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Objective: Prephonatory vocal fold angle trajectories may
supply useful information about the laryngeal system but
were examined in previous studies using sigmoidal curves
fit to data collected at 30 frames per second (fps). Here,
high-speed videoendoscopy (HSV) was used to investigate
the impacts of video frame rate and sigmoidal fitting
strategy on vocal fold adductory patterns for voicing
onsets.
Method: Twenty-five participants with healthy voices
performed /ifi/ sequences under flexible nasendoscopy at
1,000 fps. Glottic angles were extracted during adduction
for voicing onset; resulting vocal fold trajectories (i.e.,
changes in glottic angle over time) were down-sampled
to simulate different frame rate conditions (30–1,000 fps).
Vocal fold adduction data were fit with asymmetric
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sigmoids using 5 fitting strategies with varying parameter
restrictions. Adduction trajectories and maximum adduction
velocities were compared between the fits and the actual
HSV data. Adduction trajectory errors between HSV data
and fits were evaluated using root-mean-square error and
maximum angular velocity error.
Results: Simulated data were generally well fit by sigmoid
models; however, when compared to the actual 1,000-fps
data, sigmoid fits were found to overestimate maximum
angle velocities. Errors decreased as frame rate increased,
reaching a plateau by 120 fps.
Conclusion: In healthy adults, vocal fold kinematic
behavior during adduction is generally sigmoidal, although
such fits can produce substantial errors when data are
acquired at frame rates lower than 120 fps.
T ransnasal flexible laryngoscopy is a staple in clinical
practice for investigating voice production, enabling
visualization of laryngeal anatomy and physiology.

However, clinical examination of the vocal structures using
traditional flexible laryngoscopy is hindered by the standard
time resolution of the camera used to record endoscopic
images. Specifically, clinical laryngoscopic images are typi-
cally recorded at 30 frames per second (fps), which is far
too slow to resolve the vibratory dynamics of the vocal folds
(VFs; Aghdam et al., 2017; Ishii et al., 2011). As such, tradi-
tional flexible laryngoscopy has also been applied to examine
gross abductory and adductory gestures. These movements,
although over an order of magnitude slower than VF
vibrations, are still quite fast: Average maximal abductory
and adductory movement times occur within 104–227 ms
(Dailey et al., 2005). Therefore, the standard 30-fps sam-
pling rate can only measure an average of three to seven
frames during each abductory or adductory movement.
Due to this crude time resolution and thus limited data, VF
kinematic features during abductory and adductory gestures
have primarily been examined by manually estimating VF
(glottic) angles extending from the anterior commissure,
posterior to the VF processes. The sparse data have been
subsequently fitted with a cubic (Dailey et al., 2005) or,
more recently, an asymmetric sigmoidal function (Britton
et al., 2012; McKenna, Heller Murray, Lien, & Stepp,
2016; Stepp, Hillman, & Heaton, 2010). These fits allow
for the estimation of features of the movement trajectory (e.g.,
maximum velocity), though the accuracy of these techniques
has yet to be fully vetted.

Recently, the incorporation of new imaging technology
in medical instrumentation has led to improvements in time
resolution of laryngoscopy procedures (Mehta & Hillman,
2012). Laryngeal examination via high-speed videoendoscopy
(HSV) provides higher temporal resolution (much faster
than 30 fps), which allows for accurate estimation of both
Disclosure: The authors have declared that no competing interests existed at the time
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vibratory features (Deliyski, Powell, Zacharias, Gerlach, &
de Alarcon, 2015; Patel, Dubrovskiy, & Döllinger, 2014)
and VF kinematic trajectories (Freeman, Woo, Saxman,
& Murry, 2012; Iwahashi, Ogawa, Hosokawa, Kato, &
Inohara, 2016). Several approaches using HSV have been
developed to examine characteristics of steady-state phona-
tion and associated vocal onsets and offsets (e.g., Aghdam
et al., 2017; Braunschweig, Flaschka, Schelhorn-Neise, &
Döllinger, 2008; Döllinger, Dubrovskiy, & Patel, 2012;
Freeman et al., 2012; Guzman et al., 2017; Ikuma, Kunduk,
Fink, & McWhorter, 2016; Iwahashi et al., 2016; Kunduk,
Döllinger, McWhorter, & Lohscheller, 2010; Kunduk, Vansant,
Ikuma, & McWhorter, 2017; Kunduk, Yan, McWhorter, &
Bless, 2006; Mehta, Deliyski, Quatieri, & Hillman, 2011;
Patel et al., 2014; Patel, Forrest, & Hedges, 2017; Patel,
Unnikrishnan, & Donohue, 2016; Patel, Walker, & Sivasankar,
2016; Watanabe, Kaneko, Sakaguchi, & Takahashi, 2016;
Woo, 2017; Yamauchi et al., 2016; Zacharias, Deliyski,
& Gerlach, 2018); yet, to date, there are few studies
characterizing VF kinematics of laryngeal posturing during
connected speech.

VF kinematic features, particularly adductory move-
ments, are of interest due to previous work, suggesting
that they may reveal information about biomechanical
characteristics of the laryngeal system (Cooke, Ludlow,
Hallett, & Scott Selbie, 1997). A schematic of the expected
behavior of glottic angle kinematics during the transition
from a vowel to a voiceless consonant and back to a vowel
is illustrated in Figure 1. Stepp et al. (2010) used glottic
angle measurements, which were introduced by Dailey et al.
(2005), to quantify adduction trajectories. In particular, an
estimate of laryngeal kinematic stiffness was calculated by
Figure 1. Schematic of glottic angle kinematics (top: glotti
voicing offset and onset surrounding a voiceless consonan
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normalizing the maximum angular velocity (MAV) of the
VFs during adduction by the maximum extent of the glottic
angle during movement. The authors implemented a simple
virtual trajectory model of VF kinematics to determine a
relationship between changes in intrinsic laryngeal muscle
stiffness parameters in the model and the kinematic stiff-
ness ratios of the resulting simulated movement. Results
showed that increases in stiffness were associated with
changes in kinematic stiffness ratios, further supporting
the use of VF kinematics as an estimate of laryngeal
stiffness.

Although adductory kinematics have shown promise
as indicators of laryngeal function, the VF adductory
kinematics were acquired using conventional speed video-
endoscopy systems at a frame rate of 30 fps (Britton et al.,
2014, 2012; Dailey et al., 2005; McKenna et al., 2016; Stepp
et al., 2010). Due to restrictions in frame rate, many re-
searchers reconstructed adduction trajectories by fitting a
parametric model to estimate adduction velocity (Britton
et al., 2014, 2012; Dailey et al., 2005; McKenna et al.,
2016; Stepp et al., 2010). Methodological decisions regarding
the appropriate type of fitting model have been described
as a possible source of measurement error in the resulting
estimates of stiffness. Indeed, researchers using HSV to in-
vestigate steady-state voice production have shown that a
frame rate of 4,000 fps is required for an accurate assess-
ment of VF vibratory features (Deliyski et al., 2015).
Recently, a study by Iwahashi et al. (2016) used an HSV
system recording at 4,000 fps to investigate whether the para-
metric fit approach used in previous studies was a valid
means of analyzing laryngeal kinematics. The authors fo-
cused on examining motion of the laryngeal structures
c angle, bottom: glottic angular velocity) during
t.
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during sustained phonation and throat clears. Although the
adduction trajectories showed polynomial-like curves rather
than sigmoidal curves during throat clears, the authors sug-
gested that adduction trajectories were generally well fit by
a sigmoidal model for sustained phonation (Iwahashi et al.,
2016). However, these findings were based on qualitative
impressions from sustained phonation. As such, it is unclear
as to whether these findings are generalizable to continuous
speech and whether temporal resolution and fitting strategy
impact the appropriateness of sigmoidal fits to VF adductory
kinematics.

Objectives
The purpose of this study was to (a) determine whether

VF adductory behaviors during voicing onset follow a
sigmoidal trajectory, as suggested by Stepp et al. (2010);
(b) determine whether sampling rates affect the appro-
priateness of the sigmoidal fit to VF trajectories; and
(c) identify the strategies that produce the most appropriate
model fits. We addressed these aims by simulating different
frame rates and applying different fitting strategies in order
to determine the errors between sigmoidal fits of simulated
data and the actual adduction trajectories obtained with
HSV.

Method
Participants

Twenty-five participants with healthy voices aged
18–29 years (16 women, nine men; M = 20.8 years, SD =
2.9 years) produced vowel–consonant–vowel (VCV) utter-
ances of the nonsense word /ifi/. Participants were speakers
of Standard American English with no formal or trained
singing experience beyond grade school, all of whom re-
ported no prior history of speech, language, or hearing
disorders. All participants were nonsmokers and were
screened for healthy vocal function by a certified speech-
language pathologist via auditory–perceptual screening
and examination via transnasal flexible laryngoscopy. In-
formed consent was obtained, and the study was carried
out in compliance with the Boston University Institutional
Review Board.

