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Purpose: We empirically assessed the results of computational
optimization and prediction in communication interfaces that
were designed to allow individuals with severe motor speech
disorders to select phonemes and generate speech output.
Method: Interface layouts were either random or optimized,
in which phoneme targets that were likely to be selected
together were located in proximity. Target sizes were
either static or predictive, such that likely targets were
dynamically enlarged following each selection. Communication
interfaces were evaluated by 36 users without motor
impairments using an alternate access method. Each user
was assigned to 1 of 4 interfaces varying in layout and
whether prediction was implemented (random/static,
random/predictive, optimized/static, optimized/predictive)
and participated in 12 sessions over a 3-week period. Six
participants with severe motor impairments used both the
optimized/static and optimized/predictive interfaces in
1–2 sessions.
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Results: In individuals without motor impairments, prediction
provided significantly faster communication rates during
training (Sessions 1–9), as users were learning the interface
target locations and the novel access method. After training,
optimization acted to significantly increase communication
rates. The optimization likely became relevant only after
training when participants knew the target locations and
moved directly to the targets. Participants with motor
impairments could use the interfaces with alternate access
methods and generally rated the interface with prediction as
preferred.
Conclusions: Optimization and prediction led to increases
in communication rates in users without motor impairments.
Predictive interfaces were preferred by users with motor
impairments. Future research is needed to translate these
results into clinical practice.
Supplemental Material: https://doi.org/10.23641/asha.
8636948
When motor speech disorders render speakers
unable to communicate orally, individuals
may use augmentative and alternative commu-

nication (AAC) strategies to communicate. Individuals
with concomitant motor impairments (e.g., amyotrophic
lateral sclerosis, spinal cord injury) may use an alternate
access method (e.g., head tracker, eye tracker, switch-
activated scanning) to choose letters or words on an onscreen
interface to produce a synthesized speech output. Despite
advances in access technologies, communication rates in this
population remain slow: two to 15 words per minute (wpm),
compared to 30–40 wpm by a skilled typist and 150–200 wpm
in typical speech (Beukelman & Mirenda, 2013; Copestake,
1997; Higginbotham, Shane, Russell, & Caves, 2007; Lesher,
Moulton, & Higginbotham, 1998). These rates are slow par-
tially due to the motor impairments these individuals exhibit
requiring the use of alternative access. The design of the com-
munication interface presents another barrier to achieving fas-
ter communication rates. Opportunities exist to research and
Disclosure: The authors have declared that no competing interests existed at the time
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develop new interface options that demonstrate potential to
increase rate and efficiency of message construction for indi-
viduals with severe motor impairments. This article describes
the preliminary investigation of a new AAC interface that
integrates phonemic targets, optimization, and prediction.

Phonemic Interfaces
Most AAC interfaces provide targets consisting of

letters, whole words, or symbols (typically representing whole
words or phrases). The choice of targets is an important one,
as each option offers a compromise between speed, flexibility,
and cognitive load (Beukelman, Fager, Ball, & Dietz, 2007).
Interfaces with symbols representing whole phrases, for
example, provide very high speed to produce the given
phrase, minimal flexibility (i.e., only certain phrases can be
selected quickly or at all), and high cognitive load (Thistle
& Wilkinson, 2013). Some interfaces use phonemes (which
represent a particular sound in a spoken language) as targets
(Black, Waller, Pullin, & Abel, 2008; Cler, Nieto-Castañón,
Guenther, Fager, & Stepp, 2016; Cler, Nieto-Castañón,
Guenther, & Stepp, 2014; Schroeder, 2005; Trinh, Waller,
Vertanen, Kristensson, & Hanson, 2012), which may provide
a good balance of speed, flexibility, and cognitive load.

Phonemic targets enable full flexibility to produce
any sequence of sounds and allow users to bypass complex
text-to-speech methods employed by orthographic (alpha-
betic) interfaces. Of particular interest to individuals who use
slow or effortful access methods, common AAC messages
have 14%–20% fewer phonemes than letters (Cler et al.,
2016). The primary disadvantage of phonemic targets is
that users must learn to translate their intended messages
into phonemic components and then must find those targets
on an interface. Typically, children spend many years
learning to translate thoughts into orthographic targets (i.e.,
writing in English; typing on a QWERTY keyboard). While
selecting a sequence of phonemes to create a message may
be more similar to the production of oral communication,
individuals wishing to use phonemic interfaces are likely to
require training. However, the resulting advantages in speed
and flexibility may represent a significant improvement over
other options for individuals with severe motor impairments.
Improvements to the efficiency of phonemic interfaces may
make this option even more appealing.

Quantitatively Optimized Interfaces
The standard orthographic keyboard layout, QWERTY

(the Sholes keyboard, designed in 1873), is highly inefficient
for 10-finger typing; it was specifically designed to be ineffi-
cient so as to minimize jamming typewriter keys (Noyes,
1983; Rumelhart & Norman, 1982). Alternate 10-finger
typing layouts, such as Dvorak, show 4% improvements in
typing speed (West, 1998). However, 10-finger typing is a
parallel process, in which 90% of finger movements are initi-
ated before the previous key is pressed (Gentner, Grudin,
& Conway, 1980; Rumelhart & Norman, 1982) and is thus
difficult to model and optimize (Rumelhart & Norman,
2066 Journal of Speech, Language, and Hearing Research • Vol. 62 •
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1982). Furthermore, individuals with sufficient 10-finger
motor control to type largely will not see large enough dif-
ferences in typing rates to justify the cognitive and practical
downsides to alternate keyboards. Professional typists,
such as stenographers, do use alternate keyboard layouts;
interestingly, many shorthand systems (including stenography)
use phonemic input (Beddoes & Hu, 1994).

