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Relative fundamental frequency (RFF) is a promising acoustic measure for evaluating voice

disorders. Yet, the accuracy of the current RFF algorithm varies across a broad range of vocal

signals. The authors investigated how fundamental frequency (fo) estimation and sample character-

istics impact the relationship between manual and semi-automated RFF estimates. Acoustic record-

ings were collected from 227 individuals with and 256 individuals without voice disorders.

Common fo estimation techniques were compared to the autocorrelation method currently imple-

mented in the RFF algorithm. Pitch strength-based categories were constructed using a training set

(1158 samples), and algorithm thresholds were tuned to each category. RFF was then computed on an

independent test set (291 samples) using category-specific thresholds and compared against manual

RFF via mean bias error (MBE) and root-mean-square error (RMSE). Auditory-SWIPE0 for fo estima-

tion led to the greatest correspondence with manual RFF and was implemented in concert with

category-specific thresholds. Refining fo estimation and accounting for sample characteristics led to

increased correspondence with manual RFF [MBE ¼ 0.01 semitones (ST), RMSE ¼ 0.28 ST] com-

pared to the unmodified algorithm (MBE ¼ 0.90 ST, RMSE ¼ 0.34 ST), reducing the MBE and

RMSE of semi-automated RFF estimates by 88.4% and 17.3%, respectively.
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I. INTRODUCTION

Approximately one-third of adults in the United States

report suffering from a voice problem during their lifetime

(Bainbridge et al., 2017; Bhattacharyya, 2014; Roy et al.,

2005). Nearly a quarter of these individuals report recurrent

issues (Roy et al., 2005). Despite the prevalence of voice

problems, current voice assessments are primarily subjec-

tive, including interpretations of patient history, psychoso-

cial questionnaires, auditory-perceptual assessments, and

physical evaluations (Morrison et al., 1986; Roy et al., 2013;

Schwartz et al., 2009). Although these methods provide

some insight into vocal health, the reliability of such techni-

ques is variable among raters (Poburka et al., 2017; Stepp

et al., 2011a; Yiu et al., 2014; Zraick et al., 2011), poten-

tially leading to inconsistencies in interpretation. As such,

investigations have turned to identifying objective measures
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that may be effective adjuncts to current subjective methods

for voice assessment (Dejonckere et al., 2001; Maryn and

Weenink, 2015).

Vocal strain, defined as the perception of tenseness or

excessive vocal effort associated with phonation (Hirano,

1981; Kempster et al., 2009), is a prominent feature of clini-

cal voice quality assessments. Strain is thought to be associ-

ated with excessive or imbalanced laryngeal muscle forces

(Askenfelt and Hammarberg, 1986; Lowell et al., 2012),

which in turn have been implicated in a variety of voice dis-

orders, including vocal hyperfunction (Hillman et al., 1989;

Morrison et al., 1986), spasmodic dysphonia (Ludlow, 2009;

Roy et al., 1996), and Parkinson’s disease (Gallena et al.,
2001). Of the auditory-perceptual features assessed in

clinical voice quality assessments, however, vocal strain is the

least reliable feature (Dejonckere et al., 1996). Research

efforts have turned toward identifying an objective means of

assessing vocal strain; given the non-invasive nature of acquir-

ing acoustic signals, it may be a promising modality for devel-

oping an objective estimator of vocal strain. Although

abnormal levels of laryngeal muscle tension are thought to be

related to a dysphonic voice quality, an acoustic indicator spe-

cific to vocal strain does not exist (Bhuta et al., 2004; Mehta

and Hillman, 2008). For instance, vocal strain was shown to

strongly correlate with cepstral peak prominence, sharpness,

and various spectral moments (Anand et al., 2018); yet, this

study was limited in sample size. In recent studies, relative

fundamental frequency (RFF) has also received attention as a

promising acoustic measure for specifically assessing (Eadie

and Stepp, 2013; Lien et al., 2015b) and tracking (Stepp et al.,
2011b) this perception of excessive vocal effort.

A. Current investigation

Quantitative measures of vocal strain are needed to

improve assessment and track clinical progress. Since RFF

has shown promise as an acoustic estimator of vocal strain,

we aimed to build upon the previous work of Lien et al.
(2017) to establish methodology for estimating RFF across a

wide range of vocal signals. To improve the semi-automated

RFF estimation algorithm, we compared an assortment of

fundamental frequency estimation algorithms to the method

currently employed in the semi-automated RFF algorithm,

and used a training set of speech samples to tune algorithmic

parameters for computing RFF based on individual sample

attributes. Finally, the error between manual and algorithmic

RFF values was evaluated in an independent test set. This

work aims to improve the potential clinical applicability of

RFF related to estimating vocal strain for use in conjunction

current clinical voice assessment techniques.

B. Relative fundamental frequency

1. Overview

During a voiced sonorant–voiceless consonant–voiced

sonorant (VCV) production, RFF captures the instantaneous

changes in fundamental frequency (fo) corresponding to the

transition into and out of the voiceless consonant. These

changes in fo are dependent on the vibration of the vocal

folds, which is, in turn, a function of vocal fold length, mass,

and tension (Van Den Berg, 1958). RFF is computed from

the ten instantaneous fo values before (“offset cycles”) and

after (“onset cycles”) the voiceless consonant. These instan-

taneous fo values are normalized to the steady state fo of the

nearest voiced sonorant in a VCV production (see Fig. 1).

Changes in RFF during these transitions form a characteris-

tic pattern in speakers with healthy voices, which has been

attributed to interactions of laryngeal muscle tension, vocal

fold kinematics, and changes in airflow (L€ofqvist et al.,
1989; Stepp et al., 2011b; Stevens, 1977; Van Den Berg,

1958; Watson, 1998). There is evidence to support that

laryngeal muscle tension is transiently elevated before, dur-

ing, and after the production of the voiceless consonant in

order to inhibit vocal fold vibration (L€ofqvist et al., 1989;

Stevens, 1977). As glottal abduction commonly occurs for

voiceless sounds, it is postulated that vocal fold abductory

kinematics act in concert with elevated muscle tension to

achieve devoicing during the transition into the voiceless

consonant (Watson, 1998). The transition out of the voice-

less consonant is hypothesized to occur as a result of the

interplay between increases in laryngeal muscle tension and

airflow from the preceding sonorant (Watson, 1998), in addi-

tion to vocal fold adductory kinematics necessary to bring

the vocal folds together and reinitiate vibration.

With the interactions among these three physiological

mechanisms in mind, recent work has shown that RFF is

capable of differentiating between healthy and disordered

voices characterized by excessive laryngeal tension, such as

FIG. 1. (Color online) Acoustic waveform of a voiced sonorant–voiceless consonant–voiced sonorant (VCV) instance, with voice offset and voice onset cycles

identified. The first and tenth cycles of each voiced sonorant are highlighted. Voice offset cycles are normalized to offset cycle 1, whereas voice onset cycles

are normalized to voice onset cycle 10.
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vocal hyperfunction (Stepp et al., 2010; Stepp et al., 2011b),

adductor spasmodic dysphonia (Eadie and Stepp, 2013), and

Parkinson’s disease (Goberman and Blomgren, 2008; Stepp,

2013). Excessive laryngeal tension is thought to be associ-

ated with increased vocal effort, and increased vocal effort

may result in a strained voice quality in some speakers

(McKenna and Stepp, 2018). Vocal strain also covaries with

the perceptual qualities of breathiness and roughness in

approximately 50% of speakers (Lowell et al., 2012). It then

follows that RFF has also been shown to correlate with

auditory-perceptual judgments of dysphonia severity (Roy

et al., 2016; Stepp et al., 2012), which encompasses multiple

dimensions of voice quality—including breathiness, rough-

ness, and strain—and to quantify the degree of laryngeal ten-

sion. Specifically, Lien et al. (2015b) found that when

healthy individuals modulated their vocal effort, they

achieved RFF values that were not only different from their

typical patterns but were similar to those observed in indi-

viduals with tension-based voice disorders. As such, RFF

could be a useful tool to not only identify differences in

laryngeal tension between individuals but to track changes in

laryngeal tension within an individual over time.