Participants were first trained to repeat a string of
the utterance /ifi/ as two sets of four /ifi/ productions,
with a pause for breath between the sets (i.e., /ifi ifi ifi ifi/,
pause, /ifi ifi ifi ifi/). The VCV utterance /ifi/ creates an
abductory gesture during the /f/ phoneme and an adduc-
tory revoicing gesture for the following /i/ vowel (Lien,
Gattuccio, & Stepp, 2014). We chose the phoneme /i/ be-
cause it creates an open pharynx for laryngeal visualiza-
tion under transnasal flexible laryngoscopy (McKenna
et al., 2016). A metronome was used to train participants
to modulate their vocal rate across three speeds (Hetrich
& Ackermann, 1995; Ostry & Munhall, 1985): slow rate
(SR; 50 words per minute [wpm]), regular rate (RR; 65
wpm), and fast rate (FR; 80 wpm). Participants were then
instructed to “increase your effort during your speech as
Diaz-C
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if you are trying to push your air out” while maintaining
a comfortable speaking rate and volume in order to modu-
late their vocal effort. Specifically, participants were trained
to modulate their vocal effort across three levels: mild
(MIL), moderate (MOD), and maximum (MAX). Partici-
pants were trained to produce /ifi/ strings at these varying
speeds and levels of effort as a means of altering laryngeal
stiffness and tension, since kinematic stiffness ratios have
been determined during simulated modulations in previous
studies (McKenna et al., 2016; Stepp et al., 2010).
Procedure
Participants were seated for the duration of the exper-

imental recordings. Microphone signals were recorded
using a directional headset microphone (Shure SM35
XLR) placed 45° from the midline and 7 cm from the
lips. A neck-surface accelerometer (BU Series 21771 from
Knowles Electronic) was placed on the anterior neck,
superior to the thyroid notch and inferior to the cricoid
cartilage using double-sided adhesive. Microphone and
accelerometer signals were preamplified (Xenyx Behringer
802 Preamplifier) and digitized at 30 kHz (National In-
struments 6312 USB).

Participants underwent transnasal flexible laryngos-
copy (PENTAX Medical, Model FNL-7RP3, 2.4 mm).
Participants were instructed to repeat each condition twice
(i.e., SR, RR, FR, MIL, MOD, MAX) while maintaining
their voice intensity as best as possible. Each condition was
recorded twice in order to maximize the number of VCV
utterances in each condition in terms of partition recording
time and camera storage capacity. The endoscope was
attached to a camera (FASTCAM Mini AX100l, Model
540K-C-16GB, 256 × 256 pixels) with a 40-mm optical
lens adapter and a steady xenon light source (300-W Kay-
Pentax Model 7162B). Video images were acquired using
Photron Fastcam Viewer software (v.3.6.6) at a frame rate
of 1,000 fps. HSV image acquisition was synchronized with
microphone and accelerometer recordings by using the
HSV camera as the “master” (i.e., the FASTCAM Mini
AX100l camera synchronization signals). Since signal
synchronization happens in real time, it is expected that a
natural time delay between microphone and accelerometer
recordings will occur, mainly due to the distance from
glottis to microphone. However, such time delays (less than
1 ms) were considered negligible in comparison with the
time scale of the observed adductory motions.
Data Processing
Glottic Angle Extraction

A semiautomated technique was developed to extract
glottic angles from concurrently recorded HSV, micro-
phone, and accelerometer signals, which is fully described
in the Appendix. In brief, users interacted with a graphical
user interface (see Figure 2 for user display) to automati-
cally extract glottic angles from either the microphone and
accelerometer signal. If the technicians did not agree with
adiz et al.: Prephonatory Vocal Fold Kinematic Trajectories 1687
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Figure 2. Glottic angle extraction results from a healthy participant producing the vowel–consonant–vowel utterance /ifi/ using typical vocal
rate and vocal effort. The left panel shows the current frame of the high-speed video, with left and right vocal fold edges and respective fitted
lines displayed. The top right plot shows the overlaid microphone and accelerometer signal. The middle and bottom plots display the algorithmic
output in terms of glottic angle waveform (middle) and glottic angular velocity (bottom). The location in time of the frame shown to the left is
marked with a black dotted line on the right-hand plots for reference. Shaded regions represent the duration of time corresponding to the
vowel /i/ in the utterance /ifi/.
the resulting glottic angle waveform, the technicians
manually marked glottic angles at a down-sampled rate
of 50 Hz (see Manual Angle Marking in the Appendix for
more details). Following manual angle marking, the algo-
rithm incorporated manual angle data as a reference, which
improved VF tracking in the event of camera or epiglottis
motion. The result of this process was a glottic angle time
waveform from each /ifi/ instance.

Using this methodology, a total of 2,053 recorded
/ifi/ instances were processed. The technicians accepted ini-
tial automated angle results in 69.8% of the cases, with an
additional 10.2% accepted after the aid of manual angle
markings. This resulted in 1,642 /ifi/ productions that were
considered viable for further analysis, with 223 correspond-
ing to SR, 288 to RR, 294 to FR, 293 to mild effort, 276
to moderate effort, and 268 to maximum effort. Of the
20% of /ifi/ productions that were rejected, 9.9% were con-
sidered unusable due to errors in algorithm estimation of
the glottic angle waveform, and the remaining 10.1% of
cases were rejected prior to algorithmic analysis due to
glottal occlusion by supraglottal structures.

Technician Training and Reliability
Four technicians were trained to use the algorithm

to extract glottic angle data from the resulting HSV data.
1688 Journal of Speech, Language, and Hearing Research • Vol. 62 •
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Prior to extraction of experimental data, raters completed
a training module that consisted of extracting glottic
angles from a subset of HSV data segments that in-
cluded variations in scope angles, speech rate, and effort
levels. An a priori intraclass correlation coefficient ICC
(2, 1) ≥ .80 was required for a rater to be considered profi-
cient in glottic angle extraction when using the proposed
algorithm.
Adduction Trajectories and Velocities
In order to investigate whether VF adductory behavior

is sigmoidal and whether sampling rate or fitting strategy
affects the appropriateness of the sigmoidal fits, we simulated
different frame rates and applied different fitting strategies
to the glottic angle data. We then calculated MAV and
root-mean-square (RMS) errors between the actual adduc-
tion trajectories obtained via HSV (“nonparametric
analysis”) and the sigmoidal fits of simulated data (“para-
metric analysis”) as a function of simulated frame rate and
sigmoidal fitting strategy. MAV errors were computed as a
signed difference value, wherein a negative quantity signi-
fied that the magnitude of adductory velocity, as computed
via a sigmoidal fit, was larger than the actual extracted
trajectory.
1685–1706 • June 2019
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Nonparametric analysis. Adduction trajectories and
MAV estimates were obtained by directly analyzing the
raw glottic angle data. Instead of fitting a model to the raw
glottic angle data, the data were cropped and low-pass fil-
tered to produce a smoothed glottal response; this response
was used as a reference for adduction trajectories.

Cropping the angle data was necessary in order to
remove VF oscillations captured in the raw angle trajectory
response. These oscillations did not pertain to abductory
and adductory movements that occur during voice offset
and onset, respectively, in the VCV utterance /ifi/. Angle
trajectories were cropped using an envelope-thresholding
method, which consisted of overlapping high (EH) and
low (EL) angle waveform envelopes by a factor, S, which
was proportional to the average of envelope distances
(di). The expression of S can be seen in Equation 1
as follows:

S ¼ K

ND
∑D di;D ¼ di : di ≤ p10 EH −EL

�� ��� �� �
; (1)

in which p10(f(x)) is the 10th percentile of f(x) and the fac-
tor к is an empirically determined constant gain of 7. These
factors (i.e., 10% shift and the factor к) were empirically
found to sufficiently capture the time window containing
VF abductory and adductory gestures (within envelopes EH

and EL overlap), while excluding data points corresponding
to VF vibration.

VF data contained within the overlap (see Figure 3a)
were then low-pass filtered with a Hamming window-based
finite impulse response filter of order n = 15 with a cutoff
frequency of 25 Hz to smooth the response for velocity
estimation. From here, maximum adductory angular velocity
was computed by finding the maximum declination rate
located between the maximum glottic angle and 20% of the
maximum glottic angle. This 20% limit was first adopted
by Cooke et al. (1997) as a method of normalizing glottic
trajectories across gestures. In particular, the authors dem-
onstrated that termination of adduction was difficult to
identify in certain cases, such as when vibration begins con-
currently with the adduction process (Cooke et al., 1997).
Although identifying the start of vibration is more straight-
forward when using HSV (e.g., via frame-by-frame analysis;
Deliyski, 2010), we adopted the same 20% limit for our non-
parametric analysis to account for potential abrupt VF
closure (e.g., when vibratory onset precedes adduction
termination). Figure 3b shows an example of the resulting
glottic angle and maximum adduction velocity waveforms
using nonparametric analysis.