QWERTY keyboards are particularly inefficient for
serial input, such as when individuals are entering text on a
touch screen with a stylus or a finger. This process (serial
input) is more easily modeled and optimized. Fitts’ law, a
fundamental model of human movement, can characterize
the amount of time required to select a target using any point-
ing device (e.g., finger, typical mouse, stylus, head tracker).
Fitts’ law states that the time required to select a target is a
function of its size and the distance to be traveled to reach
it (Fitts, 1954); targets within proximity are faster to select
(smaller distance to be traveled), as are large targets (less pre-
cision needed, thus faster movements are possible). The effi-
ciency of a particular arrangement of targets can be calculated
by multiplying the movement time required to travel between
each pair of targets by the likelihood that those two targets
will be selected in series (MacKenzie & Zhang, 1999; Zhai,
Hunter, & Smith, 2002). In a previous study, we used compu-
tational simulations to optimize the layout of phonemic
interfaces (Cler & Stepp, 2017). Simulations revealed an
improvement of 30.9% in expected communications rates
generated with an optimized phonemic interface compared
to a randomly arranged phonemic interface (Cler & Stepp,
2017). However, these expected improvements in communica-
tion rate have not yet been empirically validated.

Prediction
Prediction is ubiquitous in cellular phone keyboards

and in most high-tech AAC interfaces. Previous studies
have shown that adding prediction to orthographic interfaces
improves communication rates by 58.6% (Trnka, Mccaw,
Yarrington, Mccoy, & Pennington, 2009) and can improve
communication rates in phonemic interfaces by 100% (Trinh
et al., 2012; Vertanen, Trinh, Waller, Hanson, & Kristensson,
2012). Two separate aspects must be considered when applying
predictive methods to an AAC interface: how to determine
likely targets and how to indicate these likely targets to the user.

Prediction typically involves word or language use
statistics (based on corpora of text plus the user’s past selec-
tions) to predict the next character, the rest of the word, or
the next word. This is often seen in cellular phones, which
typically offer each of these options and can be implemented
in a variety of ways in different systems (Garay-Vitoria &
Abascal, 2006). Many of these methods increase selection
speed at the cost of flexibility. For example, some prediction
methods disambiguate words from an ambiguous entry,
such as T9 texting (Kushler, 1998) or Swype (Smith &
Chaparro, 2015), which disambiguate text from a reduced
keyboard or from a continuous finger drag, respectively.
These methods constrain possible selections to only those
contained in the dictionary, reducing flexibility.
2065–2081 • July 2019
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Phoneme Prediction
Phonemic interfaces do not require spaces between

words for intelligible production, as oral speech does not
typically have pauses between words. This represents ad-
ditional selection savings for individuals with motor im-
pairments but also removes word-level structure for word
completion–type prediction or any language-based predic-
tion. Thus, phonemic prediction is a form of character pre-
diction in which the previous phonemes are used to predict
the next phoneme selection. Character prediction can be
generated from any corpus of messages, which typically
consist of text gathered from written sources. Character pre-
diction is typically achieved through n-grams (blocks of
characters). A table of frequencies of all five-character
strings (5-grams) enable the system to evaluate the likeli-
hood of all characters after 4 (n − 1) selections have been
made. N-grams are also used in some AAC applications
for scanning systems, in which dynamic scanning matrixes
show the most probable characters (Lesher et al., 1998).

Alerting Users to Predicted Targets
Systems that do not automatically select highly likely

or disambiguated characters/words must display predicted
options for the user to view and select. If the predicted words
are too intrusive or inaccurate, they may be distracting. If
they are located in a separate part of the screen than the
keyboard, the user must remember to redirect their attention
to a different location. If the user has made a misspelling early
in the word or if the prediction is inaccurate, they may waste
time checking the predicted list for a word that will not appear.

In this study, we have developed a novel system for
alerting users to likely phonemes. After each selection, all
targets are dynamically resized to enlarge likely targets.
We hypothesize that this will improve communication rates
by (a) visually highlighting predicted targets to draw the
user’s attention (Magnien, Bouraoui, & Vigouroux, 2004;
Sears, Jacko, Chu, & Moro, 2001) and (b) providing larger
targets, which decreases the movement time required to
select the second target based on Fitts’ law (Fitts, 1954;
McGuffin & Balakrishnan, 2005).

Expanding targets have been shown to increase selec-
tion rates in standard Fitts’ law experiments in which users
without motor impairments select one of a few targets on a
screen (Zhai, Conversy, Beaudouin-Lafon, & Guiard, 2003)
and in human–computer interface studies in which users
without motor impairments select one target among a row
of tightly packed targets (e.g., the Mac OSX dock, in which
icons are dynamically enlarged on hover; McGuffin &
Balakrishnan, 2005). These have not been implemented in
many AAC interfaces. An alternative text entry system,
called Dasher, does incorporate dynamic weighting of targets
based on target likelihoods and thus can increase target se-
lection speed (Ward & MacKay, 2002). This system uses
orthographic entry rather than phonemes, and each target
does not have a static location. Rather, the targets are line-
arly displayed on the right side of the screen and move up
and down on the screen based on the relative likelihoods
of the different targets. As a result, the system can be
Downloaded from: https://pubs.asha.org Boston University on 07/17/2019
distracting or disorienting, and users have reported that
it requires a large amount of concentration to use (Tuisku,
Majaranta, Isokoski, & Räihä, 2008). Furthermore, this
method does not take advantage of enlarged targets as a
visual search aid during training; because the position of
the targets changes, users must visually search for every
target, regardless of the level of training.

An alternate option for expanding targets in a grid
that has not yet been applied to AAC interfaces is that of
an algorithm common in computational geometry: Voronoi
diagrams. A Voronoi diagram is built from a set of seeds
scattered in a plane and segmented such that every point in
the plane is assigned to its nearest seed based on Euclidean
distance (Okabe, Boots, Sugihara, & Chiu, 2009). A weighted
Voronoi diagram is modified such that each seed has a
weight and points are assigned to a seed based on a function
of both the weight and the distance (Anton, Mioc, & Gold,
1998). If seeds are defined in a grid and weights are assigned
based on prediction, a new Voronoi diagram can be gener-
ated after each selection, and the likeliest targets will be dy-
namically enlarged. Because seed locations are static, the
general layout does not change, thus mitigating the possi-
ble disorientation and increased visual search time associ-
ated with other methods.

