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Purpose: This study is a secondary analysis of existing data.
The goal of the study was to construct an acoustic model
of perceived overall severity of dysphonia in adductory laryngeal
dystonia (AdLD). We predicted that acoustic measures
(a) related to voice and pitch breaks and (b) related to vocal effort
would form the primary elements of a model corresponding
to auditory-perceptual ratings of overall severity of dysphonia.
Method: Twenty inexperienced listeners evaluated the overall
severity of dysphonia of speech stimuli from 19 individuals
with AdLD. Acoustic features related to primary signs of AdLD
(hyperadduction resulting in pitch and voice breaks) and to a
potential secondary symptom of AdLD (vocal effort, measures
of relative fundamental frequency) were computed from the
speech stimuli. Multiple linear regression analysis was applied
to construct an acoustic model of the overall severity of
dysphonia.
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Results: The acoustic model included an acoustic feature
related to pitch and voice breaks and three acoustic
measures derived from relative fundamental frequency;
it explained 84.9% of the variance in the auditory-perceptual
ratings of overall severity of dysphonia in the speech
samples.
Conclusions: Auditory-perceptual ratings of overall
severity of dysphonia in AdLD were related to acoustic
features of primary signs (pitch and voice breaks,
hyperadduction associated with laryngeal spasms)
and were also related to acoustic features of vocal effort.
This suggests that compensatory vocal effort may
be a secondary symptom in AdLD. Future work to
generalize this acoustic model to a larger, independent
data set is necessary before clinical translation is
warranted.
Laryngeal dystonia (LD), also known as spasmodic
dysphonia, is a focal neurological dystonia that
affects the laryngeal musculature (Blitzer et al.,

2018). Individuals may have adductory LD (AdLD), abduc-
tory LD, or a mixed presentation of adductor/abductor
LD. In AdLD, the vocal folds hyperadduct during purpose-
ful speech because of involuntary spasms in the intrinsic
muscles of vocal fold adduction (Murry, 2014). Individuals
may also experience voice and pitch breaks due to these la-
ryngeal muscle spasms occurring during voicing. With this
disrupted neurological input during vocal fold adduction
and the subsequent increase in laryngeal tension during a
spasm, individuals with AdLD often experience a second-
ary increase of strain and vocal effort (Nagle et al., 2015;
Shoffel-Havakuk et al., 2019). This increase of vocal effort
is likely compensatory, in response to the unreliable nature
of the vocal system.

The assessment and diagnosis of LD comes from an
interdisciplinary team of providers, most often including
the otolaryngologist, speech-language pathologist, and
neurologist (Stewart et al., 1997). A history of the voice
problem, visualization of vocal fold vibration via laryngeal
videostroboscopy, auditory-perceptual evaluation, and a
neurological evaluation including laryngeal electromyogra-
phy are often the main assessments used for developing a
diagnosis of LD (Langeveld et al., 2000). Other disorders,
including primary muscle tension dysphonia, may present
similarly, and thus, LD can be a diagnosis of exclusion in
some instances. A comprehensive evaluation is often needed
to assess for disorder-specific qualities, such as increased
perception of spasms with voiced-loaded sentences (Erickson,
2003; Roy et al., 2007) and differentially improved symptoms
Disclosure: The authors have declared that no competing interests existed at the time
of publication.
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1Gender information was not collected.
during innate relative to learned vocal behaviors (Guiry et al.,
2019). Differential diagnosis may even be difficult for experts
without the use of strict classification guidelines, due to reli-
ance on perceptual judgments (Ludlow et al., 2018) as well
as patient-reported symptoms (Shoffel-Havakuk et al., 2019).
Given this tenuous path to diagnosis, the need for objective
measures in the diagnostic assessment of LD remains a prior-
ity. In addition to diagnostic needs, objective measures that
are sensitive to the severity of signs and symptoms in dyspho-
nia are also imperative in order to assess treatment efficacy.