Parametric analysis. Adduction trajectories and max-
imum adduction velocity were estimated from asymmetric
sigmoidal fits derived from down-sampled glottic angle
data (see Figure 4); the angle data were down-sampled in
order to emulate lower frame rate scenarios. Only down-
sampled data points within the adduction window remained
as part of the adduction-sampled data. VF adduction tra-
jectories were then estimated by fitting a four-parameter
asymmetric sigmoid model onto the remaining angle data
Diaz-C

Downloaded from: https://pubs.asha.org Boston University on 08/30/2020
points (Equation 2), known as a Gompertz function (Tan,
2008).

f t; a; b; c; dð Þ ¼ d þ a−dð Þ⋅2−e−b t−cð Þ
(2)

Maximum adduction angular velocity was then esti-
mated by extracting the maximum declination rate of the
sigmoid curve in Equation 2. The use of a Gompertz func-
tion was motivated by the need of a asymmetric sigmoidal
curve with parameters flexible enough to (a) accommodate
the location and extent of motion of the VF angle observed
(i.e., maximum and minimum angle asymptotes), (b) imple-
ment an inflection point that is adjustable but limited to
extent of motion so the function can be fitted over the
asymmetric S-shape observed at adduction times, and
(c) reduce the number of parameters needed to estimate
the VF trajectory. The Gompertz model is a specific case
of the generalized logistic function; however, the Gompertz
function requires one less parameter to be described, which
empirically proved to be numerically more stable for our
purposes than the more general form. The sigmoidal fitting
process is described in detail at its respective subsection
below.

Frame rate simulation. Glottic angle trajectories ob-
tained at 1,000 fps were down-sampled to emulate those
that could be obtained at slower frame rate scenarios. Down-
sampling was chosen in order to minimize potential measure-
ment errors that may be introduced by tuning the angle
extraction algorithm to process resampled video inputs.
With respect to the latter point, changes in frame rate could
affect internal or user-defined parameter selections; as a
result, algorithmic performance may not be comparable
across frame rate conditions when using resampled video
inputs. Instead, emulating lower frame rates allows for the
direct comparison of angles within a respective VCV in-
stance across different frame rates.

All glottic angle waveforms considered usable during
the angle extraction procedure were down-sampled pro-
gressively from 1,000 fps to 480, 240, 120, 60, and 30 fps.
These values were empirically chosen to match the conven-
tional endoscopic frame rate of 30 fps. The down-sampling
phase was randomized to remove synchrony between down-
sampled sets of the same /ifi/ instances. The 1,000-fps wave-
forms were considered a reference and were processed using
both nonparametric and parametric techniques shown in
Figures 3 and 4, respectively.

Sigmoidal fitting process. A Gompertz sigmoid func-
tion was implemented as a target model to characterize the
adduction trajectories resulting from the parametric analy-
sis. In cases where only a small number of kinematic
samples are available to model the adduction trajectory,
prior work (McKenna et al., 2016) suggests implementing
fitting parameters or assuming asymptotic values outside
the adduction time frame. As a result, five sets of reason-
able assumptions were chosen for the target model under
down-sampled conditions; these sets are denoted as fitting
strategies. Each of these fitting strategies reflects a priori
adiz et al.: Prephonatory Vocal Fold Kinematic Trajectories 1689
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Figure 3. Nonparametric glottic angle analysis, with (a) low/high envelope thresholding to isolate abduction and adduction
trajectories and (b) filtering of the phonation-cropped glottic angle waveform, with maximum angular velocity calculated
for the adductory gesture. The length of the filter (order n = 15) is shown by a filter window size (black arrows) of Tw = 15 ms.
Shaded regions represent the duration of time corresponding to the vowel /i/ in the utterance /ifi/.
expectations for the adduction trajectory behavior. For in-
stance, a fitting strategy could fix the offset parameter of
the target model to zero to assume a minimum glottic an-
gle of zero. Conversely, this assumption could be encoded
by extending the adduction trajectory with additional zero-
valued data points, such that the sigmoidal fit favors zero.
Similar assumptions may be proposed for maximum glottic
angles in order to restrict the fitting solution at the initia-
tion of adduction.

Different fitting strategies were implemented to re-
flect assumptions made regarding the sigmoid curve during
adduction; each strategy employs the same sigmoid model,
but with different restrictions applied. Different fitting
strategies were implemented to reflect assumptions made
regarding the sigmoid curve during adduction; each strat-
egy employs the same sigmoid model, but with different re-
strictions applied. These fitting strategies were implemented
to reflect a variety of methods that may be used to estimate
the timing and final motions of the VFs during the
adduction process. The motivation for these strategies was
1690 Journal of Speech, Language, and Hearing Research • Vol. 62 •
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derived from previous observations performed by Cooke
et al. (1997); in particular, this study described the final
stages of the adductory gesture as difficult to observe be-
cause (a) VF trajectory transitions from adduction to
phonation are a continuous process, wherein the timing
for final VF posture could be occluded by supraglottic
compression or preceded by the very first onset of phona-
tion cycles, and (b) the adductory gesture may end in a
complete or incomplete glottal closure. As such, five possi-
ble fitting strategies (S1–S5) were evaluated (see Figure 5)
to consider these observations in the parametric estimation
of the adductory trajectory:

S1. The offset and amplitude parameters of the fitted
trajectory (Equation 2) are set to zero and to the value of
the maximum detected glottic angle, respectively. This strat-
egy assumes that adduction always ends with full glottic
closure and that the maximum asymptotic value of the sig-
moid fit is equal to the maximum observed glottic angle.

S2. Offset and amplitude parameters of the fitted tra-
jectory mimic that of S1. Additionally, the portion of the
1685–1706 • June 2019
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Figure 4. Parametric glottic angle analysis, with (a) down-sampled glottic angle waveform estimated at 1,000 frames
per second to simulate lower frame rates and (b) fitting an asymmetric sigmoid model to simulated data points within
the adduction window, with maximum angular velocity calculated for the adductory sequence. Shaded regions
represent the duration of time corresponding to the vowel /i/ in the utterance /ifi/.
VF trajectory prior to the initiation of adduction is
appended with the maximum angle value, while the por-
tion of the VF trajectory considered after the end of adduc-
tion is appended with a zero value. This strategy assumes
the same restrictions as S1; however, a stronger weighting
is applied to flatten the tails of the sigmoid curve outside
the adduction window.

S3. The offset and amplitude parameters of the
fitted trajectory are set to the value of the minimum detected
glottic angle and to the value of the maximum detected
glottic angle, respectively. The glottic angle trajectory is
appended using the value of the maximum angle prior to
adduction and of the minimum angle following adduction.
This strategy assumes similar restrictions as S2, except that
there is no presumption that the adduction window ends
with full glottic closure.

S4. The offset parameter of the fitted trajectory is
forced to the value of the minimum detected glottic angle
found within the adduction window; however, the ampli-
tude parameter is estimated via the sigmoidal fitting pro-
cess. The fitted trajectory is appended with a single data
point that is valued at the maximum glottic angle prior to
Diaz-C
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the adduction window. The glottic angle trajectory is then
extended following the end of adduction using minimum
angle data points. The assumption in this strategy is differ-
ent from previous strategies with respect to the initiation of
adduction, in that the maximum observed glottic angle is
not the value at which the sigmoid curve begins. The fitting
process must then find the amplitude parameter using the
maximum glottic angle as an initial estimate, while the
appended data point applies an additional weight to keep
the optimal amplitude parameter within a similar magni-
tude to the initial estimate.

S5. All sigmoid parameters are estimated during the
sigmoidal fitting process. The glottic angle trajectory is ex-
tended on either end of the adduction window using only
one data point: a maximum angle data point at the start of
adduction and a minimum glottic data point at the end of
adduction. This strategy applies similar techniques as S4
for adduction initiation and termination; yet, S5 also con-
siders that the minimum observed glottic angle during the
adduction window does not correspond to the exact value
that the sigmoid asymptotically approaches at the end of
the window.
adiz et al.: Prephonatory Vocal Fold Kinematic Trajectories 1691
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Figure 5. Example of fitting strategies S1–S5 (denoted in the upper-
left corner). All down-sampled waveforms emulate video recording
at 60 frames per second. Blue circles correspond to the altered
glottic angle waveform after taking into account the replacement,
addition, or removal of down-sampled data according to fitting
strategy. Shaded regions represent the duration of time corresponding
to the vowel /i/ in the utterance /ifi/.