2. Semi-automated RFF estimation

Although RFF shows promise as a quantitative measure

of laryngeal muscle tension, calculation via manual extrac-

tion is tedious and time-consuming. This is because a trained

technician must visually examine the acoustic waveform

during voice offset or onset transitions, then exercise trial-

and-error to identify the vocal cycle marking the termination

or initiation of voicing, respectively. One commonly used

software for this is Praat (Boersma, 2001). With this soft-

ware, the technician must identify and use the location of

this boundary cycle (i.e., voice offset cycle 10, voice onset

cycle 1) to further identify the 11 glottal pulse timings that

correspond to the edges of the 10 vocal cycles closest to the

voiceless consonant. Selecting the boundary cycle and ensur-

ing that the adjacent glottal pulse timings are accurately

estimated by Praat is a tedious task since fo estimation is

particularly difficult near voice offsets (voiced-to-unvoiced

transitions) and onsets (unvoiced-to-voiced transitions;

Quatieri, 2008). Not only can vocal cycle masking occur due

to environmental noise or concurrent aspiration and frication

from coarticulation, but instantaneous fo estimation implies

stationarity. Thus, calculating fo during the transition from

voiced to unvoiced speech is challenging. Additionally, it

has been reported that at least six RFF speech sequences are

needed for a reliable RFF estimate, wherein extensively

trained technicians must perform 20–40 min of analysis per

reliable RFF extraction (Eadie and Stepp, 2013; Lien et al.,
2017). Despite being the current gold-standard technique,

manual RFF extraction is clinically infeasible due to its

time- and training-intensive nature. Thus, in order to mini-

mize the need for inefficient, manual intervention by trained

technicians, semi-automated RFF estimation has been devel-

oped using rule-based signal processing techniques (Lien,

2015; Lien et al., 2017).

a. Current RFF algorithm design. Current semi-

automated algorithm1 (henceforth referred to as the “V.1”

algorithm, which stands for version 1 algorithm) estimates

RFF in six steps: (1) identification of the fricatives and vow-

els in each utterance according to the acoustic signal via

high-to-low energy ratios; (2) estimation of average fo via

autocorrelation of the vowels; (3) identification of peaks and

troughs of potential vocal cycles pertaining to the voiced

sonorant; (4) identification of boundaries between each

voiced sonorant and the voiceless consonant via the normal-

ized peak-to-peak amplitude, number of zero crossings, and

waveform shape similarity; (5) rejection of instances that did

not meet specified criteria (e.g., less than ten onset or offset

cycles, glottalization, misarticulation, voiceless consonant

is voiced); and (6) RFF calculation. RFF is computed as

follows (Lien, 2015; Lien et al., 2017):

RFF STð Þ ¼ 12� log2

fo

f ref
o

� �
: (1)

RFF (semitones, ST) is calculated by comparing the

instantaneous fundamental frequency of a vocal cycle (fo) to

the approximate steady-state fundamental frequency (f ref
0 ),

which was considered as the fo of the first offset cycle for

offset RFF values and the tenth onset cycle for onset RFF

values. This formula for calculating RFF is used in both

manual and automated RFF estimation. Within this algo-

rithm, all steps are fully automated except for step (1),

wherein the location of the fricatives may require manual

intervention. Of the six steps in the V.1 algorithm design,

step (4) is especially prone to error due to the complexity of

fo estimation at voice offsets and onsets (Quatieri, 2008).

b. Issues with the semi-automated RFF algorithm.

1. Method of fo estimation

The second and third steps of the semi-automated algo-

rithm utilize fo estimation in order to identify potential vocal

cycles in the voiced sonorant of a VCV production. The

acoustic signal of a VCV utterance is first bandpass filtered

according to the average fo of the speaker. Then, a sliding

window is constructed using the inverse of the average fo of

the speaker; this sliding window shifts from the identified

midpoint of the fricative in the first step and moves toward

the voiced sonorant of interest. Potential vocal cycles are

identified by leveraging the normalized peak-to-peak ampli-

tude, number of zero crossings, and waveform shape similar-

ity obtained from each sliding window.

One issue that plagues the V.1 algorithm is a reliance on

autocorrelation-based fo estimation to calculate the mean fo
of each vowel in a VCV production. Typical fo estimation

methods operate either by comparing a segment of the

speech signal with other segments that have been offset by a

certain period or examining the frequency content of the

signal. In the former case, multiple windows of time are com-

pared to identify a repeating pattern (e.g., discontinuities,

peak, or trough amplitudes) in the waveform that may pro-

vide insight into potential values of fo; in the latter case, the

signal is transformed from the time domain to the frequency

domain, wherein energy peaks occur at integer multiples of
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the fo. The majority of fo estimation techniques generate pitch

period candidates based on assumptions that the rate of vocal

fold vibration generally varies a small percentage from one

period to the next, and the configuration of the vocal tract

varies at a rate much slower than the rate of the vocal folds

(Talkin, 1995). Autocorrelation was originally selected for the

RFF algorithm because Praat, the acoustic analysis software

used to perform manual RFF calculations, makes use of auto-

correlation for fo estimation. Although autocorrelation-based fo
estimation provides high resolution in the time domain with

relatively low computational complexity, autocorrelation

assumes signal periodicity. While vocally healthy speech sig-

nals generally present with a prominent peak corresponding to

the speaker’s pitch period, the level of aperiodicity in a speech

signal increases when voice problems are present (Eadie and

Doyle, 2005; Titze, 1995). As such, performing simple auto-

correlation analyses on voices characterized as dysphonic may

lead to increases in measurement error. Additionally, even

healthy voices are described as quasiperiodic at best. In many

cases, multiple autocorrelation peaks are present, and one

problem with implementing autocorrelation is determining

which peak correctly corresponds to the pitch period (Rabiner,

1977). Most importantly, autocorrelation requires 2–3 com-

plete pitch periods in order to examine physiological fo ranges

encountered in speech. As such, rapid changes in fo captured

by RFF (e.g., during the transition into and out of a vowel dur-

ing a VCV production) may lead to estimation inaccuracies

and poor cycle-to-cycle resolution.

The shortcomings surrounding the use of autocorrelation

for fo estimation during voiced/unvoiced speech transitions

may be overcome in different fo detection methods. For

instance, normalized cross correlation is an alternate time-

domain method that compares frames of the original signal to

subsampled frames of the signal (Talkin, 1995). Normalized

cross correlation operates on smaller segments of the speech

signal and, thus, may be useful for examining fo during such

voiced/unvoiced transitions. Modifications may also be per-

formed on the basic autocorrelation function (e.g., weighting

harmonics, scoring pitch period candidates) in order to mini-

mize its flaws regarding signal periodicity and poor cycle-to-

cycle resolution. Therefore, an investigation into different fo
estimation methods is warranted in order to determine which

fo estimation method results in the greatest correspondence

between algorithmic and manual RFF estimates.

2. Sample characteristics

(a) Motivation

Lien et al. (2017) sought to validate the V.1 algorithm

as a faster, more objective means of computing RFF, thus,

expanding on its potential for use in clinical voice assess-

ment. In the study, the V.1 algorithm was evaluated against

manual RFF estimation in a heterogenous group of voice

samples that varied in recording location and/or equipment,

diagnosis, voice quality, and/or dysphonia severity. The

authors included a group of typical voice speakers (N¼ 36)

to serve as controls to a larger group of individuals with dis-

ordered voices (N¼ 154). Approximately half of the speak-

ers were recorded in a waiting area or quiet room of a voice

clinic with signals sampled at 44.1 kHz and 16-bit resolution,

whereas the remaining speakers were recorded in a sound-

treated room with signals sampled at 20 kHz and 16-bit

resolution. This dataset was further split into a training set of

126 speakers and 2 testing sets composed of the remaining

64 speakers. Although the V.1-derived RFF estimates were

highly correlated with manual RFF estimates, the authors

noted that the relationship between RFF estimation methods

was dependent on voice sample characteristics, specifically

noting dysphonia severity and recording location as potential

factors influencing this relationship. Indeed, speech signals

recorded from a waiting area or quiet room of a voice clinic

resulted in a poorer correlation (0.82 versus 0.91) and root-

mean-squared error (0.37 ST versus 0.28 ST) between V.1

and manual RFF estimates than those recorded in a sound-

treated room; however, they were, on average, also more

dysphonic. Therefore, the authors could not evaluate whether

dysphonia severity, recording location, or a mix of these two

characteristics led to the observed variations in V.1 perfor-

mance. One future direction of this work, thus, included

evaluating V.1 algorithm performance across the spectrums

of dysphonia severity and signal acquisition quality.

With this background in mind, it is important to con-

sider how the widely ranging characteristics of the voice

samples may have affected V.1 performance. As previously

mentioned, the fourth step of the V.1 algorithm leverages a

set of acoustic features to identify the boundary between

voiced and voiceless segments. As a sliding window moves

from the voiceless consonant into the voiced sonorant, the

normalized peak-to-peak amplitude, number of zero cross-

ings, and waveform shape similarity between adjacent cycles

are extracted from each window. Within the examined win-

dow, normalized peak-to-peak amplitude is calculated as the

range of the speech signal, number of zero crossings is com-

puted as the number of sign changes of the speech signal,

and waveform shape similarity is calculated as the normal-

ized sum of square error between the current window of time

and the previous window of time. If a positive or negative

peak is identified in the region of the voiceless consonant,

the normalized peak-to-peak amplitude is expected to be

low, number of zero crossings to be high, and waveform

shape similarity to be high (Lien, 2015). The V.1 algorithm

uses the acoustic feature vectors to locate the transition point

between the two speech segments, called the “boundary

cycle.” It is expected that the largest change in the three

acoustic feature vectors will occur at this transition; as such,

the V.1 algorithm identifies the vector index that maximizes

the effect size between the left and right components of each

acoustic feature vector. A single set of thresholds is applied

to each acoustic feature vector to assist in identifying the

boundary cycle for voice offset (offset cycle 10) and onset

(onset cycle 1); a positive or negative peak that satisfies at

least two out of the three thresholds is chosen as the boundary

cycle for that offset or onset instance. In the V.1 algorithm,

these thresholds were optimized across a heterogenous group

of voice samples to minimize the overall difference between

manual and semi-automated RFF estimates (Lien et al.,
2017). Specifically, the threshold for each acoustic feature

was adjusted in step sizes of 5% from 80% to 120%; the step
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that resulted in the best performance in the training set was

chosen as the threshold for that acoustic feature.