Given the signs and symptomatology of AdLD, speech
acoustics may provide an ideal modality for providing ob-
jective assessment. However, current methods are generally
insufficient, perhaps due to a focus on measures of voice
quality that are not specific to AdLD and measures that
relate to its primary signs only. Studies have found low
levels of sensitivity identifying AdLD using single acoustic
measures such as jitter, voicing length (Moerman et al.,
2015), frequency shifts, and aperiodic segments (Yanagida
et al., 2018). Furthermore, there is not a currently known
measure that reliably correlates to both its primary and sec-
ondary perceptual features. Cepstral–spectral acoustic
measures, such as cepstral peak prominence and low-high
spectral ratio (Awan et al., 2010), may be used in concert
to provide information on the degree of overall severity of
the dysphonia but are unlikely to be sensitive to the disor-
der-specific qualities of AdLD. For instance, the Cepstral
Spectral Index of Dysphonia, an acoustic index of dyspho-
nia severity, is only weakly correlated with listener ratings
of overall severity of dysphonia in AdLD (i.e., explaining
20%–46% of the variance; Roy et al., 2014). Current methods
of analyzing voice/pitch breaks, a primary feature of hyper-
adduction in those with AdLD where there is the cessation
of voicing during an expected voiced segment, appear more
promising (Cannito et al., 2012; Cimino-Knight & Sapienza,
2001; Izdebski, 1984; Sapienza et al., 1999, 2000; Siemons-
Lühring et al., 2009; Yanagida et al., 2018) but typically
require manual processing and thus are time-consuming.
For example, a method used for calculating the percentage
of voice breaks in speech involves manually identifying
each phonatory break, determining each break’s duration,
calculating the sum of the duration of the phonatory breaks
in a sample, and then dividing that value by the sum of
the duration of voicing in the given sample (Sapienza et al.,
1999; Yanagida et al., 2018). This technique can be auto-
mated for simple stimuli. For instance, the Multi-Dimensional
Voice Program (Kay Elemetrics, 1993) includes this cal-
culation, but the simplistic approach to automation limits
its validity to sustained phonation (i.e., isolated vowels).
Overall, due to these issues, quantifying voice breaks in
speech stimuli is laborious in the clinical setting. It remains
a promising goal, however: when combined with a global
measure of voice quality (cepstral peak prominence), these
measures were able to explain 62% of the variance in lis-
teners’ ratings of voice roughness (corresponding with hyper-
adduction in speakers with AdLD; Cannito et al., 2012).

Since the auditory-perceptual qualities present in
AdLD are likely to stem from both primary (frequent
2 Journal of Speech, Language, and Hearing Research • 1–10
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spasms) and secondary (vocal effort) symptoms, an acoustic
metric that incorporates both may be critical for diagnostic
specificity. The acoustic measure relative fundamental fre-
quency (RFF) may be a useful adjunct to acoustic measures
focused on primary AdLD symptoms. RFF describes the
changes in fundamental frequency that occur in the 10 cy-
cles of voicing before and after a voiceless consonant, nor-
malized to more steady-state values. RFF values are lower
in individuals thought to have increased laryngeal tension—
those with muscle tension dysphonia (Heller Murray et al.,
2017; Roy et al., 2016; Stepp et al., 2010) and Parkinson’s
disease (Goberman & Blomgren, 2008; Stepp, 2013). Fur-
ther support for RFF as an acoustic correlate for laryngeal
tension comes from evidence that RFF values in individ-
uals with muscle tension dysphonia normalize after therapy
(Stepp et al., 2011), that RFF values decrease with increased
vocal effort in typical speakers (Lien et al., 2015; McKenna
et al., 2016), and that RFF values are correlated with the
perception of vocal effort in individuals with AdLD (Eadie
& Stepp, 2013). Combining measures of voice/pitch breaks
with RFF may result in an objective, multidimensional
acoustic measure sensitive to both the primary and second-
ary features of AdLD.

The purpose of this study was to build on previous
work indicating that listener perceptions’ of voice in AdLD
are related to acoustic features of voice and pitch breaks
(Cannito et al., 2012). Specifically, our goal was to construct
an acoustic model for the perception of overall severity
of dysphonia that included automated acoustic features of
voice and pitch breaks as well as acoustic correlates of vocal
effort (RFF values). Given the extent to which both primary
and secondary features appear to impact overall severity,
we predicted that a multidimensional approach of acoustic
analysis incorporating both voice and pitch breaks and
vocal effort would relate strongly to the perception of over-
all severity of dysphonia in individuals with AdLD. An
acoustic metric sensitive to both the primary and second-
ary features of AdLD may assist in its diagnosis and assess-
ment of its treatment response.

Method
Speech recordings from 19 adult speakers with AdLD

and auditory-perceptual judgments from 20 adult listeners
were used in this study. These production (RFF) and per-
ception (overall severity of dysphonia) data have been pre-
viously reported in the studies of Eadie et al. (2007) and
Eadie and Stepp (2013). The current methods incorporate
new acoustic analyses.

Speech Stimuli
Speech stimuli were recorded from 19 adults (9 males,

10 females)1 who had received a diagnosis of AdLD from
a laryngologist based on case history, auditory-perceptual
assessment of voice, videolaryngostroboscopy evaluation,
rms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



and fine-wire laryngeal electromyography; all received bot-
ulinum toxin injections regularly for symptom manage-
ment and were recorded at the end of their treatment cycle.
The mean age of speakers was 58.2 years (range: 37–80 years).
Speakers were deliberately selected to represent voices
across a range of overall severity of dysphonia, since overall
severity is strongly related to the hyperadduction or “over-
pressure” feature that characterizes AdLD (Cannito et al.,
2012).

