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Automated Relative Fundamental Frequency Algorithms for
Use With Neck-Surface Accelerometer Signals
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Summary: Objective. Relative fundamental frequency (RFF) has been suggested as a potential acoustic mea-
Accep
This w

(CES), P
Science
with MA
help wit
Kolin, S
ique Tar
From

02215, M
ton Uni
Voice R
eral Hos
ical Sch
MGH In
Hearing
Medical
gology −
02118, M
Addre

Biomedi
mail: mg
Journa
0892-1
© 202
https:/
sure of vocal effort. However, current clinical standards for RFF measures require time-consuming manual
markings. Previous semi-automated algorithms have been developed to calculate RFF from microphone signals.
The current study aimed to develop fully automated algorithms to calculate RFF from neck-surface accelerome-
ter signals for ecological momentary assessment and ambulatory monitoring of voice.
Methods. Training a set of 2646 /vowel-fricative-vowel/ utterances from 317 unique speakers, with and without
voice disorders, was used to develop automated algorithms to calculate RFF values from neck-surface accelerom-
eter signals. The algorithms first rejected utterances with poor vowel-to-noise ratios, then identified fricative loca-
tions, then used signal features to determine voicing boundary cycles, and finally calculated corresponding RFF
values. These automated RFF values were compared to the clinical gold-standard of manual RFF calculated
from simultaneously collected microphone signals in a novel test set of 639 utterances from 77 unique speakers.
Results. Automated accelerometer-based RFF values resulted in an average mean bias error (MBE) across all
cycles of 0.027 ST, with an MBE of 0.152 ST and −0.252 ST in the offset and onset cycles closest to the fricative,
respectively.
Conclusion. All MBE values were smaller than the expected changes in RFF values following successful voice
therapy, suggesting that the current algorithms could be used for ecological momentary assessment and ambula-
tory monitoring via neck-surface accelerometer signals.
Key Words: Relative fundamental frequency−Accelerometer−Vocal hyperfunction.
INTRODUCTION
Relative fundamental frequency (RFF) is a family of acous-
tic measures that captures changes in fundamental fre-
quency (fo) during the transition into and out of a voiceless
consonant (eg, in a vowel−voiceless consonant−vowel
(VCV), production). Specifically, the instantaneous voice fo,
which describes the vibratory rate of the vocal folds,1 is
extracted from the 10 voicing cycles immediately preceding
and following the voiceless consonant. The changes
observed in fo during these transition periods are hypothe-
sized to be the result of the interplay between laryngeal
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muscle tension,2,3 aerodynamics,4 and vocal fold kinemat-
ics.5 Laryngeal muscle tension, in particular, is thought to
transiently elevate in order to assist in inhibiting voicing
before, during, and immediately after the voiceless conso-
nant.2,3 This increases in laryngeal muscle tension are
hypothesized to contribute to increases in offset and onset
RFF values.

However, previous work has shown that RFF is reduced
during voice offset and onset for individuals with voice dis-
orders characterized by excessive laryngeal tension, includ-
ing Parkinson’s disease (PD),6,7 laryngeal dystonia,8 and
vocal hyperfunction.9 It has been postulated that the
observed decreases in RFF are a result of higher baseline
laryngeal muscle tension in these populations.9,10 Higher
baseline laryngeal tension has been hypothesized to cause a
relative decrease in the transient elevation of laryngeal ten-
sion before, during, and after a voiceless consonant, there-
fore resulting in decreased RFF values when compared to
individuals with healthy voices.11 One study determined a
relationship between RFF and vocal effort, wherein healthy
individuals could modulate their vocal effort to achieve
RFF values that were similar to those observed in individu-
als with excessive laryngeal muscle tension.12 Further, the
RFF values of cycles preceding the voiceless consonant
were found to be correlated to listeners’ auditory perception
of vocal effort in individuals with typical voices who modu-
lated their vocal effort13 and in individuals with vocal
hyperfunction.11 Given that vocal strain is defined as the
“perception of excessive vocal effort”,14 these studies indi-
cate that RFF may have the potential to quantitatively
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FIGURE 1. Microphone signal of a vowel−voiceless consonant
−vowel utterance, /ifi/. The first and tenth vocal cycles of voice off-
set and voice onset have been identified. Instantaneous fundamen-
tal frequency (fo) values of the 10 offset cycles and 10 onset cycles
are normalized by offset cycle 1 and onset cycle 10, respectively.

ARTICLE IN PRESS

2 Journal of Voice, Vol.&&, No.&&, 2020
assess vocal strain across individuals, as well as to track
changes in vocal strain within an individual over time.

Despite interest in implementing software to calculate
RFF for clinical and research applications, manual estima-
tion is currently the gold-standard for computing RFF.
Trained technicians calculate RFF by visually inspecting
each RFF instance and making a subjective decision about
where the boundary between voiced and unvoiced speech
occurs in a VCV utterance. Acoustic software, such as
Praat,15 is then used to compute the reciprocal of each vocal
cycle duration of the 10 cycles prior to and following the
voiceless consonant, corresponding to the instantaneous fo
of each cycle. In order to generate a reliable RFF estimate,
the trained technician must repeat this process on at least
six RFF speech sequences, totaling approximately 20 to 40
minutes per estimate.8

Due to the time-intensive nature and rigorous training
required for manual estimation, a semiautomated method
for RFF estimation using microphone signals was devel-
oped.16 The semi-automated method of RFF estimation
operates in five steps: 1) the voiceless consonant and vowels
within a VCV utterance are identified, 2) the fo range of the
vowels are determined via autocorrelation, 3) positive and
negative peaks in amplitude that potentially correspond to
vocal cycles near the voiceless consonant are identified, 4)
the boundary between voiced and voiceless segments is iden-
tified via acoustic feature selection, and 5) RFF values are
calculated. Within this process, the first step requires the
user to confirm if the locations of the voiceless consonant
were correctly identified; if the user does not agree with the
locations identified by the RFF algorithms, the user may
then manually select the approximate midpoint of the voice-
less consonant. Manual and automated RFF are each calcu-
lated via Equation 1, wherein the instantaneous fo of the 10
cycles preceding and following the voiceless consonant are
each normalized to the approximate steady-state fo of the
nearest vowel (fo

ref). For voice offset, this approximate
steady-state fo is that of offset cycle 1, whereas for voice
onset, it is that of onset cycle 10, as shown in Figure 1.

RFFi STð Þ ¼ 39:86 � log10

f i
o

f ref
o

� �
ð1Þ

These original algorithms were further optimized to
account for the broad range of signal qualities that can be
expected for microphone signals.17 The optimized algo-
rithms improved fo estimation by using the Auditory Saw-
tooth Waveform Inspired Pitch Estimator − Prime 18-20 and
incorporated thresholds that were based on the signal qual-
ity of the specific speech sample. These changes resulted in
smaller errors in the semiautomated RFF estimates when
compared to the standard manual RFF estimates. This
work was an important step towards the implementation of
RFF for clinical voice assessment.