Empirical Evaluation by Users With
and Without Motor Impairments

Communication rates in individuals with motor im-
pairments may be improved by reducing the motor actions
required to complete a message. Offering phonemes as
targets can theoretically reduce selection rates by 14%–20%
(Cler et al., 2016). In addition, organizing targets such
that those that are often selected sequentially are placed
in proximity has been shown to reduce selection time (e.g.,
MacKenzie & Zhang, 1999; Zhai et al., 2002). Our com-
puter simulations combining these strategies reveal an ideal
communication rate improvement of 30.9% when using an
optimized phonemic interface compared to a randomly
arranged phonemic interface and 105.6% compared to a
QWERTY orthographic interface (Cler & Stepp, 2017).
Additionally, adding prediction to a phonemic interface
may improve communication rates by up to 100% (Trinh
et al., 2012). However, these potential rate improvements
are, thus far, only theoretical.

Assessing the differential effects of optimization and
prediction empirically requires a between-groups design,
and therefore, each group must consist of relatively homoge-
nous participants. Furthermore, as ideal usage of the inter-
faces will only emerge with usage over time, participants
must be available to use the interfaces over many days. In-
dividuals with motor impairments are highly heterogeneous
as a group and are difficult to recruit over many sessions.
Although participants without motor impairments fit these
requirements, their typical access methods (e.g., finger on a
touch screen or a typical mouse) are overtrained and not
representative of the noisy access methods generally available
to participants with motor impairments. Thus, we recruited
Cler et al.: Optimized and Predictive Phonemic Interfaces 2067
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individuals with typical motor control but required them to
interact with the interfaces using a noisy access method
available to individuals with motor impairments: a com-
puter cursor controlled via facial musculature (Cler et al.,
2016; Cler & Stepp, 2015; Vojtech, Cler, Fager, & Stepp,
2018).1

Here, we present two empirical evaluations of these
optimization and prediction strategies. First, four groups of
individuals (36 in total) without motor impairments interacted
with one of four phonemic interfaces in a 2 × 2 between-
groups design permuting optimization and prediction. The
layout of the targets was either random or optimized, such
that phoneme targets that were likely to be selected together
were located in proximity. The interfaces were either static
or predictive, meaning that highly likely targets were enlarged.
Each user was assigned to one of four interfaces (optimized/
static, optimized/predictive, random/static, random/predictive)
and participated in 12 sessions over a 3-week period. Par-
ticipants used an alternate input modality to act as a model
of a motor-impaired AAC user. In a follow-up study using a
within-participant design, six individuals with motor impair-
ments used the optimized/static and optimized/predictive in-
terfaces in alternating blocks and answered survey questions
about their experience and preferences after each block.
Method
Interface Development

Interfaces and experimental architecture were devel-
oped in Python. Speech synthesis was accomplished via the
MBROLA system (Dutoit, Pagel, Pierret, Bataille, & van
der Vrecken, 1996). Phoneme labels were from ARPABET,
a machine-readable transliteration of English phonemes
(Shoup, 1980). Colors were consistent across experimental
groups, were isoluminant, and denoted rough phoneme cat-
egory: simple vowels in green, complex vowels (diphthongs,
r-colored vowels) in purple; fricatives and affricates in yellow;
stops in red; and liquids, nasals, and semivowels in blue.
1It is frequently necessary to use non-AAC users as participants due to
the difficultly in recruiting and evaluating people with different abilities and
needs. For example, researchers have generated AAC-like conversational
corpora by having users without impairments imagine that they have a
disorder limiting their speech and type what messages they may wish to
produce (Vertanen & Kristensson, 2011). One study evaluating prediction
in AAC used people without motor impairments and modeled actual
AAC users by implementing a 1.5-s pause after each selection on a touch
screen (Trnka, Yarrington, McCaw, McCoy, & Pennington, 2007).
Although this does accurately model the speed of AAC use and (as
suggested) prompt users to incorporate prediction more than a user
with motor impairments might, cognitive processing can continue during
this pause (e.g., planning and locating the next selection on the interface)
in a way that may not exactly model someone with a motor impairment;
these individuals are concentrating on the motor action during the 1.5-s
it takes to complete a selection. As such, we chose to have participants
use an alternate access method that models both the speed and perhaps
the difficulty of alternate access in this population.

2068 Journal of Speech, Language, and Hearing Research • Vol. 62 •
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Optimization
Full description of the development and optimization

of the interfaces are presented in Cler and Stepp (2017).
Briefly, however, an interface’s efficiency can be estimated
via Fitts’ law. The efficiency of any arrangement of targets
can be calculated with the Fitts’ law estimation of move-
ment time between each pair of targets multiplied by the
likelihood that the pair of targets will be selected in se-
quence (MacKenzie & Zhang, 1999; Zhai et al., 2002).
Any optimization process could be used to maximize the
efficiency of an interface by randomly producing target
layouts and finding the most efficient arrangement.

An optimally efficient arrangement will have targets
arranged, such that the distance between targets that are
often selected sequentially is minimized. This method has
been implemented for orthographic keyboards (e.g., Zhai
et al., 2002) but has not been applied to phonemic inter-
faces. A variety of optimized interfaces are developed and
discussed in Cler and Stepp (2017). Results of computational
simulations suggested that optimization may produce com-
munication rate improvements around 20%–30%, based on
which corpora are used to optimize and then evaluate the
interfaces. The interfaces used in the present studies were the
random and optimized interfaces based on the “suggested
AAC corpus” from Cler and Stepp. This corpus is a set of
1,004 messages suggested by AAC specialists for individuals
with amyotrophic lateral sclerosis (Beukelman & Gutmann,
1999), which was converted into phonemes automatically
using the Carnegie Mellon University Pronouncing Dictionary
(CMUDict; Weide, 2005). This corpus also comprised the stim-
uli set in this experiment, as it consists of functional messages
that are relevant to individuals with motor impairments.
Prediction
Two separate aspects must be considered when apply-

