 = Quartiles.

Apple iPhone 6s, WRS (%)

Google Voice, WRS (%) Apple iPhone 11 Pro, WRS (%)

0,
Patient Factor N9 Mean (SD) 80.3 (19.6) P Value Mean (SD) 81.3 (19.8) P Value Mean (SD) 82.2% (19.1) P Value
Gender
Male 13 (25.0) 79.7 (22.8) .904 83.8 (17.6) .578 81.5 (22.0) .892
Female 39 (75.0) 80.5 (18.7) 80.5 (20.6) 82.4 (18.4)
Age
Q1 (18-32) 3 (25.0) 84.8 (4.4) .689 86.7 (5.9) .570 86.5 (5.8) .658
Q2 (33-50) 3(25.0) 81.1(21.0) 80.5 (25.0) 82.8 (21.4)
Q3 (54-67) 2 (23.1) 80.0 (18.7) 82.8 (17.5) 82.8 (17.9)
Q4 (68+) 4 (26.9) 75.6 (27.1) 75.9 (24.6) 771 (25.7)

SD = standard deviation.

of the mark (i.e., a mark directly in the center of the line would
be 50/100). The voice samples were reviewed as ordered by
their study identifiers, which allowed a consistent mix of dys-
phonic and nondysphonic speakers.

Statistical Analysis

Statistical analyses were conducted using SPSS Version
23 (IBM, Armonk, NY). Descriptive statistics are shown in
Table I (categorical variables) and Tables II-IV (continuous vari-
ables). For the CAPE-V evaluations, inter-rater reliability
(Cohen’s kappa for two raters) was calculated for ratings of the
overall severity of dysphonia and for the ratings of roughness,
breathiness, strain, and pitch. Given the high reliability with cor-
relation coefficient 0.913 for CAPE-V (overall), the ratings were
combined. The final combined rating is the average of the indi-
vidual ratings. As recordings were made in two settings under
differing conditions, a pairwise analysis was conducted to assess
for difference in voice recognition score outcomes. Ten cases from
each site were matched based on overall CAPE-V ratings. There
was high correlation (correlation coefficient 0.879, 95% confi-
dence interval [CI] 0.686-0.996, P = .001) and no significant dif-
ference between means (P =.227) in paired comparisons of
iPhone 6s word recognition score. This was true for the Google
system (correlation coefficient 0.965, 95% CI 0.883-0.996,

P < .001; no difference between means, P =.294). This was also
true for the iPhone 11 Pro (correlation coefficient 0.934, 95% CI
0.361-0.990, P < .001; no difference between means, P =.145).
Given this, the recordings were pooled for all further analyses.

Comparative analysis was performed between binary patient
groupings (i.e., voice disorder or no voice disorder) and also by
considering degree of perceptual dysphonia (as represented by
CAPE-V ratings of overall severity) as a continuous variable. The
analysis treating dysphonia as a continuous variable is emphasized
as the authors believe it provides a more comprehensive assess-
ment across varying degrees of dysphonia. The comparative analy-
sis was performed to assess the association between potential
covariates and the outcome of interest, word recognition score. This
was repeated for each voice recognition system. One-way analysis
of variance tests were used to compare word recognition score
means for categorical variables, and linear regression was used to
assess correlation between continuous variables and word recogni-
tion score. From these analyses, variables with P-values of .05 or
lower were considered potential contributors and selected to be
included in multivariate analysis.

Multivariate stepwise linear regression was used to assess
the relationships between the selected variables and the word
recognition score. Covariates selected from the univariate ana-
lyses were considered in the stepwise regression model. This was
repeated for each voice recognition system. The final model is

TABLE II.

Word Recognition Scores (WRS) using iPhone 6s Dictation System to Transcribe the “Rainbow Passage”, with Associations to Continuous
Patient Factors Calculated via Simple Linear Regression Analysis.