Although the majority of studies on RFF have employed
signals acquired via microphone,8-10,21 there has been a
growing interest in using neck-surface vibrations generated
during speech for ecological momentary assessment (EMA)
and ambulatory voice monitoring (eg,22-30). These vibra-
tions correspond to the underlying physiological mecha-
nisms of voice production, and can be measured
noninvasively via accelerometry. Unlike microphones, skin-
surface accelerometers are less sensitive to background
noise31 and aid in preserving speaker confidentiality since
the accelerometer signal cannot be used to construct intelli-
gible speech.32 Additionally, accelerometer signals captured
from below the larynx are easier to analyze compared to
microphone signals; this is because the resonances of the
respiratory system are relatively time-invariant compared to
the continuously varying resonances caused by the move-
ment of articulators (ie, tongue, jaw, lips) during speech pro-
duction.33 Since many voice problems are related to daily
vocal behavior, prescribed therapy may be improved if
hyperfunctional vocal behaviors can be noninvasively moni-
tored throughout a day of prolonged voice use.24 Addition-
ally, EMA and ambulatory monitoring allow researchers to
easily collect a large number of speech samples from a single
individual’s daily voice use without the need for multiple
visits to a clinic or laboratory.

It is important to consider how acoustic measures may
differ when calculated from a microphone signal versus an
accelerometer signal. Anterior neck-surface acceleration sig-
nals have been successfully used to derive voice characteris-
tics related to RFF, average fo, sound pressure level, vocal
activity detection, phonation time, cepstral peak promi-
nence, the relative amplitude of the first two harmonics
(H1-H2), and glottal airflow features.23,28,29,33-37 Previous
studies have shown high correlations when comparing
measures from microphone and accelerometer signals such
as jitter and fo in noisy environments.23,35

Although many acoustic measures are similar when
derived from microphone and accelerometer signals, RFF
measures are dependent on signal type. Studies have shown
that manual RFF estimates from microphone and acceler-
ometer signals both have the same general RFF pattern,34,38

but that accelerometer-based RFF estimates were signifi-
cantly lower for offset cycles.34 Microphone signals are



TABLE 1.
Mean, Range, and Standard Deviation of the Perceptual
Assessment of Overall Severity of Dysphonia in Speak-
ers With and Without Voice Disorders

Voice group Mean Min Max Standard

deviation

Without voice

disorders

10.6 0 39.0 7.2

With voice

disorders

22.4 0 100.0 20.7
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impacted by the radiation characteristics of the mouth and
environmental noise, and accelerometer signals are
impacted by neck surface transmission properties, which
could result in inherent differences between the two sig-
nals.28 Additionally, coarticulation of the voiceless conso-
nant could cause masking noise in the microphone signal
that would prevent identification of these cycles. Accelerom-
eter-based vocal cycles were, on average, detected closer to
the voiceless consonants when compared to microphone-
based vocal cycles, and differences in resulting RFF esti-
mates were reduced when vocal cycles were detected from a
low-pass filtered version of the microphone signal to reduce
the effects of coarticulation.34 Thus, although manual RFF
can be reliably estimated from accelerometer signals, they
cannot be directly compared to manual RFF estimates
from microphone signals.

Due to differences between microphone-based and accel-
erometer-based RFF estimates, the clinical relevance of
accelerometer-based manual RFF estimates has not yet
been shown to fully match the clinical relevance of micro-
phone-based manual RFF estimates. One study showed
that manual accelerometer-based RFF values of individuals
with vocal hyperfunction were lower than those of individu-
als with healthy voices.38 However, the clinical significance
of manual microphone-based RFF estimates as, eg, a corre-
late for vocal effort,13 a way to distinguish between different
voice disorders,6,39 and the ability to monitor changes fol-
lowing successful voice therapy,10 has yet to be investigated
in accelerometer-based manual RFF estimates. Therefore,
microphone-based manual RFF estimates remain the gold-
standard for clinical applications.

The limited clinical relevance for accelerometer-based
manual RFF estimates is problematic because accelerome-
ter signals have the potential to allow clinicians to assess
vocal strain and track the progress of prescribed treatment
via EMA or ambulatory voice monitoring. Additionally,
accelerometer signals may provide a cleaner signal in typical
clinical settings. Though microphone signals are almost uni-
versally accessible in clinics, accelerometers are less prone
to environmental noise, which is a common problem in clin-
ical settings.38 Clinics have a noise level of 64.1 dBA,40

exceeding recommendations that noise levels remain below
35 dBA when measuring acoustic signals with a headset
microphone placed at a distance of 4 to 10 cm.41 Thus, there
is a need for a way to obtain accurate estimates of clinically
relevant, gold-standard RFF measures (ie, those that would
be obtained from microphone-based manual RFF calcula-
tions) from accelerometer signals alone. In the current
study, we aimed to develop and evaluate automated RFF
algorithms for neck-surface accelerometer signals. In order
to investigate clinical applicability, the developed methodol-
ogy was compared to gold-standard manual RFF estimates
derived from microphone signals. Mean errors between the
proposed algorithms and the gold-standard manual esti-
mates were compared to the mean errors achieved by previ-
ous iterations of the RFF algorithms developed for
microphone signals.16,17
METHODS

Participants and Recording Procedure
Participants were a selected subset of 394 speakers from the
RFF database described in Vojtech et al, (2019). All partici-
pants selected had both microphone and neck-surface accel-
erometer data and had properly produced the required
speech stimuli. All participants were fluent speakers of
American English. Participants comprised 202 speakers
without voice disorders (70 male, 132 female) aged 18 to
100 years (M = 35.4 years, SD = 21.4 years) and 192 speak-
ers with voice disorders (61 male, 131 female) aged 18 to
84 years (M = 51.9 years, SD = 17.6 years). All speakers
without voice disorders reported no prior history of speech,
language, hearing or neurological disorders. Within the
group of individuals with a voice disorder, individuals diag-
nosed with PD were diagnosed with idiopathic PD by a neu-
rologist and were recorded while on their typical medication
regimen. All other participants with a voice disorder (ie,
muscle tension dysphonia, polyps, nodules, cysts, laryngeal
dystonia) were diagnosed by a board-certified laryngologist.
All participants completed written consent in compliance
with the Boston University Institutional Review Board. A
voice-specializing speech-language pathologist judged the
overall severity of dysphonia (0-100) of each participant
using the Consensus Auditory-Perceptual Evaluation of
Voice.14 The results of this assessment by voice group are
shown in Table 1. In order to assess intrarater reliability for
overall severity of dysphonia ratings, 15% of speech samples
were reassessed by the same speech-language pathologist in
a different sitting; Pearson’s product-moment correlation
coefficients were calculated via the statistical package R
(Version 3.2.4), resulting in an intrarater reliability of
r = 0.96.