ing predictive methods to an AAC interface: how to deter-
mine likely targets and how to indicate these likely targets to
the user. Determining likely targets typically involves large
corpora of text. Although character prediction of text is rela-
tively straightforward, standard textual corpora are not
directly usable for phonemic AAC prediction. First, AAC
messages are different in content from oral communication
and written text (e.g., books, articles, e-mail) due to their
purpose and constraints (Trnka & McCoy, 2007). In ad-
dition, large corpora of AAC messages are not available,
leading to many studies in this area combining text and
spoken corpora or using AAC messages generated by non-
AAC users (Cler & Stepp, 2017; Trnka & McCoy, 2007;
Vertanen & Kristensson, 2011). Our objective here was to
evaluate a novel method of displaying likely targets to
the user, so we did not attempt to overcome these issues.
Instead, we used standard methods of prediction on a small
corpus consisting of our stimuli set: 1,004 AAC messages
suggested by AAC experts (Beukelman & Gutmann, 1999)
translated to phonemes using the Carnegie Mellon Uni-
versity Pronunciation Dictionary (Weide, 2005). N-grams
2065–2081 • July 2019
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Figure 1. Surface electromyographic minisensor locations (and
associated grounds on chest and mastoids), placed to capture
muscle activity during a particular facial gesture and subsequent
cursor action: left (half smile), right (half smile), up (eyebrow raise),
down (chin contraction), and click (wink). Combining gestures
allows the cursor to move in any 360° direction, and magnitude
of activity controls cursor speed (Cler & Stepp, 2015).

2Three additional individuals were recruited but were unable to complete
their participation. One completed seven sessions, but data were lost due
to experimenter error, and thus, the remaining sessions were cancelled.
One had reported no neurological disorders but presented with a severe
facial tic, so we chose to discontinue his participation. The final
participant struggled to mimic the facial gestures used for the cursor
control system (could not smile or move cheek on command) and chose
to discontinue his participation at that point. We did not apply sEMG
sensors or attempt to record sEMG data, so it is unclear whether the
underlying musculature was activating or whether he could eventually
have learned to use the cursor control system. AAC users have used the
cursor with a variety of alternate placements (Cler et al., 2016; Vojtech
et al., 2018). For homogeneity in this study, we did not offer alternate
gestures or placements as we anticipated all participants to have sufficient
facial muscle control.
(n = 1–3) were generated automatically using the Natural
Language Toolkit in Python (nltk; Bird, Klein, & Loper,
2009). These methods are easily replicable with other corpora
as they become available or relevant, including large cor-
pora of AAC messages and conversation or a corpus of an
individual user’s messages.

Likely targets were indicated to the user via weighted
Voronoi diagrams. Seeds for each target were located at
each target’s center in a static grid, allowing users to retain
knowledge of the phoneme arrangement and thus reducing
the time required to visually search for the targets. The tar-
get weights (and thus size) were dynamically modified after
each selection based on the likelihood that each phoneme
will be selected next. Prediction weights were rescaled after
each selection relative to currently predicted likelihoods
rather than absolutely scaled across all prediction (i.e., at
every time point, the most likely target had a prediction
level of 1 and the least likely target had a prediction level
of 0, with the other targets scaled in between).

N-grams were calculated offline and stored. When a
user selected a target, the appropriate set of probabilities
were selected and used to generate a new weighted Voronoi
diagram via the Python module pyvoro (Python bindings
for Voro++; Rycroft, 2009), with the probabilities scaled
from 2 to 8 and set as the weight parameter. Phoneme la-
bels were also dynamically enlarged with this same scaling.
A video example of the online prediction is available in
Supplemental Material S1.

Surface Electromyographic Cursor
In the first experiment, participants without motor

impairments used an alternate computer access method avail-
able to individuals with severe paralysis, a surface electro-
myographic (sEMG) facial cursor (Cler et al., 2016; Cler &
Stepp, 2015; Vojtech et al., 2018). Full details of imple-
mentation are given in the study of Cler and Stepp (2015),
but briefly: sEMG captures muscle activity from the surface
of the skin and is presented as an alternative to eye tracking
or head tracking for individuals who have spared muscle
control. Electrodes are attached to the surface of the skin
with double-sided tape to capture muscle activity from tar-
geted (and surrounding/overlapping) muscles (see Figure 1).
Muscle activity was captured with the Trigno sEMG system
from Delsys, Inc. Each electrode consists of small sensors
placed over the targeted muscle, short (200 mm) wires, and one
larger ground per electrode. Electrodes are single-differential
active electrodes with 4-mm bars. Grounds were placed on
the chest and mastoids and communicated wirelessly to the
sensor base, which acted as a data acquisition device. Five
simultaneous sEMG signals were captured at 1000 Hz with
custom Python code and evaluated every 100 ms to move
the cursor (Cler et al., 2016). Maximum muscle activations
from each targeted facial muscle during a brief calibration
(< 5 min) were used to set thresholds per subject, session,
and electrode. During the task, any muscle activation above
the threshold moved the cursor in the direction of the asso-
ciated facial gesture (e.g., eyebrow raise ➔ cursor moves up).
Downloaded from: https://pubs.asha.org Boston University on 07/17/2019
Combining facial gestures allowed users to move the cursor
in any 360° direction, and the magnitude of the activation
changed the speed of the cursor movement.