Since a single threshold set is used to identify voice off-

set and onset boundary cycles, boundary cycle identification

varies based on the voice samples used to train and test the

V.1 algorithm. This is because the threshold set—which was

optimized across a heterogenous set of voice samples—may

not be the best set for individual voice samples. For instance,

a healthy voice sample may be more periodic than many of

the samples used to train the semi-automated algorithm to

calculate RFF; in this scenario, the thresholds that identify

the boundary cycle are tuned to more aperiodic signals, but

the criteria for choosing the boundary cycle may differ for

more periodic signals. Complications in identifying the

boundary cycle across a wide range of speech signals stems

from vocal cycle masking and a lack of fo stationarity at

voice offsets and onsets. Manual RFF estimation is not as

impacted by these complications since trained technicians

are able to visualize the acoustic waveform and subjectively

choose the boundary cycle, employing trial-and-error techni-

ques when necessary. Because differences in voice sample

characteristics have been shown to affect the V.1 algorithm

performance, it is necessary to take these differences into

consideration prior to RFF computation. This is a critical

hurdle to overcome prior to transferring RFF to clinical use.

(b) Accounting for sample characteristics

One method of accounting for differences in voice sam-

ple characteristics is to develop categories that enable RFF

estimation via category-specific thresholds instead of using a

single set of thresholds for all voice samples. Thus, instead

of using the same acoustic feature thresholds to identify the

boundary cycles across all samples, it is possible that evalu-

ating a voice sample according to its specific attributes (i.e.,

categorizing it) and applying a set of acoustic thresholds that

are optimal for the voice sample will increase correspon-

dence between V.1 and manual RFF estimates. For the

purposes of this study, two acoustic speech sample charac-

teristics were hypothesized to be important to algorithmic

accuracy: overall severity of dysphonia and signal acquisi-

tion quality. Overall severity of dysphonia is an auditory-

perceptual measure included within the Consensus-Auditory

Perceptual Evaluation of Voice (CAPE-V). Overall dyspho-

nia severity is considered the global, integrated impression

of vocal deviance (Kempster et al., 2009), whereas signal

acquisition quality encompasses features of the signal acqui-

sition and the room conditions in which a speech sample is

recorded, such as the recording environment. As part of

transferring RFF for use in clinical voice assessments, the

algorithm should be able to reliably calculate RFF, regard-

less of the signal acquisition quality; since clinicians may

not have access to sound-treated rooms, we examine RFF

values from acoustic recordings collected not only in sound-

treated rooms, but also in the waiting area or a quiet room of

a voice clinic.

A single acoustic measure, pitch strength, may be sensi-

tive to both overall severity of dysphonia (Eddins et al.,
2016; Kopf et al., 2017; Shrivastav et al., 2012) and signal

acquisition quality, and as such, may be used to objectively

quantify these sample characteristics. Pitch strength

describes the saliency of pitch sensation and can be calcu-

lated using the auditory sawtooth waveform inspired pitch

estimator—Prime (Auditory-SWIPE0) model (Camacho,

2012). In Auditory-SWIPE0, the fo of an acoustic signal is

estimated using a multi-step process, described here in brief.

An input sound is first filtered using an auditory-processing

front end. The spectrum of the sound is then compared to a

sawtooth wave across a range of fo values; to minimize sub-

harmonic errors, only the fundamental and prime harmonics

of the signal are considered. Each sawtooth wave is corre-

lated to the spectrum of the filtered input sound; the fo of the

sawtooth wave that elicits the highest degree of correlation

is labeled as the pitch of the input sound. The level of corre-

lation (from 0 to 1) is labeled as the estimated pitch strength

of the input sound. Thus, sounds with higher pitch sensations

result in higher pitch strengths, whereas sounds with lower

pitch sensations result in lower pitch strengths.

Pitch strength has been implemented in the objective

assessment of voice quality due to its versatility across voice

signal types2 (Kopf et al., 2017). For instance, a perceptually

breathy speech signal may be classified as containing some

level of stochastic noise due to the turbulence surrounding

the airflow jet when the voice is produced. Despite lacking

an obvious fo, the signal may still elicit a pitch sensation,

and therefore, a non-zero pitch strength. Indeed, pitch

strength has been shown to be correlated with perceptual

judgments of voice quality (Eddins et al., 2016; Shrivastav

et al., 2012) and recently proposed as a treatment outcome

for dysphonia (Kopf et al., 2017). Because of this, pitch

strength may be a viable, objective measure that can assess

overall severity of dysphonia.

Pitch strength may also be of interest to assess signal

acquisition quality. Numerous factors may impact the signal

acquisition quality of a speech signal, including speaker

characteristics (e.g., distance, loudness) and recording envi-

ronment. As such, the degree of room reverberation, degree

of room noise, and proximity of the acquisition to reflecting

surfaces must be taken into consideration when capturing

acoustic speech signals (Titze, 1995); moreover, environ-

mental noise can significantly affect acoustic correlates of

voice quality (Deliyski et al., 2005). With this in mind, intro-

ducing noise into a speech signal—such as environmental

noise or the noisy by-product of a turbulent airstream gener-

ated at the glottis—will reduce the harmonics-to-noise ratio

of the signal (Awan and Frenkel, 1994), which may, in turn,

impact the pitch strength of the signal. Thus, pitch strength

may be a useful measure to encompass signal acquisition

quality as it pertains to the speaker being recorded and the

environment in which the speaker is recorded.

II. METHODS

A. Participants

Informed consent was obtained, and the study carried

out in compliance with the Boston University (BU) and the

University of Washington (UW) Institutional Review

Boards. A group of 256 adults without voice disorders (152

female, 104 male)3 aged 18–100 yr [mean (M)¼ 37.6 yr,

standard deviation (SD) ¼ 22.3 yr] participated in the study,
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all of whom reported no prior history of speech, language, or

hearing disorders. A group of 227 individuals with disor-

dered voices (148 female, 79 male)3 aged 18–84 yr

(M¼ 52.9 yr, SD¼ 17.7 yr) also participated in the study.

All participants with Parkinson’s disease were diagnosed

with idiopathic Parkinson’s disease by a neurologist, and

were recorded while on their typical carbidopa/levodopa

medication schedule. Individuals with deep brain stimulation

devices were requested to switch their devices off for the

duration of the study. All other participants within this group

were diagnosed with a voice disorder by a board-certified

laryngologist (see Table VI in the Appendix for diagnosis

frequency of participants with disordered voices).

A speech-language pathologist specializing in voice dis-

orders assessed the overall severity of dysphonia4 (0–100) of

each participant using the CAPE-V (Kempster et al., 2009).

Table I shows participant demographics, separated according

to group, sex, age, and overall dysphonia severity. The

speech-language pathologist reanalyzed 15% of samples in a

separate sitting to ensure adequate intrarater reliability. The

Pearson’s product-moment correlation coefficient for CAPE-

V ratings conducted on 15% of reassessed speech samples

was calculated using the statistical package R (R Core

Team, 2013; version 3.2.4), yielding r¼ 0.96.

B. Recording procedures

1. Equipment and environment

All microphone signals were digitally recorded and

analysis occurred offline. Participants were recorded in

either (a) a waiting area or quiet room at Boston Medical

Center using a dynamic headset microphone (model

WH20XLR; Shure, Niles, IL) or at BU using a condenser

headset microphone (model SM35XLR; Shure, Niles, IL),

(b) a sound-treated room at BU using the same condenser

headset microphone, sampling rate, and resolution, or (c) a

quiet room at UW using a dynamic headset microphone

(model WH20XLR; Shure, Niles, IL). All microphone sig-

nals were sampled at 44.1 kHz with 16-bit resolution. The

directional headset microphone was placed 45� from the

midline and 7–10 cm from the lips. Recording levels were

not standardized across speakers so as to determine the

impact of signal acquisition quality on RFF values.

2. Speaker training

Participants were instructed to produce three sets of

nonsense words at their typical pitch and loudness of conver-

sational speech. Each set of nonsense words contained three

repetitions of a VCV instance involving the voiceless conso-

nant /f/. Specifically, participants were instructed to produce

three /afa/ repetitions, take a breath, produce three /ifi/ repe-

titions, take a breath, and produce three /ufu/ repetitions

(i.e., /afa afa afa/, breath, /ifi ifi ifi/, breath, /ufu ufu ufu/).

VCV productions were recorded rather than running speech

to minimize intraspeaker variability (Lien et al., 2014).

Similarly, the token /f/ was used to minimize individual vari-

ation within speaker (Lien et al., 2014). In order to maintain

typical pitch and loudness, participants were instructed to

refrain from chanting or singing the production.

Additionally, participants were instructed to repeat the utter-

ance if any of the three repetitions were misarticulated or

glottalized.

Three speech samples—each comprising three VCV

productions—were collected from each of the 483 speakers;

this resulted in 4347 VCV instances within 1449 speech

samples. Figure 2 shows an overview of this data break-

down, as well as those for the training and test sets used

throughout Sec. II C 2 to refine the semi-automated RFF

algorithm.