Participants were recorded in one of the following envi-
ronments: (1) in a waiting area or quiet room at Boston
Medical Center using a dynamic headset microphone
(model: WH20XLR; Shure, Niles, IL), (2) in a quiet room
at Boston University using a condenser headset microphone
(model: SM35XLR; Shure, Niles, IL), or (3) in a sound-
attenuated room at Boston University using the same con-
denser headset microphone. For each environment, the
headset microphone was placed 45° from the midline and 7
to 10 cm from the lips. Regardless of location, the acceler-
ometer data was recorded by using an accelerometer sensor



TABLE 2.
Number of Speakers for Which Eight Trained Techni-
cians Manually Computed Relative Fundamental Fre-
quency. The Matrix Shows Common Speakers Analyzed
Between Technicians, hereas the Diagonal (bolded)
Describes the Number of Speakers a Single Technician
Rated in Total

Technician 1 2 3 4 5 6 7 8

1 223
2 63 136
3 80 8 91
4 67 0 0 75
5 0 65 3 8 77
6 0 0 0 0 0 86
7 0 0 0 0 1 86 87
8 13 0 0 0 0 41 41 54
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(model BU-21771-000, Knowles, Illinois, USA). The sensor
was placed on the surface of the neck just above the sternal
notch and secured using medical grade adhesive (3M, St.
Paul, MN). All microphone and accelerometer signals were
sampled at 44.1 kHz with 16-bit resolution.

Each participant was instructed to produce a set of
three uniform VCV utterances at their typical comfort-
able pitch and loudness. VCV utterances with the voice-
less consonant, /f/, were selected for recording in order
to minimize intraspeaker variability,42 such that the
selected VCV utterances were /afa/, /ifi/, and /ufu/. Par-
ticipants were instructed to produce three /afa/ repeti-
tions, take a breath, produce three /ifi/ repetitions, take a
breath, and produce three /ufu/ repetitions. Each set of
three repetitions was segmented into a separate speech
sample. Speech samples with unusable utterances due to
mispronunciation or errors in signal acquisition were
removed from analysis. Each speaker produced an aver-
age of 8.3 usable VCV utterances across the three speech
samples, resulting in 3285 VCV utterances from 1095
speech samples. Speech samples were separated into a
training set and a test set, with 882 speech samples (2646
VCV utterances from 317 unique speakers) comprising
the training set used to develop the algorithms and 213
speech samples (639 VCV utterances from 77 unique
speakers) comprising the test set used to validate the
algorithms.
Manual RFF Calculations
Manual RFF estimation was conducted for all VCV utter-
ances by a minimum of two trained technicians (trained
with an interrater reliability >0.931) using Praat software.
Manual analysis was performed using microphone signals,
as this is the current gold-standard technique for RFF esti-
mation. In order to manually calculate RFF within Praat,
the fo range was initially set to 90 to 500 Hz for female
recordings and 60 to 300 Hz for male recordings; however,
these settings were adjusted on an individual basis by the
trained technician. The 10 voicing cycles on either side of
the voiceless consonant /f/ were identified. The instanta-
neous fo was computed as the inverse of the period of each
voicing cycle. RFF was then calculated via Equation 1 for
voice offset using the vocal cycles prior to the voiceless con-
sonant and for voice onset using the vocal cycles following
the voiceless consonant. For offset voicing cycles, RFF was
computed relative to the instantaneous fo of the first vocal
cycle for voice offset (offset 1), whereas for onset voicing
cycles, RFF was computed relative to the instantaneous fo
of the tenth vocal cycle (onset 10). An RFF instance was
rejected if the trained technician determined that the sample
was glottalized or misarticulated. Of the valid RFF instan-
ces, manual RFF values were averaged across repetition, set
1The dataset used to train individuals in manual relative fundamental frequency
estimation is a separate dataset from that described here, and may be downloaded
from: https://sites.bu.edu/stepplab/research/rff/.
of utterances, and technician such that there was a single set
of 10 RFF values for voice offset and 10 RFF values for
onset per speaker. This averaged set was considered the
gold-standard for that speaker when comparing the results
of automated RFF algorithms.

Each technician reestimated 13% to 15% of their samples
in a different sitting and the associated intrarater reliability
was computed using Pearson’s product-moment correlation
coefficients. The average intrarater reliability was r = 0.91
(SD = 0.04, range = 0.87-0.99). Of the 394 speakers, 353
speakers were rated by two trained technicians and 41
speakers were rated by three trained technicians; Table II
shows the breakdown of instances rated by each of eight
trained technicians. Interrater reliability was calculated
using an intraclass correlation coefficient (ICC), with an
average interrater reliability of ICC (2,1) = 0.92 (SD = 0.06,
range = 0.80-0.99).
Automated RFF Estimation
Previous semiautomated microphone-based RFF algo-
rithms2 were modified for automated accelerometer-
based RFF estimation. Though the main analysis steps
remain the same, several significant changes were made
from previous algorithms based on the assumptions that
ambulatory accelerometer samples are less affected by
noise in the recording environment (ie, samples are not
categorized by acoustic features such as pitch strength)
and that ambulatory accelerometer samples can be col-
lected in much larger quantities (ie, stricter rejection cri-
teria may be implemented to ensure more reliable RFF
estimates). The application of this methodology and the
corresponding changes for use with neck-surface acceler-
ometer signals are described here.
2The semi-automated RFF estimation algorithms for microphone signals can be
downloaded from http://sites.bu.edu/stepplab/research/rff/.

https://sites.bu.edu/stepplab/research/rff/
http://sites.bu.edu/stepplab/research/rff/
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Accelerometer Signal Quality Assessment
Accelerometer signals varied in quality based on sensor
placement, skin properties and noise artifacts. In order to
determine the quality of each accelerometer signal, the 882
speech samples in the training set were separated into two
categories based on whether three VCV utterances could be
distinguished from background noise in the accelerometer
signals. Investigators visually inspected and listened to the
accelerometer signals in order to identify VCV utterances.
Speech samples in which three utterances could be identified
in the accelerometer signal were categorized as “clear qual-
ity”, whereas those in which they could not were categorized
as “poor quality.” Of the 882 speech samples, 690 were clas-
sified as clear quality, and 192 were classified as poor qual-
ity. This categorization was used to select algorithm
rejection criteria as detailed in the following section.
Fricative Identification
Unlike previous semi-automated RFF estimates, the current
fully automated accelerometer-based algorithms employed
a method to detect the location of fricatives by assuming
that each speech sample was comprised of three VCV utter-
ances. This process is detailed in the Appendix. In short, the
raw accelerometer signal was first band-pass filtered with a
fifth-order Butterworth filter between 100 and 1000 Hz in
order to remove low and high frequency noise in the acceler-
ometer signal. As a result, parts of the signal with clear voic-
ing were emphasized. The root mean square of this filtered
signal was calculated over 300-point overlapping windows
(10-point intervals). This RMS signal was then discretized
to represent voiced and unvoiced regions of the signal.
Additional steps (see Appendix) were used to remove
regions of the signal that were incorrectly identified as
voiced regions. The six longest-duration voiced regions
were identified as the vowels surrounding each fricative.
Fricative locations were then identified as the median point
between each pair of these six vowel regions.