Patient Factor Coefficient (B) 95% Cl for p, Low 95% Cl for p, High R? P Value
Age —-0.203 —-0.476 0.070 0.043 142
CAPE-V (overall) —0.648 —-0.794 —0.501 0.612 <.001
CAPE-V (roughness) —-0.562 -0.810 -0.314 0.293 <.001
CAPE-V (breathiness) —-0.752 —-0.960 -0.545 0.515 <.001
CAPE-V (strain) —-0.471 —-0.709 —-0.232 0.239 <.001
CAPE-V (pitch) —-0.433 -0.813 —0.054 0.095 .026
fo —-0.148 —-0.289 0.007 0.081 .054
Standard deviation of f, —-0.344 -0.93 —0.095 0.133 .008
CPPS 6.46 4.59 8.33 0.491 <.001
Speech rate 0.252 0.090 0.415 0.162 .003

Bold values signifies p < 0.05.

CAPE-V = Consensus Auditory-Perceptual Evaluation of Voice; Cl = confidence interval; CPPS = cepstral peak prominence, smoothed; f, = fundamental

frequency.
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TABLE Il

Word Recognition Scores (WRS) using Google Voice Dictation System to Transcribe the “Rainbow Passage”, with Associations to Continuous
Patient Factors Calculated via Simple Linear Regression Analysis.

Patient Factor Coefficient (p) 95% Cl for p, Low 95% Cl for p, High R? P Value
Age -0.214 —-0.490 0.062 0.046 126
CAPE-V (overall) —-0.665 -0.810 -0.520 0.630 <.001
CAPE-V (roughness) —0.549 —-0.804 —-0.295 0.273 <.001
CAPE-V (breathiness) —-0.643 —-0.883 —-0.404 0.368 <.001
CAPE-V (strain) —-0.521 -0.754 -0.287 0.286 <.001
CAPE-V (pitch) -0.167 —-0.568 0.234 0.014 407
fo -0.165 -0.307 -0.024 0.100 .023
Standard deviation of f, -0.337 —-0.626 -0.128 0.156 .004
CPPS 6.23 4.26 8.20 0.446 <.001
Speech rate 0.227 0.059 0.395 0.128 .009

Bold values signifies p < 0.05.

CAPE-V = Consensus Auditory-Perceptual Evaluation of Voice; Cl = confidence interval; CPPS = cepstral peak prominence, smoothed; f, = fundamental

frequency.

described in Table V. Findings were considered statistically sig-
nificant at P < .05.

RESULTS

There were 52 voice recordings of “Rainbow Passage”
analyzed. Of these participants, 29 (55.8%) had a diagnosis
of voice disorder, and 23 (44.2%) were without voice disor-
der. All 15 patients recorded in the Boston Medical Center
setting had a diagnosis of voice disorder. Of the patients
recorded at Boston University, 14 (37.8%) had a voice dis-
order. For the 23 participants without voice disorder, the
mean age was 52.2 years (standard deviation 20.4 years,
range 19-83 years). For the 29 participants with a voice
disorder, the mean age was 48.9 years (standard deviation
19.8 years, range 19-82 years). There was no significant
difference in mean age (P = .561). The cohort without voice
disorders was 21.7% male and 78.3% female; the cohort
with voice disorders was 20.7% male and 79.3% female.

There was no significant difference in gender distribution
by Fisher’s exact test (P =.595). The most common voice
disorder diagnoses were muscle tension dysphonia
(N =11, 21.2%), benign vocal fold lesion (N = 5, 9.6%), and
chronic laryngitis (N = 4, 7.7%). Other diagnoses included
paresis or paralysis (N = 3, 5.8%), spasmodic dysphonia
(N = 3, 5.8%), vocal fold atrophy (N = 2, 3.8%), and laryn-
geal trauma (N = 1, 1.9%). Mean word recognition scores
for participants with and without voice disorders were,
respectively, 71.1% and 91.9% for Apple iPhone 6S™
(P <.001), 71.5% and 93.7% for Apple iPhone 11 Pro™
(P < .001), and 73.0% and 93.8% Google Voice™ (P < .001).

For the iPhone 6s, there was significant negative corre-
lation between all attributes of CAPE-V and word recogni-
tion scores, with the strongest association for the CAPE-V
rating of overall severity of dysphonia (R% = 0.612, P < .001)
(Table II, Figure 1). There was also a significant negative
correlation for standard deviation of f, (R? = 0.133, P = .008)
and significant positive correlation for CPPS (R? = 0.491,

TABLE IV.