C. Data analysis

Recordings from each participant were entered into a

database of RFF stimuli for further analysis. This RFF data-

base contained samples across the spectrum of signal quality

and dysphonia severity to ensure a full representation of the

range of diversity present in clinical practice. This database

includes samples recorded in worst-case conditions (i.e., low

signal acquisition quality and high dysphonia severity) and

best-case conditions (i.e., high signal acquisition quality and

low dysphonia severity). A larger proportion of female voi-

ces were entered into this database due to the higher preva-

lence of voice disorders in adult females than in adult males

(Martins et al., 2016; Roy et al., 2005). Figure 3 shows the

relative frequency of overall dysphonia severity ratings with

respect to the recording environment, described as a quiet

room or waiting area versus a sound-attenuated room. Of the

483 speakers, 335 (207 speakers without voice disorders,

128 speakers with voice disorders) were recorded in a

sound-treated room and 148 (49 speakers without voice dis-

orders, 99 speakers with voice disorders) were recorded in a

quiet room or waiting area. The purpose of including a large

variety of sample characteristics was to ensure that RFF esti-

mates would not be confounded by specific signal quality

and dysphonia severity attributes in order to minimize the

effect of the populations used to train and test the algorithm

on resulting algorithmic performance.

1. Manual RFF estimation

All recordings were manually analyzed using Praat

acoustic analysis software (Boersma, 2001) via methodology

TABLE I. Summary of participant demographics.

Group

Sex (N) Age (years) Overall severity of dysphonia

F M Mean Standard deviation Range Mean Standard deviation Range

Speakers without disordered voices 152 104 37.6 22.3 18–100 11.5 8.1 0–44.6

Speakers with disordered voice 148 79 52.9 17.7 18–84 22.1 20.0 0–100
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previously described in Vojtech and Heller Murray (2019).

For each speech sample, the fo analysis range in Praat was

initially set to 60–300 Hz for male recordings and 90–500 Hz

for female recordings; these settings were manually adjusted

for individuals whose pitch range fell outside of the default

pitch range. Manual RFF estimation proceeded as follows:

(i) a trained technician determined the suitability of each of

the RFF instances, wherein instances were excluded if a pho-

neme was misarticulated, if glottalization was observed in

either voiced portion of the sample, or if either of the voiced

sections failed to reach steady-state (Lien et al., 2015a; Lien

and Stepp, 2013), (ii) the technician identified the ten adja-

cent offset and onset cycles nearest to the voiceless phoneme

/f/ (refer to Fig. 1), (iii) the instantaneous fo was calculated

as the inverse of the difference between adjacent pulse

periods, and (iv) RFF (in ST) was calculated according to

Eq. (1) (Baken and Orlikoff, 2000).

Although a single technician has been shown to have

high internal reliability when manually extracting RFF val-

ues (Lien et al., 2015a; Lien et al., 2015b), the ability to dis-

tinguish the vocal cycle closest to the fricative (i.e., offset

cycle 10 and onset cycle 1) can vary between technicians

and, ultimately, impact RFF cycle values. To minimize the

possibility of such variation, a minimum of two technicians

carried out pulse period selection and RFF computation for

each sample. For manual RFF ratings, each of 9 VCV pro-

ductions from 483 speakers were rated by at least 2 trained

technicians. Due to the availability of technicians to perform

manual RFF estimates, eight trained technicians manually

calculated RFF throughout the course of data collection.

Three trained technicians (6–8) completed this training and

performed manual RFF estimates prior to 2015, whereas the

remaining trained technicians (1–5) did so after 2015. All

raters were trained5 in interrater reliability > 0.93. Table II

displays the number of speakers that each of eight trained

technicians rated, including the number of speaker RFF esti-

mates that overlapped with other raters. Of the 483 speakers,

437 were rated by 2 trained technicians (technicians 1–8 in

Table II) and 46 were rated by 3 trained technicians (techni-

cians 6–8 in Table II).

Average RFF values were computed across technicians

as the gold-standard for RFF estimation. Intrarater and inter-

rater reliability metrics were calculated using the statistical

package R (version 3.2.4). Interrater reliability was con-

ducted on the RFF estimates using a two-way random intra-

class correlation (ICC[2,k]) to evaluate the precision of these

manual, gold-standard estimates of RFF. Intrarater reliability

was then computed via Pearson correlation coefficients

within each technician when asked to re-estimate 15% of

their samples in a different sitting (Lien et al., 2017; Lien

et al., 2015b). The average intrarater reliability was calcu-

lated as r¼ 0.92 (SD ¼ 0.04, range ¼ 0.87–0.99). Average

interrater reliability of RFF estimates was computed as ICC

¼ 0.92 (SD ¼ 0.05, range ¼ 0.82–0.99).

2. Semi-automated RFF Estimation

Building off of the algorithm developed by Lien (2015),

analyses were performed in MATLAB (version 9.3;

MathWorks, Natick, MA) in order to evaluate the effect of

the fo estimation method and sample characteristics on

resulting RFF values.

a. Method of fo estimation. Fundamental frequency esti-

mation is used in two major steps of the V.1 algorithm (see

Sec. I B 2 a). First, the fo estimation method is used to com-

pute the average fo of the speaker. The average fo of the

speaker is used to create a sliding window that moves along

the acoustic waveform to collect positive and negative peaks,

in addition to extracting three acoustic features from the

speech segment contained within the window. Following, fo
estimation is used to calculate the pitch period between peaks

identified during the sliding window process; these peaks are

referred to as “vocal cycle candidates.” As the boundary

FIG. 2. (Color online) Speech sample collection flowchart, wherein speakers

produced three different VCV utterances (i.e., /afa/, /ifi/, /ufu/) three times

each (i.e., /afa afa afa/, /ifi ifi ifi/, /ufu ufu ufu/). This led to a total of nine

VCV productions collected from each of 483 speakers. Speakers were split

into training (80%) and test (20%) sets via simple random sampling.
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cycle is identified from the vocal cycle candidates by examin-

ing the set of acoustic features extracted along the sliding

window, these steps are paramount to accurate RFF

estimation.

Two scenarios were selected to evaluate the correspon-

dence between manual and automated RFF estimates with

respect to the two steps in that algorithm that rely on accu-

rate fo estimation. In the first scenario, the midpoint of the

voiceless consonant was provided to the V.1 algorithm to

evaluate the ability of the fo estimation method to generate a

sliding window for capturing potential peaks and troughs,

then to calculate the pitch period of vocal cycle candidates;

in other words, both steps of vocal cycle detection were

examined in this scenario. In the second scenario, the manu-

ally defined indices of the boundary cycle were provided in

order to solely evaluate the ability of the fo estimation

method to calculate the pitch period of actual vocal cycles

used in RFF computation; thus, the ability of the fo estima-

tion method to determine vocal cycle candidates was not

evaluated.

In order to determine the impact of the fo estimation

method on the resulting RFF values, we compared five fo
detection methods to manual RFF values. In addition to the

autocorrelation function that is currently implemented in V.1,

four competitive fo estimators were chosen for evaluation:

Auditory-SWIPE0 (Camacho, 2012), YIN (de Cheveigne and

Kawahara, 2002), robust algorithm for pitch tracking (RAPT;

Talkin, 1995), and Halcyon (Azarovet al., 2016). To generate

potential pitch period candidates, Auditory-SWIPE0 and YIN

use modified autocorrelation function models, whereas

RAPT and Halcyon each employ normalized cross-

correlation function-based models. These methods were

selected due to their superior performance and/or frequency

of use as fo estimators (Azarov et al., 2016; Jouvet and

Laprie, 2017).

To compare the fo estimation techniques, RFF was first

calculated on a subset of 180 speech samples (9 speech sam-

ples from 20 participants) in each of the aforementioned sce-

narios: (1) when the approximate midpoint of the voiceless

consonant was provided, and (2) when the manually defined

indices of the boundary cycle were provided. A small subset

of speech samples was chosen for this analysis to model a

spectrum of pitch strength values. Of the subset of 20 partici-

pants, 15 speakers were recorded in a sound-attenuated

room, whereas the remaining 5 were recorded in a quiet

room or waiting area of a voice clinic. Moreover, 11 of the

20 individuals were diagnosed with a voice disorder. This

provided pitch strength values ranging from 0.04 to 0.51

(M¼ 0.33, SD¼ 0.12). Error metrics were calculated

between manual and semi-automated RFF estimates via

mean bias error (MBE), root-mean-square error (RMSE),

and the number of erroneous rejections. RMSE and MBE

were included to provide an overview of the accuracy and

precision of automated RFF values, respectively, when com-

pared to ground truth manual RFF estimates. Erroneous

rejections were considered as RFF instances that were

excluded only through automated analysis (false positive) or

manual analysis (false negative). A false positive occurred

when an instance did not meet specified criteria according to

the V.1 algorithm (see Lien, 2015, for these criteria) but was

considered valid through manual analysis; conversely, a

false negative occurred when an instance was considered

misarticulated, glottalized, or not steady-state through

TABLE II. Number of speakers for which eight trained technicians manu-

ally computed relative fundamental frequency. The matrix shows common

speakers analyzed between technicians, whereas the diagonal (bold)

describes the number of speakers a single technician rated in total.

Technician 1 2 3 4 5 6 7 8

1 103

2 93 278

3 1 92 188

4 0 79 9 91

5 9 0 86 3 99

6 0 0 0 0 0 96

7 0 1 0 0 1 95 97

8 0 13 0 0 0 47 46 60

FIG. 3. (Color online) Relative fre-

quency of overall severity of dyspho-

nia ratings for speakers with (left) and

without (right) voice disorders, further

distinguished by whether the speaker

was recorded in a quiet room or sound-

attenuated room.