In order to ensure that the algorithms successfully identi-
fied vowels in the accelerometer signal, a ratio between the
average RMS of the vowel sections (RMSOFFSET for offset
and RMSONSET for onset) and the average RMS of the
silence sections (RMSSILENCE), calculated from the two

Vowel-to-Noise Ratio ¼ 1
2

RMSOFFSET � RMSSILENCE

RMSSILENCE

� ��

þ RMSONSET � RMSSILENCE

RMSSILENCE

� ��
ð2Þ

sections of the signal between the first and second VCV and
the second and third VCV, was calculated based on Equa-
tion 2. If this ratio were below a set threshold, the acceler-
ometer signal was determined to be too noisy to properly
identify vowels, and the speech sample comprised of three
VCV utterances was rejected from further analysis. This
threshold was determined by a receiver operating character-
istic (ROC) analysis to distinguish between the vowel-to-
noise ratios of speech samples in the training set categorized
as “clear quality” and the vowel-to-noise ratios of speech
samples in the training set categorized as “poor quality.” A
threshold of 5.6 was used in order to conservatively avoid
“poor quality” samples at the expense of potentially reject-
ing some “clear quality” samples.
fo Estimation
Following the identification of the fricative locations, voic-
ing cycle durations were calculated by estimating the fo con-
tour surrounding the fricatives. Three fo estimation methods
were tested to determine the optimal method for calculating
changes in fo on a cycle-by-cycle basis (autocorrelation,
Auditory Sawtooth Waveform Inspired Pitch Estimator −
Prime,18-20 and Halcyon43). Each fo estimation method was
implemented into the current algorithms and used to evalu-
ate the training set. The locations of the resulting automated
RFF estimates were compared to the locations of the man-
ual RFF estimates. Halcyon43 led to the best correspon-
dence between manual and automated RFF estimates. As a
result, Halcyon was used in the final algorithms.

The fo contours were used to identify potential cycle loca-
tions surrounding each fricative. Within each of these cycles,
peaks were identified to refine the exact location of each
cycle. Both positive and negative peaks were identified, and
the set of peaks that was closer in time to the voiceless con-
sonant was used for final RFF computation.
Boundary Cycle Identification
The output of the Halcyon fo estimation was a vector of
potential cycle locations. These cycle locations were used to
determine which cycle corresponded to the boundary cycle
where there was a voicing transition (ie, the final cycle of
voicing in offset or the first cycle of voicing in onset). Unlike
previous RFF algorithms, the current algorithms utilized
different methods to identify the boundary cycle in the offset
and onset vowels.

Acoustic features expected to change during voicing tran-
sitions (normalized peak-to-peak amplitude, number of zero
crossings, and waveform shape-similarity) were used to
identify the boundary cycle corresponding to the last cycle
of voicing in offset vowels and the first cycle of voicing in
onset vowels. In order to investigate how these signal fea-
tures characteristically changed during voicing transitions,
the cycle locations of manual RFF calculated from micro-
phone signals were used to identify the gold-standard
boundary cycle for each VCV utterance in the training set.
The 10 voicing cycles preceeding the true offset boundary
cycle and following the true onset boundary cycle were also
identified using manual RFF. The average instantaneous fo
of each cycle was used to calculate the average cycle period
and identify 10 additional potential cycle locations in the
fricative, resulting in 10 potential cycle locations on either
side of the true offset and onset boundary cycle. Signal fea-
tures were calculated for each cycle and the resulting trends
across the dataset were used to develop a method for



FIGURE 2. Average trends of acoustic features for each cycle surrounding the true voicing boundary (Cycle #0). Shaded regions indicate
+/- 1 standard deviation from the average value at each cycle across the entire training set.
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reliably distinguishing the true boundary cycle from the 10
surrounding cycles on either side.

The average trends of each acoustic feature for both offset
and onset cycles are displayed in Figure 2, in which the 0th

cycle corresponds to the true boundary cycle as identified by
manual RFF. Positive cycles correspond to cycles following
the true boundary cycle and negative cycles correspond to
cycles preceding the true boundary cycle (eg, in offset, posi-
tive cycles are cycles located in the fricative and negative
cycles are located in the vowel). Shaded regions indicate +/-
1 standard deviation. As expected, each feature behaved
similarly in the accelerometer signal as in the microphone
signal in previous algorithm development.17 Specifically,
normalized peak-to-peak values decreased during the frica-
tive, whereas the number of zero crossings and shape simi-
larity increased. Based on the large standard deviation of
the shape similarity at all cycles, shape similarity was deter-
mined to be an unreliable feature for identifying the bound-
ary location in accelerometer signals. The final
implementation of this feature analysis for both offset and
onset is summarized below. Further details are discussed in
the Appendix.
FIGURE 3. Flowchart of steps used to calculate the offset
boundary cycle location.
Offset Boundary Cycle Identification
Methodology for identifying the boundary cycle that sepa-
rated voiced and unvoiced segments during voicing offset
was modified from techniques implemented in Lien et al
(2017).16 A sliding window traversed the accelerometer sig-
nal backward in time, from the midpoint of the fricative
toward the vowel. The size of this window was determined
by the average fo of the VCV instance, calculated using the
Halcyon fo estimation algorithm. Within each window,
peaks, and troughs in signal amplitude were collected. This
sliding window process resulted in a vector of potential
boundary cycle locations.

The following steps are summarized in Figure 3. Each
potential boundary cycle location was considered indepen-
dently as a single split point, such that the accelerometer sig-
nal was separated into a time-series vector representing a
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potential voiced segment to the left of the split point and
another representing a potential unvoiced segment to the
right of the split point. Normalized peak-to-peak amplitude
and the number of zero crossings were calculated for the
two segments. Prior to calculating the two acoustic features,
the accelerometer signal was first preprocessed. Normalized
peak-to-peak amplitude was calculated from a version of
the accelerometer signal that was band-pass filtered using a
second-order elliptic filter with cutoff frequencies equal to
three semitones below the minimum and above the maxi-
mum fo of the fo contour. The number of zero crossings was
calculated using a 1000-point smoothed version of the accel-
erometer signal that was subtracted from the raw acceler-
ometer signal to remove low-frequency drift from the
signal.

To identify how well the potential boundary cycle cor-
rectly separated the accelerometer signal into a vowel seg-
ment and voiceless fricative segment, a log-likelihood ratio
was calculated using each acoustic feature of the two time-
series vectors via Equation 3, where l1 corresponds to the
length of the first time-series vector and l2 corresponds to
the length of the second time-series vector. This resulted in a
single log-likelihood ratio based on normalized peak-to-
peak amplitude and a single log-likelihood ratio based on
the number of zero crossings for that specific split point (ie,
the potential boundary cycle location). This was repeated
for every potential boundary cycle location such that each
potential boundary cycle was used as a split point, resulting
in two series of log likelihood ratios (one based on normal-
ized peak-to-peak amplitude and another based on the num-
ber of zero crossings), with each log likelihood ratio in the
series corresponding to a particular potential boundary
cycle location that separated the signal into two segments.
The median of the potential boundary cycle that resulted in
the minimum log likelihood ratio for

Log-Likelihood Ratio ¼ l1 ln
Featurel1

l1

� �
þ l2 ln

Featurel2
l2

� �
ð3Þ

normalized peak-to-peak amplitude and the potential
boundary cycle that resulted in the minimum log likelihood
ratio for the number of zero crossings was marked as the
final calculated boundary cycle.
Onset Boundary Cycle Identification
Initially, the same method used to identify the voicing
boundary in offset was employed in onset. However, in the
training set, this method alone resulted in a boundary cycle
that was, on average, farther into the vowel than the manual
RFF estimate, resulting in an under-estimation of onset
RFF values. Thus, an additional method was implemented
to further shift the boundary cycle towards the true voicing
boundary.