Speakers were recorded in a quiet environment with
low levels of ambient noise while reading the first paragraph
of the Rainbow Passage (Fairbanks, 1960), a sentence
loaded with voiceless consonants (“He saw half a shape
mystically cross a path about fifty or sixty steps from his
sister Kathy’s house”; Dedo & Shipp, 1980), and a sentence
loaded with voiced consonants (“Early one morning a man
and a woman ambled along a one-mile lane running near
Rainy Island Avenue”; Dedo & Shipp, 1980). Speech sam-
ples were recorded with a headset microphone (AKG C420,
Harman International Industries, Inc.) routed to an audio
recorder (Tascam DAP1, TEAC Corporation) at a sampling
rate of 44.1 kHz.

Listeners
Twenty healthy individuals (3 males, 17 females)2

participated as listeners. The mean age of listeners was
25.7 years (range: 19–41 years). Listeners were native speakers
of American English and did not report any speech, lan-
guage, or voice disorders. Listeners passed a hearing screen-
ing at 40 dB HL or better for octave frequencies from 250
to 4000 Hz. They had no prior experience with or exposure
to voice disorders. All listeners provided informed consent
in compliance with the University of Washington Human
Subjects Committee.

Stimuli Preparation and Listening Procedure
The second sentence of the Rainbow Passage (“The

rainbow is a division of white light into many beautiful
colors”; includes both voiced and unvoiced phonemes) was
extracted for each speaker for use as stimuli in the audi-
tory-perceptual task. Each stimulus was peak-normalized
using sound-editing software. Peak normalization was per-
formed in order to limit differences in the perceived loud-
ness across samples. Normalization was achieved using
Sony Soundforge 7.0, sound-editing software.

Before the rating tasks, listeners were provided with
a definition of the overall severity of dysphonia and were
familiarized with the auditory-perceptual dimension. Over-
all severity was defined as “a comprehensive measure of
how ‘good’ or ‘poor’ the voice sample is judged to be by
the listener” (Eadie & Doyle, 2002). Listeners were exposed
to the voices of one male and one female speaker with
AdLD (neither included in the study) in order to familiarize
them with the disorder.
2Gender information was not collected.
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Stimuli were presented to listeners in random order
via a custom software program using headphones set at a
comfortable loudness level. The software included a 100-mm
Visual Analog Scale on which listeners were asked to re-
cord their perceptual judgments. One end of the scale (0) was
anchored as normal and the other end (100) was anchored
as severe. Each listener was presented with stimuli from all
speakers; approximately 25% of stimuli were repeated in
order to assess intrarater reliability. Group means of listener
ratings for the overall severity of dysphonia were computed
per speaker.
Acoustic Data Analysis
Measures Designed to Capture Voice and Pitch Breaks

Two acoustic features aimed at capturing voice and
pitch breaks in running speech were computed using the
sentences from each speaker loaded with voiced consonants.
The sentences loaded with voiced consonants were used in
order to elicit symptomatic speech for analysis (i.e., those
with the greatest potential for voice and pitch breaks). These
acoustic features were based on an instantaneous funda-
mental frequency estimator algorithm called “Halcyon”
(Azarov et al., 2016). Halcyon was implemented using open
source MATLAB scripts (Petrovsky, n.d.). Further process-
ing of the output from Halcyon was also accomplished via
custom MATLAB scripts.

Our goal was to identify fast transitions between dif-
ferent periodic and/or aperiodic patterns during voiced seg-
ments, since these transitions should occur during both
pitch and voice breaks. Halcyon provides estimates of fun-
damental frequency of an input signal using a multirate
sampling framework. This method has shown superior time–
frequency resolution (Azarov et al., 2016) when compared
to other widely used fundamental frequency estimators,
such as autocorrelation, Auditory Sawtooth Waveform
Inspired Pitch Estimator—Prime (Camacho, 2012), YIN
(de Cheveigne & Kawahara, 2002), and Robust Algorithm
for Pitch Tracking (Talkin, 1995), which is why it was
employed for detection of fast transitions rather than con-
ventional fundamental frequency estimation methods.

Stimuli were analyzed using an automated signal en-
velope thresholding approach to determine which time
frames were voiced. Only voiced segments were consid-
ered in further analysis. This allowed for the detection of
fast transitions in fundamental frequency in existing voiced
regions (pitch breaks) as well as discontinuities in funda-
mental frequency caused by the removal of unvoiced seg-
ments (voice breaks). Stimuli were then processed by
Halcyon, collecting a range of possible fundamental fre-
quency candidates between 30 and 400 Hz over 1-ms sam-
pling windows. These fundamental frequency estimates
were then resampled to correspond to the original acoustic
signal using linear interpolation.