Word Recognition Scores (WRS) using iPhone 11 Pro Dictation System to Transcribe the “Rainbow Passage”, with Associations to
Continuous Patient Factors Calculated via Simple Linear Regression Analysis.

Patient Factor Coefficient (B) 95% Cl for p, Low 95% Cl for p, High R? P Value
Age -0.183 —-0.451 0.085 0.036 176
CAPE-V (overall) —0.664 —-0.795 —0.553 0.674 <.001
CAPE-V (roughness) —-0.559 —-0.800 -0.319 0.304 <.001
CAPE-V (breathiness) -0.723 -0.919 -0.526 0.498 <.001
CAPE-V (strain) —0.506 —-0.731 —0.281 0.290 <.001
CAPE-V (pitch) —0.437 -0.807 —-0.068 0.101 .021
fo —-0.143 —-0.281 —-0.006 0.080 .042
Standard deviation of f, —0.300 —-0.547 —-0.053 0.106 .018
CPPS 6.22 4.36 8.07 0.476 <.001
Speech rate 0.272 0.116 0.428 0.198 .001

Bold values signifies p < 0.05.

CAPE-V = Consensus Auditory-Perceptual Evaluation of Voice; Cl = confidence interval; CPPS = cepstral peak prominence, smoothed; f, = fundamental

frequency.
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TABLE V.

Stepwise Regression Analysis to Predict the Word Recognition Scores (WRS) using the Apple iPhone and Google Voice Systems to
Transcribe the “Rainbow Passage”, According to Patient Factors Identified in Univariate Analysis.

Patient Factor Coefficient (p) 95% Cl for p, Low 95% Cl for p, High P Value R?

Apple iPhone 6s, WRS (%)

CAPE-V (overall) —-0.648 -0.794 —-0.501 <.001 0.612
Constant 98.7 93.3 104.1 -

Google Voice, WRS (%)
CAPE-V (overall) —-0.665 -0.810 -0.520 <.001 0.630
Constant 100.2 94.9 105.5 -

Apple iPhone 11 Pro, WRS (%)
CAPE-V (overall) —-0.664 -0.795 -0.533 <.001 0.674
Constant 101.0 96.2 105.8 -

Bold values signifies p < 0.05.
CAPE-V = Consensus Auditory-Perceptual Evaluation of Voice; Cl = confidence interval.

P < .001) and speech rate (RZ = 0.162, P = .003). In stepwise For the Google Voice system, there was significant
regression analysis, only the CAPE-V overall severity dem- negative correlation between all CAPE-V scores except
onstrated significant correlation (P < .001). All other poten- pitch and word recognition scores, with strongest associ-
tial covariates were excluded from the stepwise model as ation for the overall CAPE-V (R® =0.630, P <.001)
they did not generate a significant change in correlation. (Table II, Figure 2). There was also significant negative
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Fig. 1. Correlation of word recognition score and CAPE-V ratings of overall severity of dysphonia for Apple iPhone 6s voice recognition
software.
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Fig. 2. Correlation of word recognition score and CAPE-V ratings of overall severity of dysphonia rating for Google Voice recognition software.

correlation for £, (R® = 0.100, P =.023), standard devia-
tion of £, (R? = 0.156, P = .004), and significant positive
correlation for CPPS (R% = 0.446, P < .001) and speech
rate (RZ = 0.128, P = .009). In stepwise regression analy-
sis, CAPE-V overall severity (P <.001) was the only fac-
tor that demonstrated significant correlation. All other
potential covariates were excluded from the stepwise
model as they did not generate a significant change in
correlation.

For the iPhone 11 Pro, there was a significant nega-
tive correlation between CAPE-V scores and word recogni-
tion scores, with the strongest association for the CAPE-V
overall severity of dysphonia (R® =0.674, P <.001)
(Figure 3). There was also a significant negative correla-
tion for £, (R% = 0.080, P = .042) and standard deviation of
£, (R2 = 0.106, P = .018) and significant positive correlation
for CPPS (R? =0.476, P <.001) and speech rate
(R? = 0.198, P = .001). In stepwise regression analysis, the
only factor that retained significant correlation was
CAPE-V overall rating of severity (P =.001). All other
potential covariates were excluded from the stepwise
model as they did not generate a significant change in
correlation.
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6

DISCUSSION

The purpose of this study was to examine the impact
of dysphonia on voice recognition technology accuracy as
measured by word recognition scores. The results indi-
cated that word recognition scores were significantly
lower for speakers with voice disorders in comparison to
those without voice disorders, and this finding was consis-
tent across all three studied systems.