Exploratory analysis of the accelerometer data showed
that there was a more dramatic cycle-by-cycle change in
the normalized peak-to-peak amplitude when initiating
voicing in onset than when terminating voicing in offset
(Figure 2). As a result, onset voicing could be character-
ized by very little variation in normalized peak-to-peak
amplitudes for potential cycles that are actually located
within the fricative, followed by large changes in normal-
ized peak-to-peak amplitudes for potential cycles immedi-
ately upon the initiation of voicing. In order to utilize this
feature, the five potential cycles furthest into the fricative
were used to calculate the mean and standard deviation of
the normalized peak-to-peak amplitudes that corre-
sponded to the known fricative location. Using these val-
ues, the normalized peak-to-peak amplitude of each cycle
was converted into a z-score. The first cycle resulting in a
z-score that exceeded a set threshold was determined as
the voicing boundary location. This threshold was deter-
mined by systematically tuning the threshold to determine
which value resulted in the largest number of optimal
boundary locations. It was found that this method was
best when considering only normalized peak-to-peak
amplitude instead of also incorporating zero crossing and
shape similarity. However, further conditional thresholds
are used to refine the boundary location based on the
number of zero crossings in abnormal samples. These
thresholds and all other thresholds are discussed and
reported in the Appendix.

Upon comparison of the voicing boundary calculated by
the z-score method with the voicing boundary determined
by manual RFF estimation, we found that in the training
set, the z-score method tended to identify the onset bound-
ary cycle before the manual RFF estimate. As a result, the
final voicing boundary cycle was calculated as the median
value of the boundary cycle determined by the log likeli-
hood method and the boundary cycle determined by the z-
score method.
Final RFF Calculation
In addition to the cycles that corresponded to the voicing
boundaries, the nine cycles prior to the boundary cycle in
offset (offset 10) and following the boundary cycle in onset
(onset 1) were used to determine RFF values according to
Equation 1. A final check was used to remove RFF values
that were considered physiologically invalid based on crite-
ria used to simulate RFF removal during manual estimation
from glottalization and misarticulation. This final check
resulted in the rejection of an offset or onset instance within
an individual VCV utterance. These rejection criteria were
identical to those from previous semi-automated RFF algo-
rithms and can be found in the code for previous iterations
of the algorithms made available online.16,17 Thus, final
RFF values were reported for all utterances that cleared
two stages of auto-rejection: the overall signal quality
assessment (see Fricative Identification) and the final RFF
check.
Model Performance
Automated/semiautomated RFF estimates were computed
for an independent test set (213 speech samples from 77
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speakers, totaling 639 VCV utterances prior to auto-rejec-
tion) using each of the following algorithms: (a) semi-auto-
mated RFF estimates computed using autocorrelation for fo
estimation in microphone signals16 (henceforth referred to
as “MIC-original algorithms”), (b) refined semi-automated
RFF estimates using microphone signals17 (“MIC-refined
algorithms”), and (c) the current automated RFF estimates
using accelerometer signals (“ACC-refined algorithms”).
The mean bias error (MBE) and root mean square error
(RMSE) between automated and manual RFF estimates
were compared among the three algorithms. Additionally,
Pearson’s correlation coefficients (r) between automated
and manual RFF estimates were compared among the three
algorithms in order to capture orthogonal errors to MBE
and RMSE.

Post hoc exploratory analyses were used to explore spe-
cific instances in which there was a large RMSE value
between the automated ACC-refined algorithms estimates
and the manual RFF estimates. Instances in which the
RMSE was larger than 1.0 ST for offset 10 or onset 1 were
visually inspected to determine whether the automated algo-
rithms correctly identified the boundary cycle based on the
manual RFF estimates. Boundary cycles that were incor-
rectly identified were determined to be either a result of sig-
nal quality or a pure algorithmic error by inspecting both
the microphone and accelerometer signal. If the boundary
cycle was correctly identified, then the error was attributed
to differences in the fo contours of the microphone and
accelerometer signals.
RESULTS

Test Set Performance
A total of 312 VCV utterances (48.8%) were rejected in the
ACC-refined algorithms due to signal quality assessment.
An additional 88 offset and 118 onset utterances were
removed in the final RFF check due to physiologically
invalid RFF patterns. In comparison, 223 offset and 240
onset utterances were removed due to physiologically
invalid RFF patterns in the MIC-original algorithms, and
340 offset and 311 onset utterances were removed due to
physiologically invalid RFF patterns in the MIC-refined
algorithms. In total, ACC-refined algorithms rejection crite-
ria resulted in 30 participants with zero usable offset utter-
ances and 33 participants with zero usable onset utterances,
TABLE 3.
Performance Metrics for Each of the Three Algorithms on A Te
639 Vowel-Consonant-Vowel Utterances. Mean Bias Errors (M
Averages Across All 10 Voicing Cycles, as Well as Individually fo

Algorithms

Version

Average MBE

(ST)

Average

RMSE (ST)

Offset 10

(ST)

MIC-original 0.11 0.30 0.53

MIC-refined 0.09 0.27 0.04

ACC-refined 0.03 0.30 0.15
compared to the MIC-original algorithms that had three
and four participants and the MIC-refined algorithms that
had 10 and five participants with zero usable offset and
onset utterances, respectively.

MBE and RMSE values were calculated by comparing
manual RFF estimates to each of the three semi-automated/
automated RFF values and are shown in Table 3. The
MBE and RMSE values for offset 10 and onset 1 are specifi-
cally shown, because these cycles are most likely to be
affected by changes in vocal function.8,10,12,39,44

Similarly, Pearson’s correlation coefficients were calcu-
lated across all cycles, as well as for offset 10 and onset 1.
ACC-refined algorithms resulted in an average Pearson’s r
value of 0.90, and Pearson’s r values of 0.86 and 0.46 for off-
set 10 and onset 1, respectively. In comparison, MIC-origi-
nal algorithms had an average Pearson’s r value of 0.88,
and Pearson’s r values of 0.84 and 0.53 for offset 10 and
onset 1, respectively. MIC-refined algorithms had an aver-
age Pearson’s r value of 0.88, and Pearson’s r values of 0.76
and 0.61 for offset 10 and onset 1, respectively.
Post Hoc Error Analysis
A post hoc analysis of the test set was used to identify rea-
sons why individual RFF instances resulted in large RMSE
errors. All utterances in which the RMSE was greater than
1.0 ST were visually inspected. Of the 88 offset and 111
onset utterances with RMSE greater than 1.0 ST, 53.4% of
offset utterances and 43.2% of onset utterances were from
speakers with voice disorders, comparable to 49.3% of all
utterances in the test set that were from speakers with voice
disorders. The locations of manual RFF cycles and auto-
mated RFF cycles were compared in both offset and onset.
Each utterance was classified into one of four categories
based on why the utterance resulted in such a large differ-
ence between the manual and automated RFF. These cate-
gories are described below. Sample instances of each
category are shown in Figure 4.