Using the estimated fundamental frequency as a
function of time, we evaluated the frequency content of
that time-varying signal. The fundamental frequency con-
tour was visualized as a “spectrogram” (i.e., the frequency
Buckley et al.: Acoustic Correlate of Overall Severity in AdLD 3
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characteristics of the contour as a function of time), with
rapid fundamental frequency excursions having correspond-
ingly high-frequency energy. We then time-averaged each
of these spectrograms to generate an aggregated spectrum-
like representation, denoted as meanSgram. Similarly, we
calculated the total dispersion (standard deviation) of each
spectrogram across time, which we denoted as stdSgram.
From each of these representations, the energy above 1000 Hz
was summed (effectively high-pass filtering the informa-
tion), resulting in two composite measures, meanSgram-HP
and stdSgram-HP, in which HP refers to the resulting
measure having been high-pass filtered. The threshold of
1000 Hz was chosen empirically: after the meanSgram
and stdSgram for all samples were calculated and visually
inspected, this value appeared to best capture the fast changes
associated with samples with more voice and pitch breaks.3

These two measures were designed to increase in
value when the changes in the fundamental frequency
were occurring more often and/or more quickly. The moti-
vation of this process can be explained by a two-case com-
parison presented in Figure 1. Two speech samples with
low and high occurrence of voice and pitch breaks (as de-
termined by a voice-specializing speech-language pathologist)
are presented in Figures 1A and 1B, respectively. Using
Halcyon, time waveforms of the fundamental frequency are
obtained. These fundamental frequency waveforms are
transformed into spectrograms using 25-ms Hamming win-
dows with 90% overlap (shown in Figures 1C and 1D). As
illustrated in these examples, the individual with more voice
and pitch breaks (Figure 1D) results in more sporadic jumps
on the frequency axis than the individual with fewer voice
and pitch breaks (see Figure 1C). To capture this, the en-
ergy is aggregated, calculating the mean and total dispersion
(standard deviation) over the time axis of these spectro-
grams. This collapses the spectrogram into “spectrum-like”
representations meanSgram and stdSgram, respectively
(shown in Figures 1E and 1F). This operation aggregates
all irregular events in the fundamental frequency trace
and illustrates them as prominent high-energy content in
the higher frequency range. This is quantified by calculating
the total normalized sum over meanSgram and stdSgram
above 1000 Hz (colored areas in Figures 1E and 1F) to de-
termine meanSgram-HP and stdSgram-HP values. Note
that in the two examples in Figure 1, both the meanSgram-
HP and stdSgram-HP are higher in the speech sample with
the high occurrence of voice and pitch breaks (0.148 and
3The 1000-Hz effective sampling rate of the 1-ms processing window
used in Halcyon to estimate the fundamental frequency and the linear
interpolation to resample the fundamental frequency contour results
in low-frequency subharmonics below 1000 Hz. These can be seen in
Figures 1E and 1F. These are not related to the number of voice and
pitch breaks. Our choice to incorporate a 1000-Hz cutoff for the
parameters meanSgram-HP and stdSgram-HP was informed by the
presence of these harmonics. The 1000-Hz cutoff appeared to best
capture the fast changes associated with samples with more voice and
pitch breaks and also allowed for the removal of the processing-based
harmonics.

4 Journal of Speech, Language, and Hearing Research • 1–10
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0.464, respectively) than in the speech sample with the low
occurrence of voice and pitch breaks (0.054 and 0.286,
respectively).

Measures Designed to Capture Vocal Effort
RFF values were computed for each speaker using

the sentences from each speaker loaded with unvoiced con-
sonants. The sentences loaded with unvoiced consonants
were used in order to assess instances in which RFF could
be calculated—those in which there was a voiceless conso-
nant surrounded by voiced segments. Manual RFF analysis
was consistent with previous work (e.g., Heller Murray
et al., 2016; Lien et al., 2014; Stepp, 2013). For all partici-
pants, nine instances were used from the sentence “He saw
half a shape mystically cross a path about fifty or sixty steps
from his sister Kathy’s house”: “he saw,” “half a,” “a
shape,” “cross a,” “a path,” “path about,” “or sixty,”
“sister Kathy,” and “Kathy.” The automated method of
calculating RFF was not possible, as it currently requires
isolated instances of vowel–consonant–vowel utterances
(i.e., /ɒfɒ, ifi, ufu/; Vojtech et al., 2019), which were not elic-
ited from our speech-level stimuli. Thus, manual calcula-
tions were completed.