1692 Journal of Speech, Language, and Hearing Research • Vol. 62 •
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Statistical Analysis
Two repeated-measures analysis of variance tests

were performed using restricted maximum likelihood esti-
mation to analyze the effects of fitting strategy and frame
rate on MAV and RMS errors of the adduction trajecto-
ries. Prior to analysis, the magnitude of MAV and RMS
errors were log transformed to meet the assumption of nor-
mality. For each analysis of variance model, participant
was set as a random factor with simulated sampling rate
(six levels: 30, 60, 120, 240, 480, and 1,000 fps), strategy
(five levels: S1, S2, S3, S4, and S5), condition (six levels:
SR, RR, FR, MIL, MOD, and MAX), and all interactions
as fixed effects. An α level of .05 was used as a cutoff crite-
rion for significance in each analysis. Effect sizes for the
factors were calculated using a squared partial curvilinear
correlation (ηp

2).

Results
Effects of Condition, Fitting Strategy,
and Simulated Frame Rate on Adduction
Trajectory Errors

Table 1 displays the model summaries constructed
for RMS and MAV errors. Condition, simulated frame
rate, and strategy each had a significant effect on the log-
transformed MAV and RMS errors (p < .001 for all). Ad-
ditionally, interactions of Condition × Simulated Frame
Rate, Condition × Strategy, and Simulated Frame Rate ×
Strategy were significant in both models. Of note, the in-
teraction of Condition × Simulated Frame Rate × Strategy
was not significant for either variable.

Simulated frame rate was observed to have a large
effect size (ηp

2 = .34 for RMS error, ηp
2 = .65 for MAV er-

ror) on the resulting adduction trajectory errors. The inter-
action of Simulated Frame Rate × Strategy had a medium
effect size on RMS error (ηp

2 = .12) and a large effect size on
MAV error (ηp

2 = .35). Strategy was observed to produce me-
dium effects on the outcome measures (ηp

2 = .17 for RMS
error, ηp

2 = .11 for MAV error). Although condition was
significant in both models, only a small amount of the vari-
ance in either RMS or MAV error was attributable to con-
dition or its interactions with simulated frame rate and
strategy.

Adduction Trajectory Errors by Fitting Strategy
Figure 6 displays median and interquartile range

(IQR) values for RMS and MAV errors across speech
condition and fitting strategy. Error values were calculated
by comparing parametric and nonparametric results at a
down-sampled frame rate of 120 fps; a frame rate of 120 fps
was selected for this analysis since it was the median simu-
lated frame rate of those examined (i.e., 30, 60, 120, 240,
and 480 fps). Median RMS error was lowest in strate-
gies without a zero-level restriction for the offset param-
eter (i.e., S3, S4, and S5), regardless of speech condition
(see Figure 6a). Conversely, median MAV error changed
1685–1706 • June 2019
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Table 1. Results of analysis of variance tests on root-mean-square (RMS) and maximum angular velocity (MAV) errors between parametric
and nonparametric analyses.

Model Effect df ηp
2 F p

log10|RMS error| Participant 24 .23 587.6 < .001
Condition 5 .01 53.1 < .001
Simulated frame rate 5 .34 5004.0 < .001
Strategy 4 .17 2392.0 < .001
Condition × Simulated Frame Rate 25 .00 4.5 < .001
Condition × Strategy 20 .00 2.6 < .001
Simulated Frame Rate × Strategy 20 .12 336.0 < .001
Condition × Simulated Frame Rate × Strategy 100 — 0.4 1.00

log10|MAV error| Participant 24 .27 148.3 < .001
Condition 5 .04 73.9 < .001
Simulated frame rate 5 .65 3733.0 < .001
Strategy 4 .11 308.8 < .001
Condition × Simulated Frame Rate 25 .01 3.8 < .001
Condition × Strategy 20 .00 1.7 .028
Simulated Frame Rate × Strategy 20 .35 262.7 < .001
Condition × Simulated Frame Rate × Strategy 100 — 0.8 .918

Note. Effect sizes are only reported for statistically significant factors. Bolded effect sizes are those discussed further in the article. Em dashes
signify the lack of reporting.

Figure 6. Error values of parametric and nonparametric analyses by condition (vertical axis) and strategy (horizontal axis) at a frame rate of
120 fps, with (a) median root-mean-square (RMS) error, (b) interquartile range of RMS error, (c) median of maximum adduction velocity (MAV)
error, and (d) interquartile range of MAV error. Error values equal to zero (yellow) represent complete correspondence between the parametric
and nonparametric analyses. Bolded values indicate the smallest errors per condition. FR = fast rate; MAX = maximum; MIL = mild; MOD =
moderate; RR = regular rate; SR = slow rate.
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as a function of sigmoidal fitting strategy and speech
condition. Yet, considerable differences were not ob-
served in median MAV errors across condition, which is
likely a result of high variability in error (see Figure 6d).
The IQRs of MAV errors were, however, found to be
considerably reduced in strategies without a zero-level
restriction (i.e., S3–S5) when compared to those with
such a restriction imposed (i.e., S1–S2).

Figure 7 shows the median and IQR values for
RMS and MAV errors across frame rate and fitting
strategy. Error values were calculated by compar-
ing parametric results for each frame rate with non-
parametric results at 1,000 fps. When examining trajectory
errors across frame rate, median and IQR values of RMS
error were lower in strategies that did not impose a zero-
level restriction (i.e., S3–S5) for frame rates above 30 fps
(i.e., 60–1,000 fps; see Figures 7a and 7b); however, the
opposite trend was observed for RMS errors at 30 fps. Ad-
ditionally, MAV errors were, on average, lower in magni-
tude for these strategies at 60 fps or higher. Of note,
trajectory errors increase substantially when parametric
Figure 7. Error values of parametric and nonparametric analyses by frame
root-mean-square (RMS) error, (b) interquartile range of RMS error, (c) med
range of MAV error. Error values equal to zero (yellow) represent complet
analyses. Bolded values indicate the smallest errors per frame rate. fps = fr
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analysis is conducted using a down-sampled rate of
30 fps.

Adduction Trajectory Errors Between Conventional
and High-Speed Frame Rates

Figures 8 and 9 compare results of parametric and
nonparametric analyses between frame rates of 30 and
1,000 fps. These two frame rates were chosen to compare
since 30 fps has been considered the standard speed for
videoendoscopy systems (Britton et al., 2014, 2012; Dailey
et al., 2005; McKenna et al., 2016; Stepp et al., 2010),
whereas 1,000 fps was the highest sampling rate employed
in the current study.

When comparing parametric and nonparametric
analyses using 1,000 fps (see Figure 8a, right boxplots at
each strategy), median RMS errors were larger when the
sigmoid fit was forced to zero at the termination of adduc-
tion (S1 and S2) rather than leaving the respective parame-
ter to the fitting process (S5). On average, median MAV
error was relatively stable across strategy for 1,000-fps
rate (vertical axis) and strategy (horizontal axis), with (a) median
ian of maximum adduction velocity (MAV) error, and (d) interquartile
e correspondence between the parametric and nonparametric
ames per second.
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Figure 8. Boxplot comparison of adduction trajectory errors across
strategy. Two analyses are compared: 30 frames per second (fps)
parametric versus 1,000 fps nonparametric and 1,000 fps parametric
versus 1,000 fps nonparametric. Root-mean-square (RMS) errors
are shown in (a), and maximum adduction velocity (MAV) errors are
shown in (b).
analyses (middle boxplots at each strategy in Figure 8b).
Such trends are not observed when comparing the 30-fps
parametric results with the 1,000-fps nonparametric results
(left boxplots). In particular, the median and IQR of RMS
and MAV error each increase across strategy, with zero-
level restriction strategies (i.e., S1 and S2) producing the
smallest errors.

Compared with S5, S1 showed a relatively small
change in median error as simulated frame rate increased
(left boxplots at each frame rate in Figure 9), changing
from median RMS error of 8.28° to 5.55° (see Figure 9a)
and respective median MAV errors from −94.04 to −22.05
deg/s (see Figure 9c). In contrast, S5 showed a larger range
of improvement in median RMS error, changing from
19.22° to 1.72° (see Figure 9b), and median MAV errors
from −1,583 to 0.58 deg/s (see Figure 9d).