Category 1: Utterances in which the microphone signal
was masked by high-energy noise caused by coarticulation
of the fricative and vowel resulted in automatic RFF esti-
mates identifying voicing cycles further into the fricative
than the manual RFF estimates. In these instances, low-
pass filtering the microphone revealed additional voicing
cycles that could not be identified during manual RFF of
st Set of 213 Speech Samples From 77 Speakers, Totaling
BE) and Root Mean Square Errors (RMSE) are Shown as
r Offset Cycle 10 and Onset Cycle 1

MBE Onset 1 MBE

(ST)

Offset 10

RMSE (ST)

Onset 1

RMSE (ST)

0.08 0.71 0.86

0.02 0.56 0.86

-0.25 0.65 1.07



FIGURE 4. Examples of instances in which the root mean square error (RMSE) between manual RFF and automated RFF is greater than
1.0 ST for each of the four categories. The signal is plotted in blue for both microphone and accelerometer signals, with the corresponding
RFF locations plotted in red. The x-axis is in arbitrary time units, and the y-axis is in arbitrary voltage units. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the Web version of this article.)
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the microphone signal. This is consistent with previous work
that showed that manual RFF estimates from filtered
microphone signals trend toward manual RFF estimates
from accelerometer signals.34 Of the 88 offset utterances
that had RMSE values greater than 1.0 ST, 31 (35%) were
classified as category 1. Of the 111 onset utterances that had
RMSE values greater than 1.0 ST, 37 (33%) were classified
as category 1.

Category 2: Utterances in which the accelerometer signal
was too noisy or the final voicing cycles were not visible
resulted in automatic RFF estimates failing to identify the
voicing cycles closest to the fricative. This occurred for 22
(25%) offset instances and 13 (12%) onset instances.

Category 3: There were several utterances in which the
ACC-refined algorithms incorrectly identified the boundary
cycle despite both the microphone and accelerometer signal
showing a clear voicing boundary. These errors were
considered to be due to algorithmic errors, instead of signal
characteristics. There were 15 (17%) offset utterances and
18 (16%) onset utterances that resulted from algorithmic
errors.
Category 4: Finally, there were many utterances in which
the ACC-refined algorithms correctly identified the location
of the boundary cycle, but the RFF values calculated from
the microphone and accelerometer signals were still
markedly different. In these utterances, the automated algo-
rithms identified the same boundary location as the trained
technicians. Thus, remaining errors were a result of differen-
ces in the fo contour estimates. These differences could
either be attributed to algorithmic differences between con-
tour estimation algorithms (ie, autocorrelation in Praat for
manual RFF vs. Halcyon in automated RFF), or innate dif-
ferences in the content of the two signals. There were 20
(23%) offset instances and 43 (39%) onset instances due to fo
contour errors.
DISCUSSION

Performance of Algorithms
The current ACC-refined algorithms resulted in comparable
errors to both the MIC-original and MIC-refined algo-
rithms in a novel test set. All three versions of the algorithm
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demonstrated similar average Pearson’s correlation coeffi-
cients, with greater correlations for offset 10 than for onset
1. An average MBE of 0.03 was smallest in the ACC-refined
algorithms, whereas an average RMSE of 0.30 was identical
to the MIC-original algorithms and slightly higher than the
MIC-refined algorithms. When inspecting errors at the
cycles closest to the fricative, ACC-refined had a smaller
MBE and RMSE for offset 10 when compared to the MIC-
original algorithms, but larger errors when compared to the
MIC-refined algorithms. ACC-refined algorithms had a
larger MBE and RMSE for onset 1 when compared to both
the MIC-original and MIC-refined algorithms.

The RMSE values were notably larger than the corre-
sponding MBE values, as seen in previous iterations of the
algorithms.16,17 Whereas MBE is the result of averaging
directional errors across multiple RFF instances, RMSE is
the result of averaging the error magnitudes of each individ-
ual RFF instance. This indicates that although estimates of
individual RFF utterances may be inaccurate, the average
estimate from multiple RFF utterances results in a relatively
low error when compared to the average manual estimate.
As a result, much like previous iterations of the algorithms,
the current ACC-refined algorithms should be used to calcu-
late average RFF estimates across multiple utterances from
the same speaker.

The current ACC-refined algorithms resulted in smaller
errors for offset cycles than for onset cycles. This is not sur-
prising given that voicing onset is more abrupt than voicing
offset, resulting in faster changing RFF values.10 Thus, if
there is an error in the location of the boundary cycle
approximation, it would be expected that this would result
in a greater error in the RFF value in onset cycles than in
offset cycles.
Error Analysis
Post hoc analysis of utterances in which the RMSE was
larger than 1.0 ST revealed that many of these errors could
be attributed to a mismatch in the fo contours (Category 4;
23% of Offset instances and 39% of Onset instances). Hal-
cyon uses normalized cross-correlation which could result in
inherently different cycle definitions than the autocorrela-
tion performed in Praat during manual RFF estimation.
Furthermore, manual RFF allows the technician to identify
cycles by either peaks or troughs, which could result in nota-
bly different RFF than the cycles defined by Halcyon.
This could imply that errors in Category 4 are caused by
simply using different fo estimation methods even when the
boundary cycle location was correctly identified. However,
it could also indicate that there is an innate difference in
the information between the microphone and the accelerom-
eter signals.

In order to further investigate the cause of the error when
the boundary cycle was correctly identified, author M.D.G.
completed manual RFF estimates on the accelerometer sig-
nals for each of the utterances classified as category 4. Man-
ual RFF was completed using Praat (ie, using the same fo
estimation method as the manual microphone-based RFF
estimates), but the boundary cycle was selected to be identi-
cal to the boundary cycle identified by the ACC-refined
algorithms for each instance. If these new manual acceler-
ometer-based RFF values were similar to the manual micro-
phone-based RFF values, then the error between the
manual and automatic RFF values would likely be due to
differences in the fo estimation method. If, however, these
values were still different, then the error was likely a result
of differences in the information presented in the micro-
phone and accelerometer signal.

Manual accelerometer-based RFF was calculated for
20 offset utterances and 43 onset utterances in which the
boundary cycle was correctly time-aligned in the auto-
mated RFF estimate. The average RMSE between the
manual accelerometer-based RFF estimates and the
manual microphone-based RFF estimates were calcu-
lated for offset 10 and onset 1 as 1.37 and 1.30 ST,
respectively. In comparison, the average RMSE between
the automated accelerometer-based RFF estimates and
the manual microphone-based RFF estimates were calcu-
lated for offset 10 and onset 1 as 1.72 and 1.90 ST,
respectively. Thus, even when using an identical fo esti-
mation method via manual estimation, RFF errors were
only reduced by 20% to 32%, indicating that there were
innate differences between the information presented in
the microphone and accelerometer signals that the cur-
rent ACC-refined algorithms could not account for.