The final author (C. E. S.) visualized each RFF in-
stance in Praat and localized the 10 vocal cycles preceding
the voiceless consonant (termed as “offset cycles”) and
the 10 vocal cycles following the voiceless consonant (termed
as “onset cycles”). The instantaneous fundamental fre-
quency of each offset and onset cycle was computed as the
inverse of the period, identified using the pulse function
of Praat (Boersma & Weenink, 2008). Each fundamental
frequency was subsequently normalized in semitones (ST)
relative to the associated vocal cycles nearest to the mid-
point of the voiced segment: Offset Cycle 1 and Onset Cycle
10. All available RFF instances per speaker were used to
compute an average value of each offset and onset cycle.
Some productions could not be used to reliably determine
RFF due to glottalization, insufficient vocal cycles to
achieve steady state, or voicing during the obstruent. Thus,
across speakers, at least one RFF instance was available
for all speakers, with an average of 5.7 instances used for
each participant’s offset averages and 4.6 instances used
for each participant’s onset averages; this is consistent with
a previous work utilizing manual RFF analysis of running
speech in which an average of 2.4–9.8 usable instances
were available for averaging (Heller Murray et al., 2016;
Stepp, 2013; Stepp et al., 2011).

These average RFF values were used to compute six
RFF features for each speaker: RFFoff10 and RFFon1 (the
two values closest to the transition between voiced and
unvoiced segments), ΔRFFoff10-9 and ΔRFFoff10-5 (mea-
sures aimed to capture the slope of change in offset values
by subtracting from RFF Offset Cycle 10 values the values
of Offset Cycles 9 and 5, respectively), and ΔRFFon1-2
and ΔRFFoff1-6 (measures aimed to capture the slope of
change in onset values by subtracting from RFF Onset
Cycle 1 values the values of Onset Cycles 2 and 6, respec-
tively). Our choice of measures aimed at capturing the
rms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



Figure 1. Example of the analysis of two participants with adductory laryngeal dystonia. Segments of the original speech sample (audio) and
respective fundamental frequency waveform estimates (f0 trace) for an individual with (A) low occurrence of voice and pitch breaks and (B) high
occurrence of voice and pitch breaks. Panels C and D show the spectrogram representations of the fundamental frequency contours from
Panels A and B, respectively. Panels E and F illustrate the aggregation over time of the previous spectrograms: aggregation of the mean
(meanSgram, in blue) and total dispersion (stdSgram, in orange). The final feature calculation is illustrated by the filled-in areas in the frequency
range above 1000 Hz. Arrows of the respective colors indicate the final value of the features meanSgram-HP (in blue) and stdSgram-HP
(in orange). meanSgramHP = the high-pass filtered time average of each “spectrogram” of the fundamental frequency contour; stdSgramHP =
the high-pass filtered standard deviation of each “spectrogram” of the fundamental frequency contour.
slope of change in RFF values was based on examination
of the current data set and previous RFF literature (e.g.,
Heller Murray et al., 2017, 2016; Lien et al., 2014, 2015), in
which Offset Values 1 through 5 and Onset Values 6 through
10 are typically relatively stable.

The investigator (C. E. S.) reevaluated approximately
10% of RFF stimuli approximately 18 months after the
initial evaluation, and a second trained researcher (L. B.)
also evaluated approximately 10% of the RFF stimuli.
Intrarater and interrater reliability of the RFF analysis was
assessed with Pearson r using the reevaluated data sets,
resulting in r = .93 and r = .94, respectively.

Statistical Analysis
All statistical analyses were completed using Minitab

Statistical Software, Version 17 (Minitab, Inc.). Significance
for all statistical testing was set a priori at p < .05.

The mean Pearson product–moment correlations be-
tween original and repeated samples were computed to
assess intrarater reliability of listeners’ ratings of overall
severity, yielding an average r = .71 (SD = 0.34); this value
is similar those previously reported for overall severity of
dysphonia, which have ranged from r = .57 to r = .87 (Eadie
& Doyle, 2005; Eadie et al., 2010; Zraick et al., 2011). The
interrater reliability of listeners’ ratings was assessed using
Cronbach’s alpha, which was .98; this value is similar to
Downloaded from: https://pubs.asha.org Cara Stepp on 07/16/2020, Te
previously reported values, which ranged from .97 to .99
(Eadie & Doyle, 2005; Eadie et al., 2010).

The model was constructed by conducting a stepwise
multiple linear regression using the two acoustic features
designed to capture voice and pitch breaks (meanSgram-HP
and stdSgram-HP) as well as the six RFF features as inde-
pendent variables. The overall severity of dysphonia was the
dependent variable. The resulting regression was compared
to the mean ratings of overall severity of dysphonia, result-
ing in R2 and R2

adj values. The R
2 reflects the proportion of

the variance explained by the regression, whereas the R2
adj

adjusts the R2 based on the number of factors in the regres-
sion model (i.e., the greater the number of factors in the
analysis, the smaller the R2

adj value; Abu-Bader, 2016). The
model was run with the alpha for entrance and removal
set to .05, .10, and .20, all of which resulted in the same
final model. Pearson correlation coefficients were com-
puted between all independent and dependent variables to
provide descriptive information about relationships among
variables.
Results
The overall severity of dysphonia ratings of the 19

speakers ranged from 6.2 to 85.9 mm (M = 45.6 mm, SD =
22.2 mm), indicating that the speakers represented a full
Buckley et al.: Acoustic Correlate of Overall Severity in AdLD 5
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range. Likewise, RFF values varied in the group. For instance
RFFoff10 values ranged from −3.51 to 1.76 ST (M = −1.17
ST, SD = 1.49 ST) and RFFon1 values ranged from −0.80
to 4.60 ST (M = 2.55 ST, SD = 1.48 ST).