A secondary interest was investigating which mea-
sures of dysphonia had the highest correlation with voice
recognition technology intelligibility. Several factors were
considered potential contributors to word recognition
scores. Participants’ f, demonstrated a weak but signifi-
cant association with word recognition score in univariate
analysis, with lower f, associated with higher word recog-
nition scores. This suggests that the voice recognition
technology may be better equipped to understand voices
with lower £, This finding is similar to previous work dem-
onstrating improved listener accuracy in speech recogni-
tion for lower £,.2° This may be due to the more narrow
spacing of harmonics in a lower-frequency domain, which
allows for better resolution. This then allows for improved
resolution in resolving vocal tract resonances at lower

Rohlfing et al.: Voice Recognition for Dysphonic Patients
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Fig. 3. Correlation of word recognition score and CAPE-V ratings of overall severity of dysphonia for Apple iPhone 11 Pro voice recognition

software.

frequency. In contrast, higher f, values have decreased
resolution, and formants become poorer estimates of
underlying resonances. The lack of being able to track for-
mants in higher f,, which relate to vocal tract resonances
could be related to decreased word recognition.

A higher standard deviation of f, was also associated
with lower word recognition scores. A higher f, in this
studied cohort correlated with higher standard deviation
of f,, which has been demonstrated previously.?! Because
of the close relationship between f, and standard devia-
tion of £, it is difficult to conclude which variable had the
more significant effect on the outcome. The authors spec-
ulate that perhaps a voice with more frequency variation
could be more difficult for the technology to follow and
recognize. The correlation coefficients (R%) were quite low
for these variables; for f,, R% was 0.100 (Google Voice) and
0.080 (iPhone 11), and iPhone 6s demonstrated nonsignif-
icant correlation. For standard deviation of f,, R? was
0.133 (iPhone 6s), 0.156 (Google Voice), and 0.106 (iPhone
11). So although there were significant correlations, f,
and standard deviation of f, have limited impact on the
variability in the outcome.

Laryngoscope 00: 2020

Speech rate was considered a potential confounder,
and it was hypothesized that a slower speech rate would
result in improved voice recognition technology accuracy.
However, faster speech rate demonstrated a positive asso-
ciation with word recognition scores. The authors’ hypoth-
esize that this discrepancy occurred because participants
with more severe dysphonia spoke at a slower rate. The
mean speech rate between individuals with a voice disor-
der was 152.6 words per minute (95% CI 141.1-163.9) in
comparison to 175.6 words per minute for individuals
without a voice disorder (95% CI 164.7-186.0; P = .006).
Thus, speech rate in this study is likely another proxy for
dysphonia.

CPPS showed a significant correlation with the voice
recognition technology performance in univariate analy-
sis. As CPPS is a correlate of the overall severity of
dysphonia,?? the authors hypothesized that lower CPPS
values (which designate more severe dysphonia) would
correlate with decreased word recognition. In this study,
CPPS correlated significantly with voice recognition per-
formance with coefficients of 0.491 (iPhone 6s), 0.446
(Google Voice), and 0.476 (iPhone 11), meaning that
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changes in CPPS can explain a moderate amount of the
change in outcome. In the stepwise regression analysis,
they did not generate significant improvement of the
model and therefore were not included in the final model.
This is likely a representation of the covariance between
CPPS and CAPE-V. In linear regression, these two vari-
ables have a moderate, negative correlation (R = 0.605,
P <.001). Therefore, although CPPS did not change the
regression model, it is a useful marker of dysphonia that
did correlate with the performance of the technologies.