Sigmoidal fitting often failed when extended data point
strategies were not used to fit 30-fps data (i.e., S5 against
S1–S4); in these scenarios, sigmoidal trajectory estimates
were incalculable approximately 33% of the time. Yet, de-
spite the large failure rate, fitting procedures that append
extra data points to the fitted adduction trajectories may
still be too unstable for implementation. Specifically, the
Diaz-C
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IQRs of RMS and MAV errors were larger for S2–S5 de-
spite successful sigmoid fitting (see Figures 9b and 9d). Of
note, fit failures occurred less often when the frame rate
was increased above 30 fps (less than 5% as shown in
Figures 9e and 9f).

At lower frame rates, all sigmoid fit strategies over-
estimated maximum angle velocities (negative median MAV
errors observed in Figures 9c and 9d). However, RMS and
MAV errors were reduced as the frame rate increased, al-
though this reduction was not linear. It can be observed that
an error inflection point occurs at 120 fps, in which median
RMS and MAV errors were relatively stable for both fitting
strategies (S1 and S5) at frame rates beyond this inflection
point.
Discussion
Modeling the Behavior of Adduction Trajectories
as Sigmoidal Functions

The present findings are consistent with previous
work by Iwahashi et al. (2016), in which the closing gesture
can be seen decelerating prior to VF impact at phona-
tion onset. Similarly, in the present data, monotonically
decreasing angle trajectories during adduction were consis-
tently observed. Therefore, an asymmetric sigmoid model
is a plausible representation of the average glottic angle be-
havior during adduction (i.e., prior to phonation) as long
as (a) the VCV instance presents a monotonically decreas-
ing curve and (b) the number of samples and fitting strat-
egy are reasonably chosen. In general, however, fits to
adduction trajectories overestimate MAVs when the frame
rate is decreased; as such, fitting failures are expected to in-
crease substantially below 60 fps. It follows that asymmet-
ric sigmoid models may be less useful in describing
VF adduction trajectories obtained from conventional
videoendoscopies obtained at 30 fps, despite the fact that it
is at these lower frame rates that the sparse data require
such fitting techniques the most. We observed that a frame
rate of at least 120 fps was required to increase the predict-
ing power of the model.

Prior work in this area has already determined that
VF assessment via HSV is sensitive to frame rate. For
instance, Popolo (2017) concluded that clinical rates
based on mucosal wave features have the potential to cre-
ate discrepancies in clinical assessments under inadequate
frame rates; a minimum of 4,000 fps was considered neces-
sary to minimize feature degradation. However, this work
focuses on observing slower laryngeal motions unrelated to
mucosal wave features. Instead, abduction and adduction
kinematics originate by varying laryngeal muscular activa-
tion to move the laryngeal structures. Adduction trajecto-
ries for the VCV utterance /ifi/, described here, occur over
approximately 150 ms (McKenna et al., 2016). Since the
nature of these motions is driven to a greater degree by
muscle activation rather than by aerodynamics, slow mo-
tion trajectories may be captured at 1,000 fps. As a result,
the adduction model-based estimations remain valid even
adiz et al.: Prephonatory Vocal Fold Kinematic Trajectories 1695
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Figure 9. Comparison of adduction trajectory errors for parametric analysis performed at low frame rates (i.e., 30, 60, 120, 240, and 480
frames per second [fps]) versus 1,000-fps nonparametric analysis (left boxplots at each frame rate) and 1,000-fps parametric analysis (right
boxplots at each frame rate). Root-mean-square (RMS) errors are shown in (a) and (b), maximum adduction velocity (MAV) errors are shown in
(c) and (d), and parametric fit failure percentages are shown in (e) and (f). Errors and fit failures for S1 are shown in (a), (c), and (e), while those
for S5 are shown in (b), (d), and (f).
after down-sampling from 1,000 fps to simulated scenarios
of 480 and 240 fps.

Effects of Fitting Strategy on Adduction
Model-Based Estimation

Selecting the most appropriate fitting strategy sub-
stantially impacts the associated fitting error. The most
valid fitting strategy for the lowest frame rate (i.e., 30 fps)
is not the best strategy for frame rates of 60 fps or higher:
As soon as more data points are available for the sigmoid
fit, the resulting median error considerably decreases when
switching from S1—which resulted in the lowest error when
a frame rate of 30 fps was used—to another strategy (S2–S5).
A particular example of this can be examined by comparing
1696 Journal of Speech, Language, and Hearing Research • Vol. 62 •
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the fitted curves in Figure 5 with the reference curve in
Figure 3b. Specifically, the adduction curve fits the extracted
glottic angle waveform better when using S5 rather than S1
at 60 fps; however, reducing the sampling rate to 30 fps
negatively impacts S5, such that the fit process fails due to
a lack of data points for the regression. In contrast, S1 per-
forms poorly against the reference, but it is still calculable
with the few points available (see Figure 4b).

This variation in strategy performance may be a re-
sult of S5 estimating two additional parameters that S1
considers known prior to the sigmoidal fitting process. Spe-
cifically, the number of unknown parameters in the model
dictates the minimum data points needed to compute a
nonlinear regression. Given that less data points are avail-
able for the sigmoidal fitting process at lower frame rates,
1685–1706 • June 2019
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parametric fit failures (see Figure 9f) below 60 fps are sub-
stantially more likely to occur when compared to higher
frame rates.

Additionally, two distinguishable performance groups
were observed according to how the offset parameter was
selected. In particular, strategies that forced the minimum
adductory angle of the fitted trajectory to zero produced
different results when compared to strategies that forced
this parameter to the value of the minimum detected glottic
angle found within the adduction window. Therefore, the
former were referred to as zero-level strategies (S1 and S2),
whereas the latter corresponded to minimum-angle strate-
gies (S3, S4, and S5). The predictive power of the minimum-
angle strategies was systematically better than that of the
zero-angle strategies at frame rates of 60 fps or higher. This
can be observed in Figures 7a and 7c, wherein resulting me-
dian errors are smaller for S3–S5 when compared to S1 and
S2. These findings are in contrast to work by Iwahashi
et al. (2016), in which representative angle trajectories for
throat clearing and steady-phonation onset continued to de-
crease within the 20%–0% range, ultimately reaching a zero
angle at the end of the motion. Instead, the observed glottal
angles in this work failed to reach zero in the vast majority
of instances. This is likely a result of different study tasks:
The current study examined VCV utterances, whereas
Iwahashi et al. examined throat clearing and steady phona-
tion. Regardless, our findings suggest that zero-level strategies
are less suitable to represent the observed glottic angles. As
such, fitting strategies that estimate the offset parameter
(i.e., minimum-angle strategies) should be implemented when
possible to analyze glottic angles using a sigmoid model.
While the zero-level strategy, S1, is recommended for ana-
lyzing videoendoscopic data recorded at 30 fps, this fitting
strategy should be avoided when analyzing data at higher
frame rates due to considerable estimation errors attributed
to the invalid zero-angle assumption.

Minimum angle discrepancies may be a result of dif-
ferences in the nature of the task performed in the current
investigation. As previously mentioned, the majority of
participants in this study failed to reach complete glottal
closure between the end of adduction and the start of the
phonation during VCV productions. Iwahashi et al. (2016)
extracted glottic angles starting at a rest abductory posi-
tion and throughout sustained phonation; it is likely that
participants performed an initial inhalation or other prepa-
ratory gestures prior to phonation. Conversely, individuals
in this study continuously exhaled air to produce the con-
sonant /f/ in between two vowels /i/ within the instructed
VCV utterances. As a result, there were no airflow-based
pauses. The continuous speech necessary to complete the
tasks in the current study may then have failed to elicit
minimum adductory angles at zero.
Clinical Significance
These recommendations can be extended to clinical

assessments using videoendoscopy, wherein implementing
HSV poses numerous challenges (see Deliyski et al., 2008,
Diaz-C
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for a comprehensive review). These challenges include prac-
tical and technical issues, such as storing large amounts of
data that fail to span multiple phonatory productions (i.e.,
short sample durations). However, our results suggest that,
when conventional frame rates of 30 fps are used to evalu-
ate VF closing velocities, fitting strategy S1 should be used.
Previous studies using VF adductory kinematics that were
acquired using conventional speed videoendoscopy systems
at a frame rate of 30 fps (Britton et al., 2014, 2012; Dailey
et al., 2005; McKenna et al., 2016; Stepp et al., 2010)
have not generally reported fitting strategy. It is possible
that the results of these studies may have been impacted
by fitting errors. Future work should examine the study
questions of each with respect to the possible influences of
frame rate and fitting strategy.

In the event that higher frame rates are clinically
available, our findings suggest that frame rates of 1,000 fps
or higher are not required to accurately capture kinematic
behavior; indeed, frame rates as low as 120 fps can be im-
plemented, with resulting videoendoscopic data fit to an
asymmetric sigmoidal model using S5. This suggests that
(a) longer videos can be captured to include multiple pho-
natory productions or (b) shorter videos can be captured
to account for clinical storage considerations. Although
current challenges for implementing HSV in the clinic span
practicality, technicality, methodology, and clinical appli-
cability, the findings in this study improve the prospects
of using HSV for the clinical assessment of VF kinematic
behavior.