The stepwise regression model analyzed the relation-
ship between the two acoustic features designed to capture
voice and pitch breaks, the six RFF features, and the auditory-
perceptual ratings of overall severity of dysphonia. Table 1
details Pearson correlation coefficients between all inde-
pendent and dependent variables. Table 2 includes the full
initial model. The final model (see Table 3) accounted for
R2 = 84.9% of the variance in the auditory-perceptual ratings.
The associated R2

adj was 80.6%. The relationship between the
model output and the auditory-perceptual ratings is shown
in Figure 2. The associated regression model is shown in
Equation 1.

Overall Severity
of Dysphonia ¼ 51:41þ 90:4�meanSgram‐HP−

20:10� ΔRFFoff 10‐9−9:19�
ΔRFFon1‐6þ 7:18� RFFoff 10

(1)
Discussion
Our results show that listener perceptions of overall

severity of dysphonia in speakers with AdLD are associ-
ated with various acoustic features; specifically, 84.9% of
the variance in the auditory-perceptual evaluation of overall
severity was accounted for using a single acoustic feature
designed to capture voice and pitch breaks and three RFF
features designed to capture vocal effort. This finding ex-
pands on other studies that have similarly reported that
acoustic features of voice and pitch breaks are strong corre-
lates of the level of dysphonia in AdLD. For instance,
Cannito et al. (2012) found that three measures of voice and
pitch break features and cepstral peak prominence were
able to explain 61.6% of the variance in auditory-perceptual
Table 1. Pearson correlation coefficients between independent and depen

Variable
Overall severity
of dysphonia meanSgram-HP stdSgram-HP Δ

*meanSgram-HP .70
stdSgram-HP .64 .95
ΔRFFoff10-5 −.14 .13 .17
*ΔRFFoff10-9 −.21 .14 .11
ΔRFFon1-2 −.50 −.26 −.22
*ΔRFFon1-6 −.59 −.28 −.17
*RFFoff10 −.13 .10 .15
RFFon1 −.63 −.40 −.27

Note. Bolded values indicate statistically significant correlations (p > .05). D
(see Table 3) are indicated with asterisks in the left-most column. meanSgra
the fundamental frequency contour; stdSgramHP = the high-pass filtered sta
contour; ΔRFFoff10-5 = the difference between relative fundamental frequen
relative fundamental frequency Offset Cycles 10 and 9; ΔRFFon1-2 = the diff
ΔRFFon1-6 = the difference between relative fundamental frequency Onset
Cycle 10; RFFon1 = relative fundamental frequency Onset Cycle 1.

6 Journal of Speech, Language, and Hearing Research • 1–10
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ratings of roughness, which was strongly related to hyper-
adduction in speakers with AdLD.

The inclusion of RFF metrics in this model suggests
that RFF may offer additional prediction of the overall
severity of dysphonia in AdLD. Based on the prior work
suggesting that RFF is sensitive to increased laryngeal ten-
sion and vocal effort (Lien et al., 2015; McKenna et al.,
2016; McKenna & Stepp, 2018), this suggests that overall
severity of dysphonia in AdLD is a result of both primary
(laryngeal spasms) and secondary (compensatory vocal
effort) symptoms. In individuals with AdLD, compensatory
effort may be characterized by hyperfunctional behaviors
needed to overcome adductory spasms. This may even in-
clude strategies to maintain airflow through the glottis,
resulting in a breathy voice, that is, in accordance with what
Izdebski (1984) has proposed as a two-factor model of
AdLD. Given the strong relationship between our acoustic
model and the auditory-perceptual ratings of overall severity,
these results show potential for the development of a multi-
dimensional clinical acoustic metric for assessing AdLD.

The use of the acoustic measure relating to vocal
effort, RFF, was completed in our study via a manual
method. Due to the type of stimuli gathered, manual cal-
culations of RFF were required. As previously mentioned,
manual methods of calculation have limited clinical use due
to time and resource constraints. In response to this, recent
work has sought to automate RFF analysis (Lien et al.,
2017; Vojtech et al., 2019). This method has been shown to
be reliable with the correct stimuli (i.e., /ɒfɒ/) but cannot yet
be used on running speech. Because of these barriers, future
research should be conducted that uses acoustic stimuli
compatible with the automated method of RFF calculation,
which would allow for our acoustic model’s transition to the
clinical evaluation of AdLD. Alongside this, the develop-
ment of future automated RFF algorithms that allow for
RFF analysis in running speech may be most useful for
analyzing a larger set of data across broader clinical, lin-
guistic, and speech contexts.
dent variables.