Participants
Thirty-six adults without motor impairments par-

ticipated in the first study.2 All were native speakers of
American English and reported no history of speech, lan-
guage, or hearing disorders. Participants were largely
university students and were excluded if they had previous
experience with sEMG research, phonemic keyboards, or
transcription (e.g., speech-language pathology students,
singers). The participants (16 men, 19 women, one non-
binary person; balanced across groups) had a mean age
of 21.2 years (SD = 2.6). In the second study, six adults
Cler et al.: Optimized and Predictive Phonemic Interfaces 2069
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with motor impairments participated (participant character-
istics in Table 1). Three participants were community dwell-
ing, and three were inpatients at a rehabilitation hospital.
Diagnoses were congenital (cerebral palsy) or acquired
(multiple sclerosis, spinal cord injury [SCI], Guillain–Barré
syndrome). Participants included those with stable (cere-
bral palsy; chronic SCI), degenerative (multiple sclerosis),
and improving and/or stabilizing (Guillain–Barré syndrome,
acute incomplete SCI) impairments. All participants pro-
vided consent in compliance with Boston University’s In-
stitutional Review Board; individuals with motor impairments
provided either written consent or verbal consent witnessed
by a communication partner as appropriate.
Experimental Designs
Study in Participants Without Motor Impairments

Participants without motor impairments completed
12 experimental sessions, each lasting 1–1.5 hr. Sessions occurred
on separate days over 3 weeks with no more than 3 days
between sessions. Participants used a facial sEMG cursor to
access the phonemic interfaces (Cler et al., 2016; Cler & Stepp,
2015; Vojtech et al., 2018). Participants were pseudorandomly
assigned into one of four groups, balanced for age and
reported gender. Each of the four groups was assigned to
one of the four different interfaces (see Figure 2).

The first session began with a video showing each
phoneme on the individual’s assigned interface, followed
by its sound and an exemplar (e.g., “[CH], cheese; [ZH],
measure”). Each session then had 2 min of free interaction
with the interface using a typical mouse, followed by sEMG
cursor application and calibration, 30 min of interaction
with the interface via the sEMG cursor (the “main task”),
and three short probe tasks.

Most of the session was devoted to the main task,
recreating aurally presented messages with the phonemic
interface. This task required participants to translate the
aural stimulus to our phoneme set, visually locate those
phonemes on the interface, and move to and select the
Table 1. Participant characteristics; study in individuals with motor impairm

Participant Age/sex Diagnosis

P1 49/female Multiple sclerosis (severe;
20 years postdiagnosis)

P2 45/male Spinal cord injury (acute;
3 months postinjury)

P3 63/male Spinal cord injury (chronic;
> 26 years post)

P4 21/female Cerebral palsy
P5 59/male Spinal cord injury (acute;

6 weeks post)

P6 63/female Guillain–Barré syndrome (acute;
3 months postonset)

2070 Journal of Speech, Language, and Hearing Research • Vol. 62 •
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target (schematized in Figure 3a). The time it took to
move and to select the target was governed by several
factors: (a) the participant’s proficiency with any particular
access method, (b) the distance that must be traveled, and
(c) the precision needed to select the target (determined by
the target’s size). The distance to be traveled was the only
component that was modulated in the layout optimization
process. Prediction modulated the precision needed and per-
haps the speed of visually locating targets on the screen. As
the other components of this task may vary across partici-
pants and should vary across sessions (as the participant’s
performance on the tasks improves), a series of probes
were developed to assess each component.

Main task. Participants were prompted with one
message from a corpus of suggested AAC messages
(1,004 messages; Beukelman & Gutmann, 1999) and then
used the facial sEMG cursor to select the phonemes they
wanted to use to recreate that message (see Figure 3b).
Participants recreated different messages with the phonemic
interface for at least 30 min each session (interactions were
not automatically terminated after 30 min if the participant
was in the midst of a trial, but instead terminated after
that trial was completed). The corpus of stimuli was also
used to generate the phonemic transition properties used both
in the optimization and prediction methods. Participants were
not able to delete any accidental selections and were instructed
to do their best if they were not sure which sounds to se-
lect. Participants were instructed to complete each trial
(message) as quickly and accurately as they could. The top
left corner of the interface displayed the selections made
during the current trial, and after the participant concluded
the trial (by clicking the area surrounding the interface),
the selected targets were synthesized as auditory feedback.
After each trial, a popup box appeared with a number in
it. Participants were instructed that that number repre-
sented an estimate of how quickly and accurately they had
completed the message. This number was calculated online
using information transfer rate (Wolpaw et al., 2000), which
encapsulates both speed and accuracy in one number.
ents.

Access method for this experiment
Community-dwelling

or inpatient

Mouthstick (stylus adapted to be
held in mouth) on touch screen

Community dwelling

Eye tracker with sip-and-puff switch
for click (new to participant)

Inpatient

Stylus attached to stabilizing wrist
guard on touch screen (Day 1:
nondominant hand; Day 2:
dominant hand)

Community dwelling

Nose on touch screen Community dwelling
Eye tracker with physical switch

for click, mounted on wheelchair
for outside leg access (new
to participant)

Inpatient

Stylus in hand on touch screen Inpatient
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Figure 2. Four interfaces used by different groups of participants. Top left: random/static interface. Top right: random/predictive interface.
Bottom left: optimized/static interface. Bottom right: optimized/predictive interface. Phoneme labels are a standard set (Shoup, 1980).
Colors are consistent across groups and were isoluminant. Colors denote rough phoneme category: simple vowels in green; complex vowels
(diphthongs, r-colored vowels) in purple; fricatives and affricates in yellow; stops in red; and liquids, nasals, and semivowels in blue.
Accuracy was estimated using the minimum string distance
between the phonemes selected and the phonemes expected
based on automated dictionary transcription of prompts
(Soukoreff & MacKenzie, 2001). Speed was calculated as
the number of actual selections divided by the time it took to
complete the trial. Participants were instructed that the accu-
racy calculations were not always correct, but to just try to
make the message sound as close to the prompt as possible,
as quickly as possible. While an estimation of speed and accu-
racy were shown to the participants during the experiment,
the main outcome measure used for the remaining analysis
was speed. This is because messages can be created with a va-
riety of phoneme choices and still be intelligible to the listener
(e.g., consider the difference between [S-T-OW-R]-/stoʊr/3

and [S-T-AO-R]-/stɔr/). Furthermore, these interfaces do not
use spaces between the words. While this does assist in speed,
it makes error detection more difficult, as spaces serve as
3Two phonemic transcription conventions are used throughout this
article. One is the International Phonetic Alphabet, which is likely
familiar to readers and will be indicated with sounds between slashes
(/saʊndz/). When relevant, we will also show transcriptions in ARPABET,
which is a machine-friendly English transliteration and was used in this
study as the target labels on the interfaces. ARPABET text will be
indicated with sounds between square brackets ([S-AW-N-D-Z]).
Auditory stimuli will be presented either with International Phonetic
Alphabet or via orthographic text in quotes.
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important orthographic markers of word boundaries. These
factors make accurate automated error estimation impos-
sible, and the total quantity of messages (> 20,000) made
intelligibility estimates infeasible. Thus, we focus here only
on speed (selections per minute). Accuracy estimates are
explored further in the discussion. Following the 30 min of
interaction (henceforth, “main task”), participants com-
pleted three brief probes designed to capture skill learning
of different aspects of the main task.