J. Acoust. Soc. Am. 146 (5), November 2019 Vojtech et al. 3191



manual analysis (Lien et al., 2015a; Lien and Stepp, 2013),

but was considered valid through automated analysis. The

number of erroneous rejections was tallied for each of the

two aforementioned scenarios as the sum of false positives

and false negatives. Resulting MBE, RMSE, and erroneous

rejections were computed when augmenting the V.1

algorithm with each of the five fo estimation techniques. In

comparing error metrics, the fo estimation method that led to

the smallest error (i.e., RMSE, MBE) and least number of

erroneous rejections was retained as the fo estimation method

in a new algorithm version, termed “V.2.”

b. Development of category-specific thresholds. The

RFF database consisted of 1449 speech samples (4347 VCV

instances) from 483 independent speakers. This database

was split up into training (80%) and test (20%) sets using

simple random sampling, as this distribution method leads to

low bias of model performance (Kuhn and Johnson, 2013;

Reitermanova, 2010); since simple random sampling can

lead to high variance in model performance, k-fold cross-

validation was used to quantify this variation (see Sec.

II C 2 b 4). Pitch strength—which was adopted in the current

study to quantify sample characteristics (i.e., speaker voice

quality and signal acquisition quality)—was then calculated

for each VCV instance in the training set via Auditory-

SWIPE0. Following, the training set was used to tune the

boundary between voiced and voiceless segments in VCV

instances according to sample characteristics.

1. Automated sample rejection

First, a rejection threshold was created to eliminate sam-

ples with a pitch strength considered too low (i.e., little-

to-no presence of a pitch sensation) to accurately analyze.

The rejection cutoff was determined by constructing a

receiver operating characteristic (ROC) curve using pitch

strength estimates of instances that were rejected via manual

analysis versus those considered valid. A final threshold was

chosen using the threshold obtained at the location in the

ROC curve corresponding to the maximum positive likeli-

hood ratio (PLR); the maximum PLR was chosen as criterion

for the rejection cutoff to maximize the probability of reject-

ing a sample that is invalid, and minimize the probability of

rejecting a viable sample. Any VCV instances with a pitch

strength below this cutoff value were excluded from further

analysis.

2. Boundary cycle shifts

Prior to category creation, we evaluated the average

discrepancy in boundary cycle identification between manual

and semi-automated RFF analyses. As previously men-

tioned, the methods of determining the boundary between

voiced and voiceless speech segments differs between man-

ual and automated RFF analysis: manual analysis allows

technicians to subjectively choose the boundary between

voiced and voiceless speech segments, whereas the V.1 algo-

rithm leverage a set of acoustic features to identify this tran-

sition point. In the V.1 algorithm, Lien et al. (2017)

extracted acoustic features during the sliding window pro-

cess (i.e., acoustic feature values collected at each average

pitch period, starting at the voiceless consonant and transi-

tioning into the voiced sonorant) with the assumption that

each feature would exhibit a state transition at the boundary

between voiced and voiceless speech segments. This logic

was implemented by maximizing the effect size of each

acoustic feature vector, wherein either side of the state tran-

sition was assumed to contain stable values pertaining to the

voiced sonorant and voiceless consonant. The index that

maximized the vector effect size was considered the bound-

ary cycle for that acoustic feature, and the median boundary

cycle candidate of the three acoustic features was adopted as

the “true” boundary cycle.

In order to evaluate the differences in manual versus

automated boundary extraction, we first excluded any of the

4347 VCV instances (from 1158 speech samples) of the

training set that were rejected through manual analysis. We

then compared the “automated” boundary cycle that was

computed via the V.1 algorithm to the true boundary cycle,

which was determined via manual analysis. First, the acous-

tic features implemented in the V.1 algorithm were exam-

ined as a function of the average number of pitch periods

away from the true boundary cycle. This included normal-

ized peak-to-peak amplitude, number of zero crossings, and

waveform shape similarity; however, a preliminary analysis

showed that bandpass filtering the microphone signal 3 ST

above and below the average fo of the sample (Lien, 2015)

increased the effect size for normalized peak-to-peak ampli-

tude. As such, normalized peak-to-peak amplitude was com-

puted from the filtered microphone signal for all analyses.

After calculating the three acoustic features as a function of

pitch periods away from the true boundary, the effect sizes

of each feature at each distance 62 pitch periods from the

true boundary cycle were computed (see Table VII in the

Appendix). Following the logic for selecting boundary

cycles by Lien et al. (2017), the pitch period cycle that eli-

cited the maximum effect size was characterized as the auto-

mated boundary cycle for that acoustic feature. This

automated boundary cycle—represented as the average num-

ber of pitch periods away from the true boundary cycle—

corresponded to the error in boundary selection between

algorithmic and manual RFF estimation. The acoustic fea-

ture slope at the pitch period cycle was characterized as the

direction of the error (i.e., toward or away from the voiceless

consonant).

3. Category creation

VCV instances with average pitch strength values that

did not exceed the rejection threshold discussed in Sec.

II C 2 b 1 were excluded from further analysis. Pitch strength

estimates of the remaining VCV instances were then used to

construct categories for computing RFF according to a sam-

ple’s attributes. For all samples in the training set, acoustic

feature values calculated at the time point of the automated

boundary cycle were evaluated against pitch strength. Each

feature vector was then visually inspected across pitch

strength, paying particular attention to local extrema, inflec-

tion points, and confidence intervals; this elicited pitch

strength categories for voice offset and voice onset.

Specifically, categories were chosen by leveraging these
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variables to identify pitch strength levels that were repre-

sented by consistent increases, decreases, or stable feature

values.

ROC curves were then constructed for each offset and

onset feature by pitch strength category in order to determine

the discriminatory ability of pitch strength to objectively dis-

tinguish between features at the true versus automated

boundary. Optimal thresholds were chosen to distinguish

categories via the Youden index (Youden, 1950) in order to

maximize sensitivity and specificity. Using this logic, the

automated boundary cycle would be determined via maxi-

mizing the effect size of the acoustic feature vector per sam-

ple as in V.1. However, the acoustic feature value at the

selected boundary cycle would then undergo an additional

analysis: if the value of the acoustic feature at the boundary

cycle did not exceed the threshold set by the sample’s pitch

strength category, then the automated boundary cycle would

be shifted to mark the correct transition between voiced and

voiceless segments. The number of vocal cycles and direc-

tion of the shift corresponded to those determined in Sec.

II C 2 b 2 (see Table VII in the Appendix). Notably, however,

the V.1 algorithm collects positive and negative waveform

peaks from the speech signal. RFF is then computed from

the set of peaks that is closer in time to the voiceless conso-

nant. Because of this, an additional analysis was performed

to further refine RFF computation via the pitch strength-

tuned categories. Specifically, the median distance between

automated and true boundary cycles was computed for each

voice offset and onset category when identifying positive

and negative waveform peaks. The difference in average

pitch periods between the true and automated boundary

cycles was then implemented as a final shift to increase cor-

respondence with manual RFF boundary cycle identification.

4. Validation and performance

RFF was recalculated in the training set using the opti-

mal set of acoustic feature thresholds for each sample cate-

gory. Then, k-fold cross-validation was performed on the

recalculated RFF values of the training data to provide an

appropriate estimate of model performance and ensure that

the model was not overfitted (Kuhn and Johnson, 2013). For

this analysis, the training dataset was split into k-training

(1042 speech samples containing 3126 VCV instances) and

k-validation (116 speech samples containing 343 VCV

instances) datasets, then RMSE and MBE values were com-

pared as an average across k¼ 10 folds.

The semi-automated RFF algorithm that incorporated

optimized fo estimation (V.2) and accounted for sample char-

acteristics via pitch strength categories were termed “V.3.”

RFF estimation accuracy was then computed on the test set

by comparing manual RFF estimates against V.1–V.3. Error

was computed across the three algorithm versions via RMSE

and MBE to provide insight into the average accuracy and

precision of each algorithm, respectively. Additionally, the

impact of clinical sample characteristics (i.e., dysphonia

severity and signal acquisition quality) on the V.3 algorithm

was evaluated using the test set. Two Welch’s tests were

conducted for resulting MBE and RMSE values in order to

investigate the performance of the V.3 algorithm in comput-

ing RFF on samples of differing signal acquisition qualities.

Average errors for samples recorded in a quiet room/waiting

area versus a sound-attenuated room were examined using

an alpha level of 0.05 for significance testing. Effect sizes

were estimated using Cohen’s d. Then, the performance of

the V.3 algorithm in estimating RFF across the spectrum of

dysphonia severity was evaluated by calculating Pearson

product-moment correlation coefficients for MBE and

RMSE values against overall severity of dysphonia ratings.

III. RESULTS

A. Method of fo estimation

The RMSE, MBE, and a number of erroneous rejections

for each fo estimation technique are shown in Table III for

N¼ 20 speakers. When the manually determined boundary

cycle was provided as a reference, the RFF algorithm using

Auditory-SWIPE0 (RMSE ¼ 0.52 ST) and Halcyon (MBE

¼ 0.03 ST) for fo estimation resulted in the greatest

correspondence to manual RFF. Notably, none of the five

algorithms erroneously rejected any VCV instances when

provided the location of the manual boundary. When the

RFF algorithm had to identify vocal cycles using the approx-

imate midpoint of the voiceless consonant, the algorithm

using YIN (RMSE ¼ 0.39 ST) and RAPT (MBE ¼ 0.02 ST)

for fo estimation resulted in the least error. However, imple-

menting RAPT and YIN each resulted in the largest number

of erroneous rejections (72 offset and 94 onset for RAPT; 59

offset and 100 onset for YIN). In considering RMSE, MBE,

and erroneous rejections together when provided the mid-

point of the voiceless consonant as a reference, Auditory-

SWIPE0 resulted in the best performance (RMSE ¼ 0.43 ST;

TABLE III. Comparison of fundamental frequency (fo) estimation methods when provided with the manually determined time point corresponding to the vocal

cycle closest to the voiceless consonant, and when provided only with the midpoint of the voiceless consonant.