RFFoff10-5 ΔRFFoff10-9 ΔRFFon1-2 ΔRFFon1-6 RFFoff10

.73

.18 −.04
−.26 −.11 .78
.98 .77 .12 .19
.24 −.14 .69 .94 .19

ependent variables included in the final stepwise regression model
mHP = the high-pass filtered time average of each “spectrogram” of
ndard deviation of each “spectrogram” of the fundamental frequency
cy Offset Cycles 10 and 5; ΔRFFoff10-9 = the difference between
erence between relative fundamental frequency Onset Cycles 1 and 2;
Cycles 1 and 6; RFFoff10 =relative fundamental frequency Offset
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Table 2. Summary of variables in the initial regression model.

Source df Standardized coefficient 95% CI F p VIF

Regression 8 n/a n/a 7.49 .002 n/a
*meanSgram-HP 1 10.70 [−11.90, 33.20] 1.11 .317 14.56
stdSgram-HP 1 1.48 [−19.83, 22.80] 0.02 .880 12.98
ΔRFFoff10-5 1 −1.80 [−32.30, 28.70] 0.02 .898 26.65
*ΔRFFoff10-9 1 −17.10 [−27.76, −6.43] 12.76 .005 3.25
ΔRFFon1-2 1 1.35 [−8.63, 11.33] 0.09 .769 2.85
*ΔRFFon1-6 1 −9.20 [−32.10, 13.70] 0.80 .391 14.99
*RFFoff10 1 13.40 [−17.90, 44.70] 0.91 .362 28.02
RFFon1 1 −5.97 [−27.34, 15.41] 0.39 .548 13.05

Note. Variance inflation factor (VIF) values over 10 are bolded. Dependent variables included in the final stepwise regression
model (see Table 3) are indicated with asterisks in the left-most column. df = degrees of freedom; CI = confidence
interval; n/a = not applicable; meanSgramHP = the high-pass filtered time average of each “spectrogram” of the
fundamental frequency contour; stdSgramHP = the high-pass filtered standard deviation of each “spectrogram” of the
fundamental frequency contour; ΔRFFoff10-5 = the difference between relative fundamental frequency Offset Cycles 10
and 5; ΔRFFoff10-9 = the difference between relative fundamental frequency Offset Cycles 10 and 9; ΔRFFon1-2 = the
difference between relative fundamental frequency Onset Cycles 1 and 2; ΔRFFon1-6 = the difference between relative
fundamental frequency Onset Cycles 1 and 6; RFFoff10 = relative fundamental frequency Offset Cycle 10; RFFon1 =
relative fundamental frequency Onset Cycle 1.
Of the potential eight independent variables, only
four variables were included in the final stepwise regression
model: a measure intended to capture voice and pitch breaks
(meanSgram-HP), a measure of RFF slope in the transition
from a voiced to unvoiced segment (ΔRFFoff10-9), a mea-
sure of RFF slope in the transition from an unvoiced to a
voiced segment (ΔRFFon1-6), and the RFF value closest
to the transition from a voiced to an unvoiced segment
(RFFoff10). A simplistic interpretation would be to conclude
that these features, unlike the other potential features, are
providing information specific to the overall severity of dys-
phonia in AdLD. However, inspection of the correlation
coefficients among the potential predictor variables (see
Table 1) and the variance inflation factors for predictor
variables when all are included (see Table 2) suggests a more
complex interpretation. For instance, when estimated inde-
pendently, both measures intended to capture voice and
pitch breaks (meanSgram-HP and stdSgram-HP) have
statistically significant relationships with overall severity
of dysphonia (r = .70 and r = .64, respectively; see Table 1).
However, their inclusion together in the regression model
(see Table 2) leads to inappropriately high variance inflation
factors for both variables (14.56 and 12.98), likely driven by
Table 3. Summary of variables in the final stepwise regression

Source df Standardized coefficient

Regression 4 n/a
meanSgram-HP 1 12.89
ΔRFFoff10-9 1 −16.16
ΔRFFon1-6 1 −13.27
RFFoff10 1 10.72

Note. df = degrees of freedom; CI = confidence interval; VIF = va
the high-pass filtered time average of each “spectrogram” of th
difference between relative fundamental frequency Offset Cycle
fundamental frequency Onset Cycles 1 and 6; RFFoff10 = relat
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the very high correlation between the two measures (r = .95).
Thus, it is unsurprising that only meanSgram-HP is in-
cluded in the final model. Likewise, although somewhat less
obvious, the relationships among RFF measures are also
likely influencing the predictors selected for the final model.
When estimated independently, the following measures
showed statistically significant relationships with overall
severity of dysphonia: ΔRFFon1-2, ΔRFFon1-6, and RFF
on1. Of note, all of these variables reflect onset RFF values
and slopes, and only one of these (ΔRFFon1-6) is included
in the final model. As might be expected, these measures are
not independent but instead show statistically significant
correlations among one another, ranging from r = .69 to
r = .94. Likewise, RFF offset values and slopes are also
interrelated, with statistically significant correlations among
one another, ranging from r = .73 to r = .98. In summary,
although only four of the eight potential measures are in-
cluded in the model, their inclusion is likely driven by com-
plex relationships within measures rather than “superiority”
of one measure over another.