Limitations and Future Directions
All of the presented interpretations for the model-

based estimation of adduction trajectories are limited to
typical, young healthy speakers. Further conclusions cannot
be formulated for VF trajectories that do not present a clear,
monotonically decreasing curve at the initiation of adduc-
tion. Potential adduction irregularities resulting from
partial VF paralysis, dysphonia, tremor, or other consid-
erable VF trajectory perturbations (not necessarily patho-
logical) may also invalidate this assumption of a monotonic
curve. Previous model-based VF kinematic analyses have
assumed a monotonically decreasing trajectory for tasks
such as cough (Britton et al., 2012), breath-interrupted
phonations (e.g., /i/-sniff; Dailey et al., 2005; Stepp et al.,
2010), or VCV segments (e.g., /ifi/; McKenna et al., 2016),
with the aim of estimating angular adduction velocity with
fewer data samples (e.g., 30 fps); however, other models
should be investigated to estimate trajectory behaviors in
more complex voice productions. Although implementing
a nonparametric method requires a higher frame rate, it is
likely to be more adequate in such investigations since a
priori expectations about VF trajectory are avoided. Fur-
thermore, the current study examined high-speed videos
recorded at 1,000 fps; however, it is possible that our find-
ings do not translate to videos recorded at higher frame
rates. Finally, angle extraction errors due to glottic angle
estimation can propagate to the sigmoid model analysis:
adiz et al.: Prephonatory Vocal Fold Kinematic Trajectories 1697
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A noisy and inaccurate glottic angle waveform may be
generated in cases where video processing struggles due to
poor input quality. This waveform only serves to add un-
certainty in analysis results. Therefore, improvements in
camera resolution and lighting, in addition to advances in
endoscope technology, may improve these deficits in future
studies.
Conclusions
In this study, VF angle trajectories during adduction

were examined in young adults with healthy voices. We
showed that an asymmetric sigmoidal model may be a useful
way to describe the kinematic behavior during VF adduc-
tion. To summarize, our findings suggest that adduction
trajectory estimates are similar to the sigmoidal fit if a
frame rate of at least 120 fps is implemented in conjunction
with fitting strategy S5. We recommend this method as the
minimal settings needed to describe VF angle trajectories
of VCV utterances with reasonable estimation bias and
error variability. However, if the conventional sampling
rate of 30 fps is chosen to examine kinematic behavior, then
fitting strategy S1 should be used to evaluate VF angle tra-
jectories. Although implementing HSV as a clinical tech-
nique poses various challenges, the findings in this study
(a) demonstrate a viable approach for assessing VF kinematic
behavior at frame rates as low as 120 fps and (b) provide the
appropriate fitting strategies for using conventional 30 fps
to evaluate closing velocities in a clinical setting.
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Appendix (p. 1 of 8)

VF Estimation Algorithm
The full details of the semiautomated VF estimation algorithms are detailed here.

Event Detector
The event detector leverages the auxiliary (i.e., microphone or accelerometer) signal to identify the location of each VCV
instance within a recording. In particular, time points corresponding to the following are extracted: voice onset and offset for
each of the vowels in a VCV instance, midpoint of each of the vowels, and segments in time where the vocal folds may be
abducted. These segments of potential vocal fold abduction are then implemented in subsequent processing steps to define
a frame of reference that may be used to track the glottic area during the transition into and out of the voiceless consonant.

The event detector takes an auxiliary signal as input rather than the HSV recording in order to minimize the computational
cost needed to import and analyze each frame of the HSV recording. For the same reason, onset and offset detection is not
necessarily accurate since precise detection of onset and offset timings is not required; specifically, we are interested in the
glottic angle waveform across the transition into and out of the voiceless consonant. Therefore, event location errors on the
order of one to five cycles do not significantly impact the final glottic angle results.

Equations 3–5 show the computations used to calculate this limiter range. In these equations, xRMS represents the RMS
of the input signal (i.e., microphone or accelerometer), and VARfactor is a predefined constant that controls the weight of the
RMS variance on the threshold range defined by Lmin and Lmax. The variable Lcenter is employed to center the limiter range
on an optimal value where all RMS onset and offset events are detectable with the fewest artifacts resulting from the floor of
the RMS signal; this mean-to-median ratio minimizes false-positive events that may otherwise occur due to the limiter range
being driven by the noise floor. For instance, if instead the median of the RMS signal is used for centering, the limiter range
will be lower in individuals who take longer pauses (e.g., during slower vocal rates or when taking a breath). In contrast,
centering the limiter range using the Lcenter ratio is a simple way to safeguard against this issue; recordings at slower vocal
rates will increase the ratio, thereby raising the limiter range and avoiding faulty onset/offset detections that could appear due
to variations in the RMS floor. An example of the event detector is shown in Figure A2, where Figure A2a displays the overlapped
microphone and accelerometer signals and Figure A2b identifies the detected events.
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After applying the limiting thresholds, a 2-point differentiator is employed to calculate the derivative of the RMS waveform.
The standard deviation of the derivative and a predefined tolerance factor are used as parameters to locate strong rises and falls
in the derivative waveform, which correspond to voice onsets and offsets in the RMS waveform, respectively. Resulting locations
are then evaluated (“sequence validation” in Figure A1) in order to remove nonphysiologically possible rise or fall sequences.
This sequence validation process takes the located peaks and a predefined minimal time gap factor between each identified
location as inputs to identify potential outliers. Finally, an event resolver distinguishes the remaining time points as either temporal
midpoints of a phonatory segment or a segment of vocal fold abduction via a skew factor ratio of the time gap between offset–
onset moments. This skew factor is necessary due to the natural delay in oscillatory behavior during offset–onset sequences
(Ikuma et al., 2016). Specifically, abduction gestures may be initiated before vocal fold vibration ends, which delays the drop in
RMS that occurs during the transition into the voiceless consonant. As a result, the glottic angle waveform rises prior to the
end of oscillatory motion. Similarly, vibratory initiation may also be delayed during the transition from the voiceless consonant into
the vowel. As such, the skew factor must be chosen as less than 50% of the offset–onset time in order to represent potential time
points where maximum abduction may occur. After this process, event tags are assigned to each time point detected.

Figure A1 illustrates the event detector procedure that operates on either the microphone or accelerometer signal. The
root-mean-square (RMS) of the input signal is first calculated using methodology described by Ikuma et al. (2016), in which
the signal bandwidth is restrained to the first three harmonics. Then, the RMS signal is resampled to the frame rate of the HSV
recording (i.e., 1,000 fps) and amplitude normalized. Afterward, the signal is low-pass filtered with a first-order Butterworth filter
with a cutoff frequency of 25 Hz in order to smooth the RMS responses of short-timed activity on the signal (e.g., glitches,
clicks) that are not related to voiced phonation. Mean, median, and variance are computed from this filtered and amplitude-
normalized RMS signal to establish limiter thresholds for distinguishing voiced and unvoiced components from silence. Specifically,
these thresholds are employed to create a “limiter range” from which events can be distinguished (i.e., abducted vocal folds,
voice onset or offset, and vowel midpoint) using the RMS of the auxiliary signal.

Lcenter ¼ mean xRMSð Þ
median xRMSð Þ (3)

Lmin ¼ Lcenter � VARfactor ⋅ var xRMSð Þ (4)

Lmax ¼ Lcenter þ VARfactor ⋅ var xRMSð Þ (5)
Figure A1. Event detector schematic, with auxiliary (MIC = microphone; ACC = accelerometer) signal as input and event as a function of frame
index as output. Additional inputs to the system are highlighted in gray: Tolerance factor, minimum time gap factor, variance factor, and skew
factor are each predefined constants. Frames are tagged as a time point corresponding to one of the following events: abducted glottis, voice
onset, voice offset, or the temporal midpoint of a phonatory segment.
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Figure A2. (a) Example of the microphone (MIC) and accelerometer (ACC) signals obtained from a synchronized high-speed videoendoscopic
recording, with three /ifi/ repetitions, and (b) result of the event detection process with the MIC as input. The root-mean-square of the input
signal (xRMS; solid purple line) is limited by thresholds Lmin and Lmax obtained via signal statistics (shown here as “limiter range” and “limiter
center”). The voice onset and offset locations are indicated by the teal asterisk and square markers, respectively. The event resolver indicates
instances of phonation (teal triangle markers) at the temporal midpoint of the onset–offset time gaps and unvoiced (i.e., glottis is likely to be
open) as teal circle markers at a proportion of the offset–onset time gap. Event selection is controlled by the user and is denoted by the black
dots; the location of the three dots defines which part of the video will be selected for further processing.
Preprocessing

Subsequent to event detection, the user is prompted to select a video segment and define initial parameters to begin
video analysis. The identified events, in addition to the recorded high-speed images within the chosen segment, serve as input
to a user interface (UI) procedure. There are five sequential UI states: (a) video segment selection, (b) glottic axis selection,
(c) region of interest (ROI) selection, (d) seed point selection, and (e) segmented region growing (SRG) threshold selection.
Figure A3 illustrates glottal axis, ROI, seed point, and SRG threshold selection states. The goal of these preprocessing steps is
to construct a set of initial parameters in the automatic glottic angle extraction process that enable the detection and segmentation
of the vocal folds.