Method of fo estimation

Manual boundary cycle as reference Voiceless consonant as reference

Error (semitones, ST) Erroneous rejections Error (ST) Erroneous rejections

RMSE MBE Offset Onset RMSE MBE Offset Onset

Autocorrelation 1.06 0.50 0 0 0.43 0.09 54 90

Halcyon 0.81 0.03 0 0 0.41 0.06 60 92

Auditory-SWIPE’ 0.52 �0.20 0 0 0.43 0.04 52 98

RAPT 1.97 �1.13 0 0 0.50 0.02 72 94

YIN 0.80 �0.19 0 0 0.39 0.05 59 100
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MBE ¼ 0.04 ST; 52 erroneous offset rejections, 98 errone-

ous onset rejections).

Analyzing the performance of each fo estimation method

when provided with indices for the manually determined

boundary cycle was conducted to simulate the downstream

effects of the acoustic features accurately identifying the

boundary between the voiced and voiceless segments.

Because of its high-tier performance in this scenario, cou-

pled with its superior performance when only provided with

the midpoint of the voiceless consonant, Auditory-SWIPE0

was selected for fo estimation in the optimized version of the

algorithm V.2.

B. Development of category-specific thresholds

1. Automated sample rejection

A ROC curve was constructed from examining the dis-

criminatory ability of pitch strength to distinguish between

valid and invalid (i.e., manually rejected) RFF instances. A

total of 3474 VCV instances were used to construct the ROC

curve: 3271 offset and 2854 onset instances were valid,

whereas 203 offset and 620 onset instances were invalid.

The resulting area under the ROC curve was 0.73 (95%

confidence interval ¼ 0.71–0.75). Using the maximum PLR

(100% specificity, 4% sensitivity), a pitch strength threshold

of 0.05 was selected as rejection criterion, wherein speech

samples with a pitch strength of 0.05 or lower would be

rejected prior to RFF cycle analysis. Out of 3474 VCV

instances, 19 VCV instances did not make this cutoff.

Further analysis thus includes 3270 offset instances and

2853 onset instances that were not excluded due to manual

rejection or low (<0.05) pitch strength values.

2. Boundary cycle shifts

Figure 4 shows the relationship between acoustic fea-

tures and the true boundary cycle for the training dataset

(3270 offset instances, 2853 onset instances). Mean acoustic

feature values are shown as a function of the average number

of pitch periods away from the true boundary cycle. The true

boundary corresponds to the boundary cycle (i.e., offset

cycle 10 for voice offset and onset cycle 1 for voice onset)

that is selected by trained technicians during manual RFF

analysis. Normalized peak-to-peak amplitude increased

toward the voiced sonorant for both voice offset [Fig. 4(a);

negative pitch period distance] and onset [Fig. 4(d); positive

pitch period distance], yet was relatively stable during the

voiceless consonant. Conversely, the number of zero cross-

ings increased toward the voiceless consonant for voice off-

set [Fig. 4(b)] and voice onset [Fig. 4(e)], then was stable

during the voiced sonorant. Waveform shape similarity—

calculated in reference to the voiceless consonant—matched

the trends observed in the number of zero crossings for voice

offset [Fig. 4(c)] and voice onset [Fig. 4(f)]. Leveraging the

relationship between acoustic feature values and the average

number of pitch periods away from the true boundary cycle,

effect sizes were calculated to identify feature-based bound-

ary cycle shifts; resulting boundary cycle shifts are shown in

Table VII in the Appendix.

FIG. 4. (Color online) Mean acoustic feature values as a function of average pitch periods away from the true boundary. Voice offset is shown in (a)–(c),

wherein the true boundary cycle is offset cycle 10. Voice onset is shown in (d)–(f), wherein the true boundary cycle is onset cycle 1. Trends for normalized

peak-to-peak amplitude (orange) are shown in (a) and (d), number of zero crossings (purple) in (b) and (e), and waveform shape similarity (teal) in (c) and (f).

Shading indicates 95% confidence intervals.
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3. Category creation

Of the remaining 3270 offset instances and 2853 onset

instances, 4 pitch strength cutoffs were selected via manual

examination to describe the trends in acoustic feature values

for voice offset: 0.15, 0.25, 0.35, and 0.45. Thus, in addition

to the rejection criteria of 0.05, five pitch strength categories

resulted for voice offset as follows:

catoff Sð Þ ¼

1; 0:05 < S � 0:15

2; 0:15 < S � 0:25

3; 0:25 < S � 0:35

4; 0:35 < S � 0:45

5; S > 0:45:

8>>>>>><
>>>>>>:

(2)

In Eq. (2), pitch strength is denoted by the variable S,

and the speech sample category is described by catoff.

Similar to voice offset, manual examination of the three fea-

tures resulted in four pitch strength cutoffs for voice onset:

0.15, 0.25, 0.35, and 0.55. Five categories resulted for voice

onset (caton) as a function of pitch strength (S).

Using these categories, optimal thresholds for each

acoustic feature were determined (see Table VIII in the

Appendix) and implemented into the V.3 algorithm. Figure 5

shows the performance

caton Sð Þ ¼

1; 0:05 < S � 0:15

2; 0:15 < S � 0:25

3; 0:25 < S � 0:35

4; 0:35 < S � 0:55

5; S > 0:55

8>>>>>><
>>>>>>:

(3)

of V.1–V.3 algorithms in selecting the manually identified

boundary cycle using speech samples of the training dataset.

Out of 3270 instances to classify for voice offset [Figs.

5(a)–5(c)], the V.3 algorithm resulted in the largest number

of correctly identified boundary cycles (N¼ 1503), followed

by V.2 (N¼ 1399), and then V.1 (N¼ 1349). When consid-

ering the instances for which the automatically identified

boundary cycle did not match the manually identified bound-

ary cycle, the majority of misclassifications occurred closer

to the voiced sonorant for V.1 (N¼ 1692), V.2 (N¼ 1636),

FIG. 5. (Color online) Boundary cycle

identification by each of the semi-

automated algorithms. Cycle classifi-

cations are measured as a function of

average pitch periods from the manu-

ally identified boundary cycle. Voice

offset is shown in (a)–(c), whereas

voice onset is shown in (d)–(f). Results

for V.1 (teal) are shown in (a) and (d),

V.2 (orange) in (b) and (e), and V.3

(purple) in (c) and (f).
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and V.3 (N¼ 1584). Out of 2853 instances to classify for

voice onset [Figs. 5(d)–5(f)], V.3 resulted in the greatest

number of correctly identified cycles (N¼ 1896). V.1 and

V.2 produced similar results with 1502 correctly identified

cycles for V.1 and 1517 for V.2. Dissimilar from voice off-

set, a great majority of misclassified boundary cycles were

identified as occurring closer to the voiceless consonant for

V.1 (N¼ 1197) and V.2 (N¼ 1184). However, results for

V.3 showed a more even split for misclassified cycles: of the

937 misidentified cycles, the boundary cycle was identified

as occurring closer to the voiced sonorant in 504 instances,

whereas it was identified as being closer to the voiceless

consonant in 434 instances.

As a next step, k-fold cross-validation was performed on

all 3474 VCV instances to assess whether category and

threshold parameters were overfit to the data. The cross-

validation estimate of prediction error was averaged across

k¼ 10 folds, resulting in an MBE of �0.03 ST (SD ¼ 0.01

ST) and RMSE of 0.31 (SD ¼ 0.004 ST) of the k-training set

(N¼ 1042), and an MBE of �0.03 ST (SD ¼ 0.04 ST) and

RMSE of 0.32 ST (SD ¼ 0.02 ST) in the k-validation set

(N¼ 116). Given the small discrepancy between error esti-

mates of the k-training and k-validation sets, it was deter-

mined that the constructed V.3 model was not overfit to the

training data, and parameters were retained to finalize the

algorithm.

C. RFF algorithm performance in the test set

Table IV shows the distribution of speech samples in

the test set (873 VCV instances) by the pitch strength catego-

ries described in Eqs. (2) and (3); this distribution is

described according to speaker sex, group (i.e., with versus

without a voice disorder), and recording location (i.e., in a

quiet room or waiting area versus a sound-attenuated room).