Phoneme identification task. To assess their ability to
translate an aural stimulus to the phoneme set, participants
completed 15 fill-in-the-blank questions during each session
(see Figure 3c). Participants were aurally prompted with one
of the messages from the message bank, and one word was
aurally repeated (e.g., “The birds are chirping…birds”; see
Figure 3c). Then, participants were presented with a fill-in-
the-blank question with the phonemic representation of
that repeated word with one phoneme missing, using the
experimental phoneme set and labels. Participants were
instructed to determine which sound was missing and select
the correct answer by hitting the 1–4 number keys on a stan-
dard QWERTY keyboard. Participants were instructed to
complete this task as quickly and accurately as they could.
Two outcome measures were obtained: accuracy and reac-
tion time (responses per second).

Visual search task. To assess their ability to find
phonemes on the interface, participants visually located
Cler et al.: Optimized and Predictive Phonemic Interfaces 2071
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Figure 3. Experimental design. (a) Processes required to recreate a
given prompt with the phonemic interface: translate the stimulus
to the phoneme set, find phonemes on given interface, and use
access method to move to and select the targets. (b) Main task,
with outcome measure communication rate (phonemes per minute).
(c–e) Probes designed to assess participant acuity on each task:
(c) Aural stimulus and phonemic representation with one phoneme
missing are presented, and accuracy (% correct) and reaction time
(responses per second) were collected. (d) Participants indicated
when they visually located the given label (outcome measure: reaction
time in responses per second). (e) Participants used facial surface
electromyographic (sEMG) cursor to select circular targets and were
assessed on speed (selections per second).

2072 Journal of Speech, Language, and Hearing Research • Vol. 62 •
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10 randomly generated phoneme labels during each session
(see Figure 3d). Participants were presented with a white
screen with a particular phoneme label (e.g., “HH”; see Fig-
ure 3d), and then, the experimental interface presented
a 3-2-1 countdown and disappeared. Participants were
instructed to visually locate the prompted phoneme label
and then hit the “0” key on a keyboard to indicate that
they had found it. Phoneme labels were randomly selected
on a trial-by-trial basis; this meant that occasionally the
same label was presented twice in one session. These were
removed in postprocessing such that only the first presenta-
tion of any one label was used to calculate the outcome
measure of visual search time (responses per second).

Motor task. To assess their ability to use the sEMG
cursor, participants completed a task in which they se-
lected dots on the screen using the cursor during each ses-
sion (see Figure 3e). Participants were presented with a
circle of black dots of three possible distance and sizes,
selected to represent three different difficulties (Fitts’ law
indices of difficulty of 2, 3, and 4). One dot would turn
red; participants were instructed to select this dot as quickly
as possible. Once selected, a dot across the circle in a stan-
dard order would turn red and the participant would select
that dot, and so forth, until all dots in one difficulty level
were selected. All three difficulty levels were presented in
random order each session. The outcome measure was speed
(selections per second).
Study in Participants With Motor Impairments
Participants with motor impairments completed one or

two sessions based on availability. For this within-subject
design, participants used both the optimized/static and
optimized/predictive interfaces in alternating blocks (counter-
balanced). Each block consisted of 10 min of interaction
with one of the two interfaces (same as “main task,” above),
followed by a survey to capture their experiences using the
interfaces. Responses were solicited from these participants
as they had personal experience using assistive technology
and may have input on the design and usability of these
AAC interfaces beyond those considered by the researchers
and participants without motor impairments.

User preference survey. The survey was custom de-
signed for this experiment and asked a variety of questions
on a 10-cm visual analog scale (VAS). Questions included:
“Do you think you could improve with practice?” (no im-
provement–lots of improvement); “I preferred the inter-
face” (without prediction–with prediction); “I thought the
enlarged targets” (got too large–didn’t get large enough);
and “I thought the enlarged targets” (helped me learn the
location of targets–made it harder to learn the location
of targets). The full survey is included in Supplemental
Material S2 (further details are also available in Cler,
2018). If participants were able, they completed the forms
themselves. Otherwise, the experimenter read the questions
aloud and dragged a pen across each VAS line until the
participant indicated their preferred stopping place. Par-
ticipant reactions and responses were also transcribed during
2065–2081 • July 2019
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the experiment and during the survey assessment and are
presented here qualitatively.

Statistical Analyses
All statistical analyses were completed in R (R Core

Team, 2015). The outcome measure in participants without
impairments was communication rate, and factors included
participant, session, interface, prediction, and the measures
from probes: motor task performance (selections per sec-
ond), phoneme identification–accuracy (%), phoneme iden-
tification–reaction time (responses per second), and visual
search performance (responses per second). Parameters
were analyzed for normality via visual inspection of quantile–
quantile plots. All factors were normalized (M = 0, SD = 1),
and multicollinearity between factors was assessed and
rejected. Separate statistical models were calculated to
answer our two questions: (a) How do optimization and
prediction affect learning? (b) How do optimization and
prediction affect performance after learning?