In order to detect the glottis in each video frame, the user must set a variety of parameters using a reference frame;
these parameters enable the initialization of a binary mask that contains all valid positions of the glottis in the remaining video
frames. At the start of this binary mask creation process, the UI first displays a time scope window with previously detected
events to allow the user to navigate across time events (see Figure A2). The user may move a trio of markers across the
window to choose a group of events that correspond to the desired initial, final, and reference processing frames. Initial and
final frames are used to extract the video segment, while the reference frame is used to determine an initial ROI, seed points,
threshold profile, and glottic axis. With an interest in kinematic offset and onset transition behaviors, the trio of markers should
be set to select a single VCV instance; here, the initial and final processing frames correspond to the vowels in the VCV instance,
while the reference frame is the voiceless consonant. More specifically, the event selection markers must be placed such that
(a) the initial marker is located within the first vowel, (b) the final marker must be located within the latter vowel, and (c) the
middle marker (“reference image”) must be assigned between the initial and final markers, likely corresponding to a segment
where the vocal folds are abducted (i.e., the consonant). An example of a valid three-marker selection is illustrated on Figure A2.
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As demonstrated in Figure A3a, the selected reference image must be user-bounded via ROI selection wherein the
glottis is centered in the ROI. A glottal axis is drawn to define the extension of vocal folds used during the edge segmentation
step and to compensate for the rotated orientation of the scope during the process. After that, seed points corresponding
to the glottis may be defined, which then initialize a growing region algorithm over a manipulated grayscale version of the
reference image. The growing region is controlled by a vertical threshold profile defined interactively by the user during its
selection state. The result of this initialization is a binary mask containing all allowed positions to begin glottis detection in
the remainder of the video frames.

Glottis Detection

Before initializing the glottis detection algorithm (visualized in Figure A3b), the HSV input is first converted to 8-bit
grayscale and is manipulated ad hoc in order to reduce potential detection failures under low light or contrast. This process
consists of (a) inverted two-dimensional Kaiser window masking, (b) Gaussian edge tapering, and (c) minima imposing. The
two-dimensional Kaiser window masking is employed to increase pixel value intensities away from the center of the image,
thereby providing a better contrast between the glottal area and dark laryngeal surroundings. Gaussian edge tapering is
then applied to smoothly eliminate border information in the ROI. Finally, an operation to impose minima is implemented in
order to force pixel intensity values inside the glottal area as minima rather than other local low-intensity regions. The resulting
HSV images subsequently undergo glottal segmentation.

The glottal segmentation processing step is crucial for reducing the likelihood of segmentation errors that may occur
when pixel intensity values in the glottis are similar to other surrounding dark areas (e.g., due to variation in anatomical structure
between individuals or dynamic light orientation of the endoscope throughout the recording session). It is important to note
that ROI selection circumvents this issue by ignoring these troublesome regions, but only if the problematic pixels are outside the
desired area. Therefore, manipulations are needed when such low-contrast conditions are present between the vocal fold edges.

A modified implementation of the glottal segmentation method proposed by Lohscheller, Toy, Rosanowski, Eysholdt,
and Döllinger (2007) is used to identify the glottis from HSV images. This method consists of an SRG algorithm that employs
a hysteresis thresholding procedure to segment the glottal area. The result is a binary image containing all pixels that lie
within the local limited intensity range as part of the glottis. This range depends on the pixel values of the user-defined glottal
mask and the selected threshold corresponding to its vertical pixel location within the user-selected ROI. This method segments
the glottis at each border, thereby obtaining two sets of points of raw integer pixel-wise resolution at the boundary between the
glottis and each vocal fold (�C left;

�Cright). Contrary to the glottal segmentation technique implemented by Lohscheller et al., the
current glottis detection algorithm does not update the seed points needed to initialize the detection. Rather than sporadically
recalculating the glottal mask during phonation periods, all pixels within the glottal mask area are considered to be seed points
during the abduction or adduction gesture.
Figure A3. Preprocessing user interface example, with (a) selected frame as image reference via event selection process shown in Figure A2;
(b) result for seed point selection, anterior–posterior glottal axis, and glottal mask; and (c) vertical threshold profile used to compute the glottal
mask via segmented region growing algorithms.
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One downfall with this glottis detection method, however, is that it does not compensate for barrel distortion or wide-scope
positions during adductory movements. It is assumed here that the translational movement of the glottis during adduction is
small enough that the glottal mask at least partially overlaps with the glottal area identified inside the adjacent video. In general,
this is a fair assumption since the duration of each VCV speech segment is less than 400 ms; however, cases still exist in which
the larynx or endoscope point of view (i.e., endoscope depth, distance, and tilt) significantly drifts from the expected location.
For those ill-centered angles, errors in glottis detection during glottic angle data extractions are expected and manual glottic
angle markings (see Manual Angle Marking) may be useful.

Edge Segmentation

Vocal fold edge segmentation is necessary to (a) remove segments of the point curves produced from the glottal
segmentation step that correspond to other laryngeal structures (e.g., arytenoids) and (b) obtain a horizontal subpixel
location of each vocal fold border using the resulting gradient information. These borders are the main component of the
glottic angle calculation: Subpixel resolution aids in correcting the noisy curves from the glottis detection, instead supplying
a smooth curve to analyze angular kinematics from during offset–onset events. Figure A4 shows the edge segmentation step
in detail.

First, the two data series corresponding to the glottal borders of the left (
�
CL) and right (

�
CR) vocal folds are each

converted into a binary image. Pixels within each image that correspond to the border between the vocal folds and the
glottis are labeled as true, and pixels that are attributed to other structures are labeled as false. A Hough transform (see
Figure A4) is then applied to these images in order to determine the most prominent straight line for the edge data sets. In this
step, the Hough transform is restricted to the maximum range of the inclination angle that the Hough representation takes as
input for a straight line search; the default magnitude for the Hough range is 90°. The resulting Hough lines are used to prune
edge points away from the straightest portion of the vocal fold tissues. The resulting mask images from this process are
denoted as ML and MR for the left and right vocal fold borders, respectively.

Concurrently, a flood-fill operation based on morphological reconstruction is applied to the processed video frames
from the glottis detection step. This operator suppresses highly saturated regions of the image by assigning lower intensities
to the local pixel neighborhood. The spatial gradient (magnitude and phase) is computed by convolving the resulting video
frames with a Prewitt operator. As a result, gradient values of saturated regions are eliminated to prevent potential issues
that could affect vocal fold edge calculation. The gradient magnitude is then split according to left and right vocal fold edges
via the ML and MR masks and the gradient phase information. Within this step, a gradient tolerance (see “Gradient Tolerance”
in Figure A4) is applied to establish the minimum gradient magnitude accepted as gradient information in the image; the
default magnitude of this parameter is 0.2. Equations 6 and 7 show the calculation for the splitting masks of the right vocal
fold (BR) and left vocal fold (BL) that arise from the gradient masks. If the gradient magnitude is G and its phase is GΦ, then
the splitting process follows Equations 8 and 9 to determine the split gradients for the right vocal fold (GR) and left vocal
fold (GL).
Figure A4. Edge segmentation overview, with left and right vocal fold boundaries (C
�
L, C

�
R, respectively) taken as inputs to the system. Left

and right vocal fold boundaries are each transformed into a gradient mask (ML and MR, respectively) using the Hough transform. These masks
are then applied to the preprocessed HSV gradient to split the gradient magnitude into left and right vocal fold edges. These edges are then
used to calculate horizontal subpixel values of each vocal fold edge (cL, cR).
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BR ¼ MR; GΦ > 90∨GΦ < −90
0;otherwise

�
(6)

BL ¼ ML; GΦ < 90∧GΦ > −90
0;otherwise

�
(7)

GR ¼ G ⋅ BR;G > GTOL

0;otherwise

�
(8)

GL ¼ G⋅BL;G > GTOL

0;otherwise

�
(9)

Once the split gradients are calculated, centroid values are computed, as shown in Equation 10, in order to localize the
horizontal subpixel values of each vocal fold edge (left, L; right, R) along the vertical axis.

cs : xs; ysð Þ ¼ ∑w

i¼1i ⋅ Gs i; jð Þ
∑w

i¼1Gs i; jð Þ
; j

 !
where ∀j∈ 1; h½ �; s∈ L;R½ �

(10)

Variables w and h correspond to the width and height of the ROI image, respectively. It is important to note that vertical
subpixel values for both vocal fold edges preserve the y-axis index ( j ). Finally, the sets cs are extended by two additional points:
the anterior (A0) and posterior (P0) points from the defined glottal axis in the preprocessing module.