When considering speaker sex, a larger proportion of female

voices were rejected (1.9% for voice offset, 2.5% for voice

onset) due to low pitch strength values than male voices (0%

for voice offset, 0.7% for voice onset). When considering

speaker group, a greater percentage of speech samples

recorded from individuals with a voice disorder (2.6% for

voice offset, 3.1% for voice onset) were rejected than sam-

ples recorded from individuals without a voice disorder (0%

for voice offset, 0.9% for voice onset). Similarly, a greater

proportion of samples recorded in a quiet room or waiting

area (2.9% for voice offset, 3.3% for voice onset) were

rejected compared to those recorded in a sound-attenuated

room (0.4% for voice offset, 1.2% for voice onset), and

more onset instances were rejected than offset instances for

each factor. Of the 567 VCV instances corresponding to

samples recorded in a sound-attenuated room, more than

50% of these instances (384 offset instances, 386 onset

instances) were classified as having a pitch strength above

0.35 (i.e., categories 4 or 5). Of 306 VCV instances corre-

sponding to samples recorded in a quiet room or waiting

area of a voice clinic, the majority of these instances (179

offset instances, 152 onset instances) were classified as hav-

ing a pitch strength below 0.35 (i.e., categories 1–3). To this

end, a greater proportion of VCV instances from female

speakers fell within the higher pitch strength categories (i.e.,

categories 4 and 5, with a pitch strength value greater than

0.35 for either voice offset or voice onset) than male speak-

ers for both voice offset and onset (offset, female ¼ 63.8%,

male ¼ 44.1%; onset, female ¼ 64.8%, male ¼ 52.0%).

Similarly, a larger percentage of speakers without voice dis-

orders (offset, 65.8%; onset, 66.0%) were characterized at

these higher pitch strength categories than speakers without

voice disorders (offset, 48.7%; onset, 55.1%) for offset and

onset VCV instances. Finally, a greater proportion of speak-

ers recorded in a sound-attenuated room resulted in higher

pitch strength categories (offset, 67.7%; onset, 68.1%) than

those recorded in a quiet room or waiting area (offset,

38.6%; onset, 47.1%).

RFF was computed for the independent test set (873

VCV instances) using each of the semi-automated algo-

rithms. Table V shows the performance resulting from com-

paring each semi-automated RFF algorithm against manual

RFF estimates in terms of MBE (ST) and RMSE (ST). When

comparing MBE and RMSE between algorithm versions,

TABLE IV. Distribution of pitch strength categories for voice offset and voice onset instances in the test set (873 VCV instances from 291 speech samples).

Values are shown as a percentage (%) of total VCV instances (N) and do not reflect speech samples that were rejected during pre-processing.

N

Voice offset (N¼ 286) Voice onset (N¼ 290)

Percent of samples per

pitch strength category

Percent of samples per

pitch strength category

Speaker factor 0a 1 2 3 4 5 0a 1 2 3 4 5

Sex

Male 279 0 2.9 12.5 40.5 35.1 9.0 0.7 9.3 11.8 26.2 49.8 2.2

Female 594 1.9 1.7 7.1 25.6 43.4 20.4 2.5 4.9 8.8 19.0 61.3 3.5

Group

Voice disorder 423 2.6 3.3 12.1 33.3 35.5 13.2 3.1 7.3 11.1 23.4 54.1 0.9

No voice disorder 450 0 0.9 5.8 27.6 45.8 20.0 0.9 5.3 8.4 19.3 60.9 5.1

Location

Quiet room 306 2.9 3.6 13.4 41.5 30.4 8.2 3.3 10.5 13.7 25.5 45.4 1.6

Sound booth 567 0.4 1.2 6.3 24.4 46.4 21.3 1.2 4.1 7.6 19.0 64.2 3.9

aA category of zero signifies that the instance was rejected because the pitch strength value was <0.05.
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V.3 results in the least error compared to manual RFF esti-

mates (MBE ¼ 0.01 ST, RMSE ¼ 0.28 ST), followed by

V.2 (MBE ¼ 0.08 ST, RMSE ¼ 0.32 ST), and then V.1

(MBE ¼ 0.09 ST, RMSE ¼ 0.34 ST). Figure 6 shows these

errors by individual voice offset and onset cycles. On aver-

age, MBE of offset cycles 2–10 substantially decreases when

using V.3 to calculate RFF compared to V.1 or V.2. The

MBE of onset cycle 2 improves toward zero when using

V.3, whereas that of onset cycle 1 and cycles 3–10 approach

similar values across the three algorithm versions. Average

RMSE also decreases for offset cycles 2–10 and onset cycle

1 when using V.3 with similar performance across V.1–V.3

algorithms for remaining cycles. Taking these findings into

account, our results show that the V.3 semi-automated RFF

estimation algorithm resulted in the greatest correspondence

to manual RFF estimates.

Within the test set of 291 samples (873 VCV instan-

ces), MBE and RMSE values were examined across sam-

ple characteristics of signal acquisition quality and

overall severity of dysphonia. The Welch’s test examin-

ing MBE values across signal acquisition quality (i.e.,

recorded in a quiet room or waiting area versus sound-

attenuated room) revealed that recording location pro-

duced a medium significant effect (p¼ 0.04, d¼ 0.47) on

RFF values produced from the V.3 algorithm (Witte and

Witte, 2010, p. 383). The average MBE was larger for

sound samples recorded in a quiet room or waiting area

(M¼ 0.08 ST, SD¼ 0.23 ST) compared to those recorded

in a sound-attenuated room (M¼�0.02 ST, SD¼ 0.21 ST).

However, the Welch’s test examining RMSE values across

recording locations showed that recording location was not

a significant factor (p¼ 0.25), with the average RMSE for

sound samples recorded in a quiet room or waiting area

(M¼ 0.31 ST, SD¼ 0.18 ST) similar to that of sound sam-

ples recorded in a sound-attenuated room (M¼ 0.27 ST,

SD¼ 0.16 ST). Pearson product-moment correlation coeffi-

cients conducted for MBE and RMSE against overall sever-

ity of dysphonia elicited r¼�0.08 (p¼ 0.44) and r¼ 0.44

(p< 0.001), respectively.

Because Auditory-SWIPE0 is a more computationally

complex method than that of the autocorrelation method

used in the V.1 algorithm, we compared the processing

times necessary to compute the fo contour of each test set

speech sample when using the two fo estimation techni-

ques. On average, Auditory-SWIPE0 required 3.59 s (SD

¼ 1.34 s) to process each speech sample containing three

VCV instances, whereas autocorrelation required 0.28 s

(SD¼ 0.11 s).

IV. DISCUSSION

In this study, we acquired a wide range of vocal signals

to create a large RFF database that could be used to examine

the impacts of the fo estimation method and sample charac-

teristics on resulting RFF estimates. We recorded a broad

range of vocal function in a variety of locations, including

clinic waiting areas, quiet rooms, and sound-attenuated

rooms. Five fo estimation methods were then evaluated to

determine which method yielded the greatest correspondence

to manual RFF estimates. The fo estimation algorithm

TABLE V. Comparison of manual and automated relative fundamental fre-

quency estimates by algorithm version, computed using a test set of 291

speech samples. Error values are shown as mean (95% confidence interval).

Algorithm version Mean bias error (ST) RMSE (ST)

V.1 0.09 (0.07–0.11) 0.34 (0.32–0.36)

V.2 0.08 (0.05–0.10) 0.32 (0.29–0.34)

V.3 0.01 (-0.01–0.03) 0.28 (0.26–0.30)

FIG. 6. (Color online) Mean bias error

(MBE) (a) and RMSE (b) by voice off-

set and onset cycles for V.1 (teal), V.2

(orange), and V.3 (purple).
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Auditory-SWIPE0 was implemented in the optimized, semi-

automated RFF algorithm due to its superior performance

when simulating the downstream effects of accurate bound-

ary cycle identification. The effects of sample characteristics

on RFF were then examined; we selected overall severity of

dysphonia and signal acquisition quality to capture variation

in sample characteristics (Lien et al., 2017). We then used

pitch strength as a means of objectively quantifying these

characteristics. Using a training set from the RFF database,

categories based on pitch strength values were developed,

and RFF algorithm thresholds were tuned to each category.

RFF values were then recalculated on a test set using the

category-specific thresholds.

Our results show that refining the method of fo estima-

tion and accounting for sample characteristics leads to

increased correspondence between manual and automated

RFF estimates. Within this analysis, MBE and RMSE were

both calculated, with MBE providing an approximation of

average accuracy of the RFF estimates and RMSE providing

insight into the precision of these estimates without regard to

the direction of error (i.e., positive or negative ST). The

MBE obtained after refining the algorithm was positive, sug-

gesting that using the V.3 algorithm to compute RFF will, on

average, generate a positively biased systematic error of

approximately 0.01 ST. The average RMSE across samples

in the test group was 0.28 ST; this indicates that the spread

of error values will, on average, approach 0.28 ST when

using the V.3 algorithm to estimate RFF. Despite the method

of error computation, the refined version of the algorithm

resulted in the least error when compared to the algorithm

without modifications (i.e., using autocorrelation for fo esti-

mation) and when only optimizing fo estimation method

(i.e., using Auditory-SWIPE0 for fo estimation). Thus,

although the Auditory-SWIPE0 algorithm is more computa-

tionally complex than autocorrelation, wherein more proc-

essing time is required to compute fo, the trade-off for more

accurate fo estimation is necessary in order to improve the

accuracy of the algorithm. Yet, it is important to note that

the Auditory-SWIPE0 algorithm not only computes the fo
contour but also the pitch contour used to categorize speech

samples. Overall, our results suggest that identifying the

voiced/unvoiced boundary using pitch strength-tuned thresh-

olds results in a greater correspondence to manual estimates

of RFF across a broad range of vocal function.

Rather than assessing RFF across specific sample charac-

teristics, such as clinical diagnosis, we included a myriad of

diagnoses (see Table VI in the Appendix) in order to increase

correspondence between manual and semi-automated RFF

algorithms across the spectrum of vocal function. We used

pitch strength as a gestalt estimate of acoustic voice quality,

thereby encompassing specific sample characteristics of over-

all severity of dysphonia and signal acquisition quality.