To assess learning, a linear mixed-effects model (Bates,
Mächler, Bolker, & Walker, 2015) was performed on data
from Sessions 1 to 9, with communication speed as the out-
come measure; participant as a random factor; and session,
interface, prediction, probe measures, and all relevant in-
teractions as factors. Sessions 1–9 were chosen via visual
inspection of communication rates across all groups and
sessions (see Figure 4) to include approximately linear learn-
ing slopes. To assess communication rate after learning, a
linear model was performed on the data from the final ses-
sion (12) only, with communication speed as the outcome
measure and interface, prediction, probe measures, and
all relevant interactions as factors. For both models, back-
ward stepwise regressions were performed in order to deter-
mine which, if any, of the probe measures captured individual
Figure 4. Communication rates per session averaged by group.
Error bars are standard error.
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variation relevant to the task. Unstandardized β coefficients
are provided as a proxy for effect sizes. For the mixed-effect
model, marginal and conditional R2 were calculated to rep-
resent the variability accounted for by the fixed effects alone
and the fixed and random effects in the model, respectively
(Lefcheck, 2016; Nakagawa & Schielzeth, 2013).

In participants with motor impairments, communica-
tion rates and survey responses were tabulated to assess
user effort and preferences. Quantitative survey responses
were measured as distance from the left end of each line
and as such are reported from 0 to 10 cm. No statistical
tests were performed on the VAS, but responses and pref-
erences are presented descriptively.
Results
Participants without motor impairments completed

20,849 trials across a total of 432 sessions. Participants showed
an increase in communication rate across the 12 training
sessions. Average communication rates across groups
ranged from 9.4 phonemes/min (SD = 2.3) in Session 1 to
26.7 phonemes/min (SD = 6.9) in Session 12. Communica-
tion rates between groups are shown in Figure 4, which
suggests that the optimized/predictive interface provides
the highest communication rates, the random/static inter-
face provides the lowest, and the optimized/static and
random/predictive provide similar communication rates.
Probe results showed that all measures increase with ses-
sion and with communication rate (see Supplemental Ma-
terial S3), as expected with participant learning. Probe
measures generally show overlapping error bars, suggesting
similar performance across groups.

Results of the first linear model on data from Sessions 1
to 9 are shown in Table 2; this model accounted for 86.5%
of the variance in the data (conditional R2 including ran-
dom factor: 86.5%; marginal R2: 66.9%). Significant main
effects were prediction, session, motor task speed, and pho-
neme identification–reaction time. Interface was not signifi-
cant. Results of the linear model on Session 12 data are
shown in Table 3; this model accounted for 67.5% of the
variance in the data (R2). Significant main effects were inter-
face, motor task speed, and phoneme identification–reaction
time. Prediction and all interactions were not significant.

Communication rates from participants with motor
impairments are shown in Figure 5. Participants completed
three to seven blocks of trials (10 min per block) over one
or two sessions (sessions denoted by vertical dotted line).
Community-dwelling participants (P1, P3, P4) completed
more blocks than inpatients (P2, P5, P6) due to fatigue and
availability.

User Preference Survey and Comments
All participants strongly agreed that they would im-

prove with practice (M = 9.8 cm, SD = 0.6, in which 0 cm
indicated no improvement and 10 cm indicated lots of im-
provement). Four of six participants strongly preferred the
interface with prediction over the static interface (P1, P3,
Cler et al.: Optimized and Predictive Phonemic Interfaces 2073
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Table 2. Sessions 1–9 mixed-effects model; remaining factors after backward stepwise regression.

Factor

Communication rate

β CI p

(Intercept) 12.05 [9.61, 14.48] < .001
Interface 0.83 [−2.57, 4.23] .635
Prediction 3.68 [0.90, 6.47] .015
Session 0.88 [0.63, 1.12] < .001
Motor task speed 1.94 [0.86, 3.02] < .001
Phoneme identification–reaction time 0.95 [0.44, 1.46] < .001
Visual search 0.32 [−0.78, 1.43] .567
Interface × Prediction −3.00 [−6.94, 0.93] .145
Interface × Session 0.41 [0.08, 0.74] .017
Interface × Motor Task Speed −1.14 [−2.73, 0.45] .16
Session × Motor Task Speed 0.01 [−0.15, 0.18] .86
Session × Phoneme Identification–Accuracy −0.07 [−0.13, 0.00] .043
Interface × Visual Search Time 0.39 [−1.02, 1.80] .586
Prediction × Visual Search Time 1.77 [0.51, 3.04] .006
Interface × Session × Motor Task Speed 0.37 [0.13, 0.61] .002
Interface × Prediction × Visual Search Time −2.04 [−3.68, −0.39] .016
Observations 324
Marginal R2/conditional R2 .669/.865

Note. CI = confidence interval.
P4, P6; responses: 10 cm, 10 cm, 9.4 cm, 10 cm, in which
0 cm indicated a complete preference for static and 10 cm
indicated a complete preference for prediction), whereas
two participants moderately and strongly preferred the
static interface (P2 and P5; 2 cm and 0 cm). Participants
generally agreed that the targets enlarged the right amount
(M = 4.5 cm, SD = 1.2, in which 0 cm was anchored at
got too large, 5 cm was informally described as about the
right amount, and 10 cm was anchored at didn’t get large
enough) and that the prediction helped them to learn the
location of targets (M = 2.2 cm, SD = 2.6, in which 0 cm
was helped me learn the location of targets and 10 cm was
made it harder to learn the location of targets).

Participants remarked that they would improve with
practice (“If I had this at home, I would go through every
one of those sounds and I think you could get to where
Table 3. Session 12 linear model; remaining factors after ba

Factor

(Intercept)
Interface
Prediction
Motor task speed
Phoneme identification–accuracy
Phoneme identification–reaction time
Interface × Prediction
Interface × Phoneme Identification–Accuracy
Prediction × Phoneme Identification–Accuracy
Interface × Prediction × Phoneme Identification–Accuracy
Observations
R2/adjusted R2

Note. CI = confidence interval.