The result that there were errors based on inherent differ-
ences between the two signals was not surprising. One study
compared manual RFF estimates derived from microphone
and accelerometer signals and found that signal type had a
small, but significant effect on manual RFF estimates.38

The authors reasoned that this effect was due to differences
caused by what is captured in each signal. Whereas the
accelerometer signals capture neck-surface vibration result-
ing from laryngeal acoustics and vocal fold collision trans-
mitted through subglottal resonances and neck tissue, the
microphone signals capture acoustic information ie, also
affected by the vocal tract shape, movement of articulators,
environmental noise, and radiation characteristics of the
mouth. Additionally, microphone signals are more subject
to masking noise from coarticulation, which can mask addi-
tional voicing cycles during manual estimation. Based on
the post hoc analysis of large error instances, coarticulation
masking resulted in inaccurate boundary identification in
35% of offset instances and 33% of onset instances (Cate-
gory 1). Thus, there are inherent errors when comparing the
RFF values of two different types of signals, as expected
based on previous studies in manual RFF.34,38 This may
explain why the semi-automated MIC-refined algorithms
were able to achieve lower RFF errors than the ACC-
refined algorithms. Even if both the MIC-refined and the
ACC-refined algorithms successfully identify the proper
boundary cycle, automated microphone-based RFF esti-
mates will be inherently closer to the manual RFF estimates
from the same type of signal.
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Potential for EMA and Ambulatory Monitoring
Although the current ACC-refined algorithms resulted in
somewhat larger errors than the MIC-refined algorithms,
the resulting MBE errors were still small when consider-
ing the intended purpose of the ACC-refined algorithms.
Specifically, ambulatory monitoring may be used to longi-
tudinally monitor the vocal function of hyperfunctional
individuals throughout voice therapy.24 In a study that
calculated RFF values in individuals with vocal hyper-
function prior to and following voice therapy, Stepp et al
observed that RFF values, on average, increased by 0.50
ST for offset cycle 10 and 0.81 ST for onset cycle 1 fol-
lowing voice therapy.10 RMSE values were large (0.65 ST
and 1.07 ST for offset cycle 10 and onset cycle 1, respec-
tively), but both MBE values (0.15 ST and −0.25 ST for
offset cycle 10 and onset cycle 1, respectively) were
smaller than the anticipated therapy effects, suggesting
that these therapy effects are unlikely to be masked by
algorithmic error when RFF estimates are averaged
across multiple utterances.

Ambulatory monitoring may also be used to identify
daily hyperfunctional behaviors.24 Several studies have
observed a decrease in RFF values when healthy partici-
pants were instructed to speak with increased vocal
effort.12,13,45 Vocal effort is thought to be a hallmark of
hyperfunction behavior. McKenna and colleagues reported
that, when compared to a typical speaking effort, individu-
als speaking with maximum effort have an average decrease
in RFF of 0.99 ST for offset cycle 10 and 0.45 ST for onset
cycle 1.45 These changes in RFF as a result of hyperfunc-
tional behavior are larger than the observed MBE values in
the overall test set and larger than the observed MBE value
for offset cycle 10 in the subset of individuals with voice dis-
orders. This suggests that algorithmic errors will not prevent
the identification of hyperfunctional behaviors via EMA
and ambulatory monitoring.

Given that offset cycle 10 resulted in smaller MBE values
than onset cycle 1, specifically when comparing offset 10 to
onset 1, it is clear that voicing offset RFF values were more
robust to algorithmic estimation errors. Both offset and
onset RFF have demonstrated variable sensitivity to vocal
function in different studies. One study found that an
increase in RFF of offset cycle 10 was seen in 81% of indi-
viduals with vocal hyperfunction who successfully com-
pleted voice therapy.10 In comparison, an increase in RFF
of onset cycle 1 was seen in 94% of the same individuals.
Another study found that RFF of offset cycle 10 was a sig-
nificant predictor of listener-perception of vocal effort in
individuals with healthy voices who self-modulated their
vocal effort, but that RFF of onset cycle 1 was not.13 Based
on the current results, we recommend that clinical research
using the current ACC-refined algorithms for EMA and
ambulatory monitoring should focus on offset values for
observing and monitoring vocal hyperfunction in order to
reduce the impact of known estimation errors. Future
research should focus on reducing the error in onset value
estimates.
Limitations and Conditions for Application
The subset of speech samples used in the current study con-
sisted of speech samples from both individuals with healthy
voices and individuals with voice disorders. This distribu-
tion was chosen in order to generalize performance across a
wide-range of speech samples. However, device perfor-
mance may vary between individuals with and without voice
disorders. Due to conflating factors such a signal quality (a
majority of speech samples from individuals with voice dis-
orders are recorded in a noisier location), this comparison is
beyond the scope of the current study. Thus, future studies
should investigate device performance in individuals with
and without voice disorders by better controlling for con-
founding factors.

The current ACC-refined algorithms make several
assumptions that should be considered. Unlike previous
RFF algorithms, RFF estimation in the current algorithms
is fully automated by automatically determining the loca-
tion of fricatives in the speech sample. In order to do this,
the algorithms assume three isolated VCV utterances.
Though algorithmic parameters can be easily modified to
accommodate a larger number of VCV utterances in each
sample, the current algorithms are not equipped to automat-
ically calculate RFF from stimuli that are not in the form of
isolated VCV utterances, such as running speech. Thus, the
current algorithms only function for EMA where partici-
pants would be required to specifically produce VCV utter-
ances. Future work should focus on adapting the current
algorithms for running speech in order to allow for true
ambulatory monitoring of everyday voice use in natural dis-
course level contexts.

During fricative identification, the ACC-refined algo-
rithms also removed all samples that did not exceed a set
vowel-to-noise ratio in order to avoid samples in which the
fricative locations were incorrectly identified, as well as
samples that would be considered too noisy to properly
identify RFF values manually. Although this threshold is a
normalized ratio and was based on a wide range of sam-
ples from both healthy and disordered speakers, it is possi-
ble that this threshold is not appropriate for all
accelerometer signals. Indeed, all data were collected using
a Knowles accelerometer. It is important to acknowledge
that the current ACC-refined algorithms were developed to
optimize performance on signals acquired with specific
equipment and that performance may change across differ-
ent experimental set-ups.

With a priori knowledge that the intended purpose of the
algorithms would be for EMA, design of the current ACC-
refined algorithms made the assumption that there was a
large number of speech samples available for each partici-
pant. Therefore, thresholds based on the vowel-to-noise
ratio of the signal (see Fricative Identification in Methods)
were designed to reject a greater number of utterances for
the sake of more accurate RFF estimations. These thresh-
olds were in addition to the rejection criteria in place for all
three versions of the algorithms in which utterances are
rejected if RFF patterns are not consistent with
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physiologically valid productions (see Final RFF Calcula-
tion in Methods).