However, it is important to consider how RFF estimates com-

puted using V.3 vary across clinical metrics. By examining

errors across recording location, we found that recording

location was not a significant factor in the model for RMSE.

This suggests that the average spread of RFF estimates was

relatively similar for speech samples recorded in a quiet

room/waiting area or sound-attenuated room. These findings

indicate that the precision of RFF estimates is not affected by

signal acquisition quality. Conversely, recording location

was a significant factor in the model for MBE, wherein the

average accuracy of RFF estimates was reduced for samples

recorded in a quiet room or waiting area. These findings sug-

gest that the bias of RFF values is still affected by signal

acquisition quality despite using pitch strength to account for

clinical sample characteristics. Our results are indicative of

systematic errors to occur, on average, on the order of 0.08

ST for samples recorded in a quiet room or waiting area and

�0.02 ST for samples recorded in a sound-attenuated room.

When examining RFF errors across overall severity of

dysphonia, a very weak, negative relationship (Evans, 1996,

p. 146) was found between overall severity of dysphonia and

MBE. These results indicate that, dissimilar from findings

for signal acquisition quality, the accuracy of an RFF esti-

mate from the V.3 algorithm will not be substantially altered

from manual estimates as a function of overall severity of

dysphonia. On the other hand, a moderate, positive relation-

ship (Evans, 1996, p. 146) was found between overall sever-

ity of dysphonia and RMSE; this suggests that the precision

of resulting RFF values may be positively related to the

overall severity of dysphonia of the speaker. Thus, although

we used pitch strength to acoustically account for the clinical

metrics of signal acquisition quality and dysphonia severity,

pitch strength may not be sufficient to fully encompass these

perceived sample characteristics.

In the current study, we optimized the semi-automated

RFF algorithm to increase correspondence with manual RFF;

however, neither the average MBE nor the RMSE between

manual and V.3 RFF estimates were zero. Possible reasons

for this outcome are twofold. First, as previously mentioned,

pitch strength may not be sufficient to account for differences

in signal acquisition quality and/or dysphonia severity present

in current clinical practice. As such, future investigations

should investigate additional or alternative acoustic metrics to

account for the diversity in these clinical sample characteris-

tics. Examples of such metrics may include cepstral peak

prominence to assess speaker-related sample characteristics

(Anand et al., 2018), and/or signal-to-noise ratio to assess

environmental-related sample characteristics. Second, it is

unclear as to whether manual RFF is a true gold standard;

therefore, it may not be necessary to remove errors between

automated and manual RFF estimates. Manual RFF is derived

using microphone signals (Eadie and Stepp, 2013; Goberman

and Blomgren, 2008; Robb and Smith, 2002; Stepp, 2013;

Stepp et al., 2010; Stepp et al., 2011b; Stepp et al., 2012;

Watson, 1998; Watson and Schlauch, 2008) or accelerometer

signals (Lien et al., 2015a). However, there may be a discrep-

ancy between using these signals and the physiological initia-

tion or termination of voicing at the vocal fold level. Trained

technicians exercise trial-and-error to identify this physiologi-

cal boundary via manual RFF estimation. Due to the subjec-

tive nature of this process, the selected boundary may not be

the true initiation or termination of voicing. The semi-

automated RFF algorithm makes use of three acoustic fea-

tures—normalized peak-to-peak amplitude, number of zero

crossings, and waveform shape similarity—to identify this

transition point between voiced and unvoiced segments. Yet,
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it is unclear as to how these features relate to the physiologi-

cal vibrations of the vocal folds during the transition into and

out of voicing. As a result, investigation into the physiological

relevance of RFF via manual and semi-automated techniques

is warranted.

It is important to consider how the errors between man-

ual and automated RFF values compare to meaningful differ-

ences in RFF values reported in the literature. For instance,

after undergoing voice therapy, individuals with vocal

hyperfunction produced increased RFF values, similar to

those seen in healthy controls (Stepp et al., 2011b; Stepp

et al., 2010). The largest changes were observed in the RFF

cycles surrounding the voiceless consonant in a VCV utter-

ance: average RFF values increased after voice therapy by

þ0.5 ST for voice offset cycle 10 and þ0.81 ST for voice

onset cycle 1. Notably, the average accuracy of RFF esti-

mates when using the V.3 algorithm was found to be þ0.05

ST for voice offset cycle 10 and -0.04 ST for voice onset

cycle 1. These results suggest that the MBE associated with

using the V.3 algorithm is on the order of one magnitude

smaller than the increases in RFF that were observed in

Stepp et al. (2011b). Thus, users can expect that, on average,

clinically meaningful changes in RFF will not be masked by

errors associated with using the V.3 algorithm to compute

RFF (i.e., instead of manual estimation techniques).

Although the current study details preliminary steps

taken to refine the semi-automated algorithm for RFF esti-

mation, further investigation is warranted to continue to

enhance accuracy and versatility across a broad range of

vocal function. Specifically, the sample distribution analyzed

in this study may not be fully representative of clinical prac-

tice. For instance, Martins et al. (2016) reports a substantial

prevalence of vocal polyps in adults with voice disorders

(12% of 2019 adults analyzed); however, only 3% of the

population examined in the current study was diagnosed

with vocal polyps (see Table VI in the Appendix).

Furthermore, nearly 37% of the speakers with voice disor-

ders analyzed in the current study were diagnosed with

Parkinson’s disease, and approximately 33% were diagnosed

with muscle tension dysphonia. Because a substantial por-

tion of our sample group consisted of these individuals, it is

possible that our results are biased toward speakers with

Parkinson’s disease and speakers with muscle tension dys-

phonia. As such, future studies should take care to ensure

that the prevalence of voice disorders in the examined popu-

lation is representative of those seen in clinical practice.

Doing so will enhance the clinical relevance of using RFF to

acoustically examine vocal function. Additionally, it is

unclear whether the heterogeneity of the equipment used to

capture speech acoustics played a role in the differences

seen in RFF accuracy in terms of signal acquisition quality.

In particular, we hypothesized that signal acquisition quality

was a feature of acoustic speech samples that affected the

accuracy of RFF estimates; however, we examined signal

acquisition quality solely in terms of whether the speech

sample was recorded in a sound-attenuated room versus a

quiet room or waiting area. As such, future work should also

take into account the equipment used to record speech and

the characteristics of the recording environment (e.g.,

background noise levels, reverberation) when examining sig-

nal acquisition quality.

V. CONCLUSIONS

RFF has shown promise as an acoustic measure for

assessing and tracking vocal strain; however, semi-

automated RFF is not yet transferable to the clinic due to

instability across a wide range of vocal signals. Thus, we

evaluated the impacts of fo estimation method and sample

characteristics on the correspondence between automated

and gold-standard manual RFF estimates. Upon refining the

fo estimation method using the Auditory-SWIPE0 algorithm,

in conjunction with accounting for sample characteristics via

pitch strength categories, the accuracy and precision of

semi-automated RFF estimates increased by 88.4% and

17.3%, respectively. These findings highlight the importance

of considering the broad range of vocal function that may be

encountered in clinical populations.
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APPENDIX

See Tables VI–VIII for additional information regarding

participant demographics (Table VI), acoustic features

around the manually determined boundary cycle (Table VII),

and resulting acoustic feature thresholds implemented in the

refined RFF algorithm (Table VIII).

TABLE VI. Frequency of primary voice-related problems for speakers with

disordered voices.

Primary voice-related problem Frequency of problem

Acid reflux 3

Cyst(s) 3

Dysphagia 3

Ear, nose, and/or throat infection 3

Edema 4

Globus sensation 1

Granuloma 4

Laryngeal trauma 3

Muscle tension dysphonia 83

Nodules 20

Papilloma 2

Paradoxical vocal fold motion 1

Parkinson’s disease 74

Polyp 6

Presbylarynges 1

Spasmodic dysphonia 6

Upper respiratory infection 1

Vocal fold atrophy 3

Vocal fold paralysis 2

Vocal fold scarring 4
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1The V.1 algorithm is available for download at: http://sites.bu.edu/step-

plab/research/rff/ (Last viewed May 30, 2019).
2Signal types were introduced as a classification scheme by Titze (1995) to

recognize qualitative changes in voice signals. The three types of voice

signals are described as follows: type 1 signals are nearly periodic signals,

type 2 signals contain some bifurcations (e.g., alternating changes in fun-

damental frequency) such that there is no obvious single fundamental fre-

quency throughout a segment, and type 3 signals have no apparent

periodic structure.
3Gender information was not collected.
4We used overall severity of dysphonia to describe voice quality rather

than the specific dimension of strain since strain is considered to be one of

the least reliable and perceptually salient features of voice (Dejonckere

et al., 1996; Zraick et al., 2011). We further support the use of overall

severity of dysphonia—which provides a composite judgment of perceived

dysphonia—as a speaker-related characteristic in this study because strain

is thought to covary with other dimensions of voice quality such as rough-

ness and breathiness (Zraick et al., 2011).
5The dataset used to train individuals in manual relative fundamental fre-

quency estimation is a separate dataset from that described here and may

be downloaded from https://sites.bu.edu/stepplab/research/rff/ (Last

viewed May 30, 2019).
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