Glottic Angle Estimation

A line-fitting process to estimate the glottic angle waveform is performed once the edge curves cL and cR are calculated.
Using slope and anterior commissure location restrictions, a pair of vocal fold lines are computed using the edge curves via
Equation 11, where ΦL and ΦR intersect at a single point that corresponds to the anterior commissure. This point is denoted as
v� ¼ v�x; v

�
y

� �
and is restricted to the range described in Equation 12.

Φs ¼ ms;bsð Þ (11)

X
�
1 ≤ v�x ≤ X

�
2;Y

�
1 ≤ v�y ≤ Y

�
2 (12)

We denote these ranges as X
�
and Y

�
, where v� has a bounding line solution property restricting solutions only where

their intercept lays around a physiologically plausible location in the image in terms of vertical subpixels X
�
and horizontal

subpixels Y
�
. However, these boundaries are calculated slightly differently depending on whether manual intervention was

used. When the algorithm runs without any manual aid, the range of X
�
is fixed and centered onto the horizontal subpixel

location corresponding to wherever the anterior point was selected during the preprocessing step; however, the range of Y
�

is not centered and depends on the median position of both edge curves (cs), as shown in Equations 13 and 14.

X
� ¼ A0x−0:025L0; A0x þ 0:025L0½ � (13)

Y
� ¼ median cLy

� 	
;median cRy

� 	h i
(14)
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Here, A0 = (A0x, A0y) is defined as the anterior point that was fixed during preprocessing steps (see Figure A3b, only the
x-axis component is considered) and L0 is the length of the selected glottal axis. With this setup, lateral corrections for the
anterior point are possible when there are left–right shifts in cs with respect to the reference image, yet vertical estimates of
anterior commissure v�x are confined to the fixed range defined in Equation 13.

Once the restrictions for v
�
are established, ΦL and ΦR can be optimized according to Equations 15–19. Here, the

objective function (see Equation 15) is minimized by reducing perpendicular errors between the edge curves cs and the line
Φs in a Geman–McClure sense with the robust function, ρ(e).

ΦeL;ΦeR
 �
¼ arg min

ΦeL
;ΦeR

1
NR þ 2

∑
NR

i¼1
ρ E cR ið Þ;ΦR� �� �þ

1
NL þ 2

∑
NL

i¼1
ρ E cL ið Þ;ΦL� �� �þ

λ ρ 0:5Y
�
1 þ 0:5Y

�
2 � v�y

� �
where X

�
1 ≤ v�x ≤ X

�
2; Y

�
1 ≤ v�y ≤ Y

�
2;�1 ≤ ms ≤ 1

(15)

Φs ¼ ms;bsð Þ; s ∈ L;R½ � (16)

E ς;Φsð Þ ¼ ∣msςx þ bs � ςy∣ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
msð Þ2 þ 1

q (17)

ρ eð Þ ¼ e2

σ2 þ e2ð Þ ;σ ¼ 5 (18)

v� ¼ mRbL �mLbR

mR �mL ;
bL � bR

mR �mL


 �
(19)

Since the edge curves include anterior A0 and posterior P0 points, the number of detected points on each edge is
increased by 2. Thus, the terms will never be undetermined. A third term is included to drive valid v� solutions within lateral
range. As well, two additional restrictions are included to limit the possible maximum angle of the intersecting slopes of vx

�

and v�y to below 90°. This optimization is performed via sequential quadratic programming for each HSV frame, in which the initial
condition is calculated using common linear least-squares solutions over cs. In the event of very narrow or strongly adducted
vocal fold edges, two vertical lines are instead assigned as the solution, with each line located over the previously calculated an-
terior commissure v�. Narrow edges are empirically defined as if the Y

�
range is less than a quarter of a pixel. Therefore, the final

vocal fold edge line estimates, Φ̂s, are computed as in Equation 20.

Φ̂
s ¼ Φes; Ŷ2 � Ŷ1 > 0:25

0; v�y
� �

;otherwise

(
(20)

Finally, the glottic angle, θ, between vocal fold lines is calculated using the slopes of the vocal fold edges, m̂s using the
trigonometric property defined in Equation 21.

θ ¼ arctan
m̂

L � m̂
R

1þ m̂
L
m̂

R

0@ 1A (21)
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Manual Angle Marking

Trained users may opt for manual intervention during the glottic angle extraction procedure, specifically in instances
where the user does not agree with the algorithmic results. In situations where the algorithmic estimations (see Figure 2 for
an example of the algorithm output) fail to appropriately track the glottic angle over time, the user can manually mark glottic
angles to use as input to the algorithms.

The user-defined parameters set during the threshold profile and glottis mask selection states are considered as constant
parameters in the remaining processing stages under the assumption that large variations in glottal position during adduction
will not occur. However, the glottal axis location can be manipulated by a manual angle marking procedure if the user finds that
the glottis is considerably displaced with respect to the reference frame. Specifically, if the previously defined anterior/posterior
location is not satisfactory for all abduction and adduction sequences, the user may incorporate manual angle markings following
methodology by Dailey et al. (2005) on video sequences down-sampled to 50 fps. Following manual marking, the remaining
angles not estimated in the down-sampled signal are linearly interpolated to the video sequence at 1,000 fps. Here, the algorithm
uses these manual markings as a guide to recalculate and place new anterior and posterior points; it is recommended that this
manual analysis scheme is used when noticeable glottal translations occur. When manual glottic angle data are used, the
intercept between their lines establish a manually defined anterior point Am = (Amx, Amy) that now varies across time. These
new coordinates replace the anterior point A0 = (A0x, A0y) that was defined during preprocessing steps. Both X

�
and Y

�
regions

are designed as a function of Am, as shown in Equations 22 and 23.

X
� ¼ Amx � 0:025L0; Amx þ 0:025L0½ � (22)

Y
� ¼ Amy � 0:5dGAP; Amy þ 0:5dGAP

� �
where dGAP ¼ ∣median cLy

� 	
�median cRy

� 	
∣

(23)
Algorithm Validity

In order to determine the validity of the glottic angle extraction algorithm, the smooth glottic angle data resulting from
the algorithm were directly compared to the manual glottic angle data. For this comparison, two individual /ifi/ productions
were randomly selected from each participant, with one production selected from a speed condition (i.e., SR, RR, FR) and one
production selected from an effort condition (i.e., MIL, MOD, MAX). These productions were extracted from 69.8% of cases
wherein technicians accepted the initial automated angle results. Cases that were accepted following manual aid or were
considered unusable were not considered for assessing algorithm validity in order to directly compare the initial automated
results of the algorithm against corresponding manual angle estimates. Manual angle markings were performed on each selected
production at a down-sampled rate of 100 fps by two trained technicians who were blind to the data set. Table A1 shows the
two-way intraclass correlation coefficients (ICCs) for consistency computed between each trained technician and the automated
algorithm, as well as between technicians. The technicians performed with good-to-excellent reliability (Koo & Li, 2016) when
compared to each other (ICC = .89 with 95% CI [.86, .91]). Moreover, the algorithm performed with good reliability when
compared with the manual markings of each technician, yielding ICC = .82 (95% CI [.77, .86]) with the first technician and
ICC = .84 (95% CI [.80, .88]) with the second technician. A final two-way ICC analysis for consistency was then computed to
compare the results of the algorithm with the average of the technicians’ manual angle markings. This analysis yielded good
reliability between the glottic angle estimates resulting from the automated algorithm and those from manual angle markings,
with ICC = .85 (95% CI [.81, .89]).
Table A1. Intraclass correlation coefficients (ICCs) and 95% confidence intervals (CIs) between each trained
technician and automated algorithm as well as between the trained technicians.

Comparison ICCs (95% CI)

Technician 1 × Automated Algorithm .82 [.77, .86]
Technician 2 × Automated Algorithm .84 [.80, .88]
Technician 1 × Technician 2 .89 [.86, .91]
Averaged Technicians × Automated Algorithm .85 [.81, .89]
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