In multivariate analysis, the CAPE-V rating of the
overall severity of dysphonia was the most consistent pre-
dictor of word recognition scores across all three systems.
Therefore, increases in degree of perceived dysphonia —
even when controlling for other factors — was associated
with a significant decrease in accuracy of the voice recog-
nition technology. Voice recognition technology accuracy
was not impacted by any clinically perceived or patient-
reported articulation disorder in the studied cohort;
therefore, it is possible that compensatory laryngeal
actions and posturing in the setting of dysphonia
decreased the clarity of the speech output. As dysphonic
voices have been shown to have decreased intensity, this
potential confounder was controlled by equalizing vocal
intensity for each recording.’” Therefore, individuals with
voice disorders associated with lower vocal intensity may
have worse intelligibility than demonstrated in this
study. The recordings were obtained in quiet rooms with-
out background voice, given that background noise has
been shown to limit listener intelligibility of dysphonic
voices.® However, voice recognition technology is often
used in situations with surrounding noise, and functional-
ity may be additionally limited in this setting.

The accuracy of voice recognition systems may be
improving with advances in technology. Improved soft-
ware, independent of learning, may contribute to
improved accuracy as demonstrated by the improved
word recognition scores for iPhone 11 Pro in comparison
to iPhone 6s. However, the absolute difference for dys-
phonic voices was small, with 69.1% for Apple iPhone
6S™ versus 71.1% for Apple iPhone 11 Pro™, and there
remains substantial opportunity for improvement. Fur-
thermore, similar to listeners using cognitive—perceptual
techniques to improve comprehension,?® voice recognition
technology may have the capacity to “learn” accuracy
through increased experience with voice. It is possible
that voice recognition technology can improve word recog-
nition score with increased familiarity with a speaker’s
vocal profile; additional investigation is warranted to
evaluate this hypothesis. The adaptability of voice recog-
nition technology to “learn” how to transcribe dysphonic
voices through repetition was not investigated, and this
would benefit from additional study.

To our knowledge, this is the first study to evaluate
the ability of common voice recognition technology sys-
tems to transcribe English-speaking voices with variable
degrees of dysphonia. A study of automatic speech recog-
nition with Arabic digits on dysphonic patients similarly
showed decreased speech recognition ranging from 56%
to 84%, compared to 100% with normal voices.?* In this
study, there was variable recognition based on pathology,
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with sulcus vocalis having the least accuracy in voice rec-
ognition and the highest accuracy with vocal cord nod-
ules.® Other literature concerning voice recognition and
dysphonia has focused on the identification of vocal
pathology using automatic speech recognition technology
or to evaluate intelligibility of speech in patients with
head and neck cancer to guide rehabilitation after treat-
ment.?> 25

Of note, there is limited publicly available informa-
tion about the design of these proprietary technologies.
This study evaluates the ability to transcribe recordings
of dysphonic and nondysphonic voices and is not a com-
parison of overall quality of these technologies. This area
represents an opportunity for additional investigation.

Limitations to this study include the heterogenous
diagnoses contributing to the voice disorder cohort. Fur-
ther investigation is warranted for subgroup analysis of
how these diagnoses separately impact efficacy of voice
recognition technology. The inclusion of a broader range
of voice recognition technology systems would also
improve generalizability. In addition, the recordings were
conducted at two different clinical sites, with different cli-
nicians or researchers and slightly different protocols and
equipment. A paired comparison is included that demon-
strates no significant difference between sites as it relates
to word recognition, but this should be considered a meth-
odological limitation. Furthermore, the methodology
would be strengthened by use of live speakers in lieu of or
in addition to recorded voices; however, this was not pos-
sible due to restrictions associated with the COVID-19
pandemic. The authors are planning to perform follow-up
investigations with live speakers when restrictions are
lifted to better understand and optimize the interactions
of dysphonic voices with these technologies.

As voice recognition technology becomes increasingly
embedded in daily life, dysphonic patients remain poten-
tially excluded from these innovations and interactions.
Early models of voice recognition were based on record-
ings with ideal acoustic qualities and limited diversity.
Future advancements in voice recognition technology
should be directed toward adding more diverse voice
models to enable recognition of non-normative voices and
speech patterns.

CONCLUSIONS

Commonly used voice recognition technology sys-
tems are deficient in their ability to transcribe moder-
ately and severely dysphonic voices. The results from
auditory—perceptual ratings show that increasing severity
of dysphonia correlates with worse function of voice recog-
nition technology. Daily interaction with voice recognition
technology is increasing; therefore, additional investiga-
tion with more diverse voice models is warranted to
improve applicability and accessibility of this technology.
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