Although the current results are promising, they should
be interpreted with caution. Any acoustic model devel-
oped relies on the relevance and quality of the dependent
model.

95% CI F p VIF

19.70 < .001 n/a
[7.66, 18.13] 27.92 < .001 1.12

[−24.58, −7.74] 16.95 .001 2.90
[−19.03, −7.52] 24.45 < .001 1.36

[2.13, 19.30] 7.17 .018 3.01

riance inflation factor; n/a = not applicable; meanSgramHP =
e fundamental frequency contour; ΔRFFoff10-9 = the
s 10 and 9; ΔRFFon1-6 = the difference between relative
ive fundamental frequency Offset Cycle 10.
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Figure 2. A scatter plot of the model fit as a function of auditory-
perceptual evaluation of the overall severity of dysphonia across all
19 participants with adductory laryngeal dystonia. The dotted line
indicates the line of best fit for each relationship.
measure used—here, auditory-perceptual ratings of the
overall severity of dysphonia. Listener perceptions may be
sensitive to a myriad of factors, including those unrelated
to the voice disorder being studied, such as features of the
listener and the scale (Barsties & De Bodt, 2015). Whereas
individual ratings of voice quality may be highly variable,
reducing their value in clinical evaluations, use of aver-
aged responses from large groups of listeners in research
designs may overcome this concern (Shrivastav et al., 2005).
Here, we employed the mean responses from 20 reliable
listeners, which likely mitigates concern over using these
ratings as the dependent variable for our model. Further-
more, the overall severity of dysphonia has been shown
to be a relatively robust, gestalt measure of voice quality
(e.g., De Bodt et al., 1997; Solomon et al., 2011), and it
has been shown to best characterize the primary percep-
tual feature (hyperadduction) in speakers with AdLD
(Cannito et al., 2012). Future work may expand on this by
incorporating the perceptual evaluation of expert listener
speech-language pathologists and laryngologists who
may refine the perceived degree of overall severity in this
population.

In addition, future work should also consider how
common treatment, such as botulinum toxin A (BTX), affects
perceived severity of AdLD. For example, Cannito et al.
(2012) found that after BTX, speakers with AdLD were best
characterized by breathy voices (and hypoadduction) more
than hyperadduction. However, in their study, the only sig-
nificant acoustic measure associated with breathiness was a
measure of smoothed cepstral peak prominence, account-
ing for only about 30% of the variance in auditory-percep-
tual ratings. Any objective index of AdLD must therefore
consider how AdLD speech characteristics may change
after BTX. Since the increased vocal effort in AdLD is
thought to be compensatory to the primary sign of laryngeal
spasms, we predict that, in most patients, a positive response
8 Journal of Speech, Language, and Hearing Research • 1–10
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to BTX would be captured by changes in RFF metrics.
However, some patients with AdLD may require behavioral
intervention even after BTX to aid in active unlearning
of compensatory behaviors (Murry & Woodson, 1995).
In these patients, we anticipate that RFF metrics will only
improve after the compensatory behaviors have been
addressed.

Finally, a core limitation of this study is that the small
sample size necessitated that the acoustic model was de-
rived from and tested on the same data set. Because of this,
the model is likely to be overfit to the presentation of AdLD
within our specific sample group. In order to account for
the likely heterogeneity in presentation of the general popu-
lation and to increase the probability of external validity,
further research should be completed that uses a larger, in-
dependent sample. This further work may either validate,
refute, or enhance our current multidimensional acoustic
model of AdLD.
Conclusion
An acoustic model of overall severity of dysphonia

for AdLD was constructed. The model included an acoustic
feature designed to capture primary signs of AdLD (pitch
and voice breaks) as well as RFF measures designed to
capture a secondary symptom of AdLD (vocal effort). The
output of the model was significantly associated with
auditory-perceptual ratings of overall severity of dysphonia,
with R2 = 84.9% and Radj

2 = 80.6%. Although these results
are promising, evaluation of the model on the same data
sets that were used for model construction limits the
generalization of findings. Further evaluation in a larger, in-
dependent test set, as well as studies that investigate differ-
ences due to treatment, such as BTX, is essential before
clinical translation is warranted.
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