Stricter rejection criteria are important to consider for
applications in which the amount of data is more limited.
The current dataset had a total of nine utterances per partic-
ipant. After rejection, many participants only had a few
usable utterances, with 5.0 and 4.7 usable utterances for off-
set and onset RFF, respectively, when averaging across par-
ticipants with a nonzero number of usable utterances. These
averages are similar to previous versions of the algorithms
(5.5 and 5.3 for offset and onset in MIC-original; 4.4 and
4.3 for offset and onset in MIC-refined).16,17 Though it is
possible that RFF estimates may change with additional
utterances, one study demonstrated that access to at least
six utterances (prior to rejection) resulted in a stable level of
association between the RFF of onset cycle 1 and the per-
ception of vocal effort in individuals with laryngeal dysto-
nia.8 Therefore, use of the ACC-refined algorithms will be
most appropriate when a large number of utterances (no
less than six) per participant can be collected.
CONCLUSION
A set of fully automated ACC-refined algorithms was devel-
oped to calculate clinically relevant RFF estimates from
accelerometer signals. When compared to the gold-standard
of manual RFF estimates from microphone signals, auto-
mated RFF values from neck-placed accelerometer signals
have an average MBE of 0.03 ST, with an MBE of 0.15 ST
for offset 10 and an MBE of -0.25 ST for onset 1. These
errors are smaller than the expected differences in RFF val-
ues following successful voice therapy for individuals with
vocal hyperfunction,10 indicating that the current algo-
rithms could be used for EMA and ambulatory monitoring
via neck-surface accelerometer signals.
APPENDIX
The following paragraphs provide supplemental detail about
specific thresholds and signal processing used to identify frica-
tive locations and voicing boundary cycle locations in the
ACC-refined algorithms. This appendix, the main text, and
code available online from previous versions of the algo-
rithms3, should provide sufficient detail to replicate this work.
FIGURE 5. Example of fricative identification in a speech sam-
ple of three utterances of /ufu/, in which the blue line is the raw
accelerometer signal, the green line is the filtered and smoothed
version of the accelerometer, the orange line shows the vowel seg-
ments, and the yellow circles correspond to the fricative locations.
Fricative Identification
The ACC-refined algorithms first calculate the location of
the three fricatives in a speech sample consisting of three
VCV utterances. This process begins by first identifying the
vowels on either side of each fricative (six vowel segments in
total). The raw accelerometer signal is first band-pass fil-
tered with a fifth-order Butterworth filter between 100 and
1000 Hertz. The root mean square of this filtered signal is
calculated over a 300-point window length with a 10-point
3The semi-automated RFF estimation algorithms for microphone signals can be
downloaded from http://sites.bu.edu/stepplab/research/rff/.
step size. The natural logarithm of the normalized RMS is
then smoothed using a 500-point moving average filter.

Each point in the signal is then discretized into three val-
ues (0, 1, 2) using the standard MATLAB function “discre-
tize.” Points in the signal classified as the largest in
magnitude (a value of 2) are considered vowel segments,
whereas all other points (values of 0 and 1) are considered
fricative or silence segments. All vowel segments less than
90 points in length are considered to be misclassified and are
given a value of 0. If there are less than six vowel segments,
then segments of the signal that are classified as the second
largest in magnitude (a value of 1) are added as additional
vowel segments. Vowel segments less than 90 points in
length are again given a value of 0.

Following this first iteration, if there are still less than six
vowel segments, the signal will be rediscretized into four val-
ues (0, 1, 2, and 3), with the same process being repeated (ie,
points with a value of 3 are assigned as vowel segments, fol-
lowed by points with a value of 2 if six vowel segments of
proper length are not identified, followed by points with a
value of one if six vowel segments of proper length are still
not identified). If, after all three nonzero values are added as
additional vowel segments, there are still less than six vowel
segments of proper length, the signal is again rediscretized
using five values. Following this, the sample is rejected if six
vowel segments of proper length are not located.

If six or more vowel segments are successfully identified,
the fricative locations are then identified as the median point
between each pair of the six largest vowel segments. These
fricative locations are used to identify voicing offset and
onset for each VCV utterance. An example of this discreti-
zation is shown in Figure 5.
The x-axis is arbitrary time units and the y-axis is arbitrary voltage
units.(For interpretation of the references to color in this figure leg-
end, the reader is referred to the Web version of this article.)

http://sites.bu.edu/stepplab/research/rff/
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Fundamental Frequency (fo) Estimation
Estimation of the fundamental frequency (fo) contour was
performed using a custom-made MATLAB script that
implemented the Halcyon model43 for fo estimation. No
changes were made to the model described by Azarov et al.
Offset Boundary Cycle Identification
All information pertaining to the identification of the offset
boundary cycle location is provided in the main text. No
additional information is needed.
Onset Boundary Cycle Identification
An onset boundary cycle was determined by first finding one
boundary cycle location using the same method as described
for offset boundary cycle identification, henceforth referred
to as the log likelihood boundary cycle. A second boundary
location was calculated based on z-scores and conditional
thresholding. The reason for identifying two boundary loca-
tions is discussed in the main text. The focus of the following
text will be on the methodology.

Unlike in the log likelihood boundary cycle identification,
the normalized peak-to-peak amplitude was calculated on a
cycle-by-cycle basis such that a vector of values for each fea-
ture was calculated based on the cycle locations from the fo
contour. The mean and standard deviation of the first five
values in the peak-to-peak vector (corresponding to the cycles
closest to the fricative) were calculated and used to normalize
each peak-to-peak value in the vector into a z-score using the
formula: z-score = (x − m) / s, in which x is the given value,
m is the mean, and s is the standard deviation.

Analyzing the peak-to-peak z-score patterns of individual
utterances showed that there were a range of possible pat-
terns. As a result, conditional thresholding was imple-
mented to target specific patterns. These conditional
thresholds were derived from systematically changing each
threshold until the greatest number of boundary samples
could be correctly selected in the training set. The optimized
thresholding is as follows. First, from the vector of peak-to-
peak z-scores, the cycle immediately preceding the first cycle
to have a z-score over 19 was marked as the boundary cycle.
However, if the peak-to-peak z-score of at least one cycle
was above 50 and the peak-to-peak z-score of the last cycle
in the vector was also above 50, the boundary cycle would
be reselected as the last cycle to have a z-score below 19.
Similarly, if there was at least one cycle with a peak-to-peak
z-score above 50, but the peak-to-peak z-score of the last
cycle in the vector was not above 50, then the peak-to-peak
z-score vector was normalized and the boundary cycle was
set as the last cycle to have a normalized peak-to-peak z-
score below 0.16. Finally, there were many onset utterances
in which the maximum peak-to-peak z-score was much
larger than the majority of the utterances in the training set.
As a result, if the peak-to-peak z-score of at least one cycle
was above 220, then the peak-to-peak z-score vector was
normalized and the boundary cycle was set as the last cycle
to have a normalized z-score below 0.16. Without these
conditional thresholds in place, the first offset cycle or the
last onset cycle would often be incorrectly identified as the
voicing boundary cycle, resulting in large RFF errors. The
current threshold values resulted in the greatest correspon-
dence between the automatically identified boundary cycles
and the manually identified boundary cycles.

The final boundary cycle from this conditional threshold-
ing was considered the z-score boundary cycle. The median
of the z-score boundary cycle and the log likelihood ratio
boundary cycle was calculated and rounded up to the near-
est cycle resulting in a final onset boundary cycle.
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