2074 Journal of Speech, Language, and Hearing Research • Vol. 62 •

Downloaded from: https://pubs.asha.org Boston University on 07/17/2019
you could get pretty good speeds”) and that the phonemic
input was flexible (“As I use it more, I can see that you
could get it to do the dictation just as you would want”).
One participant noted that the orthographic labels on the
sounds interfered with her ability to select the right sounds
(“It’s easier when you don’t know how it’s spelled”) but
also noted that it got easier with practice (“I’m getting
used to the sounds now”; on Day 2). This was a common
theme: “Boy did it go a lot easier. I felt more confident.
I’m getting to know what /aɪ/ needs to be” (on Day 2).
One participant initially said he preferred the interface with-
out prediction, but later highly preferred prediction as he
got used to it.

Although most participants preferred prediction, one
participant who preferred the static interface remarked that
he “liked to figure it out himself” and that the prediction
ckward stepwise regression.

Communication rate

β CI p

17.65 [14.12, 21.18] < .001
7.27 [2.74, 11.80] .003
1.63 [−3.40, 6.67] .511
3.87 [1.91, 5.82] < .001
1.14 [−3.11, 5.39] .586
2.47 [0.66, 4.28] .009

−1.69 [−8.75, 5.37] .627
−0.45 [−5.38, 4.49] .853
5.11 [−1.23, 11.45] .11

−6.11 [−13.79, 1.56] .114
36

.675/.563
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Figure 5. Communication rates for the six participants with motor
impairments (see Table 1 for participant characteristics). Participants
all used optimized interfaces. Interfaces were either static (gray) or
predictive (red, dark) in alternating blocks. When possible, participants
completed blocks over 2 days; black dotted vertical lines indicate
separation from Day 1 to Day 2. Error bars are standard deviation.
led him in a direction that he did not want. The other par-
ticipant who preferred static said that he did not use the
prediction; “It didn’t matter, because it wasn’t the sound I
was looking for, so I didn’t use it.” However, this partici-
pant also remarked about a large target, “I don’t remem-
ber what sound that makes…oh well, I’ll pick it anyway,”
suggesting that he did in fact use the prediction.
Discussion
Integrating the results of these two studies reveals the

promise and potential pitfalls of phonemic targets in com-
munication interfaces for AAC. The results in users without
motor impairments reveal the performance trajectory when
participants are completely naïve to AAC and novel access
methods and then use the interface over many sessions.
These results suggest that prediction likely provided faster
Downloaded from: https://pubs.asha.org Boston University on 07/17/2019
communication rates during training because it enabled
users to learn the interface target locations and provided
larger targets when precision was more difficult (i.e., when
participants were still learning the novel access method).
Optimization acted to increase communication rates during
the final session (and not during the earlier training ses-
sions). As the optimization assumes that participants will
move directly to the targets, it perhaps only became benefi-
cial in later sessions when participants knew the target
locations and were skilled in the access method and thus
moved directly to the targets. The results in individuals
with motor impairments show initial reactions and user
impressions, indicating that future research into phonemic
interfaces in this population is warranted.

Phonemic Input as Compared to Other Interfaces
The comments made by participants with motor

impairments can roughly be grouped into three segments
that will drive future development and implementation
studies. First, all participants agreed that they would im-
prove with practice and made comments to that effect
(“If I had this at home, I would go through every one of
those sounds and I think you could get to where you could
get pretty good speeds”). This suggests that none of the
participants thought that the interfaces were so complex
that they were tempted to abandon them entirely. Next,
while most participants preferred prediction, those who did
not may have still benefitted from it (“I don’t remember
what sound that makes…oh well, I’ll pick it anyway”).
Finally, participant comments suggested that they agreed
that phonemic input was flexible and usable (“As I use it
more, I can see that you could get it to do the dictation
just as you would want”; “I’m getting used to the sounds
now”), even if they did not like it immediately. These give
insight into possible roadblocks to implementation and
indicate that training should include both the possible ben-
efits and drawbacks to the interfaces.

Future research is needed to directly compare com-
munication rates of phonemic input to orthographic input
within participant. However, we can compare the results of
Study 1 to previous results using the same access method
(participants without motor impairments using an sEMG
cursor). A previous study using this access method with
an alphabetical interface saw communication rates of
29 selections/min during the final (fourth) session (Cler &
Stepp, 2015). This is very similar to the rate of 30.1 selections/
min seen in the optimized/predictive group in the final
(12th) session. However, phonemes carry more information
per selection than letters, and phonemic input does not
require spaces. Thus, the 30.1 phonemes/min represents
7.5 wpm (four phonemes per word and no spaces), whereas
the 29 letters/min on the alphabetic interface represents
4.8 wpm (five letters plus space per word). While both are
much slower than oral speech, phonemic input does seem
to lead to increased communication rates using alternate
access methods, if we consider character-by-character input
with no word completion.
Cler et al.: Optimized and Predictive Phonemic Interfaces 2075
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4We considered trials with only a [TH] or [DH] in the prompt and
excluded those with both for simplicity. Of the remaining trials, 1,079
were correct [TH] trials, 1,429 were correct [DH] trials, 62 were [TH]
prompts with [DH] selected, 2,309 were [DH] prompts with [TH]
selected, and 277 could not be automatically assessed and needed to
be manually classified. Of those 277, 27 were correct [TH] trials, 33
were correct [DH] trials, three were [TH] prompts with [DH] selected,
and 41 were [DH] prompts with [TH] selected. Of the remaining, 62 were
trials where the participant ended the trial early, before getting to the
[TH/DH]; 19 were those in which the participant appeared to miss the
Effects of Interface Optimization
The first study (in individuals without motor impair-

ments) evaluated the effects of interface optimization and
found that optimization had a significant main effect during
the final session. During the training sessions, individuals in
the optimized group saw extra gains based on session and
motor task performance; this suggests that the later the ses-
sion and the better able the participant was to use the access
method, the larger communication rate increases were seen
from the (motor-based) optimization.

During the final session, the optimized interface had
a large positive effect. Previous work suggested that an opti-
mized interface should show 30.9% increase in communica-
tion rate, assuming ideal motor access and ideal phoneme
selection. Our empirical results suggest that optimization
improved communication rates by 23.0% (random/predictive
group) and 10.2% (optimized/predictive group) in the final
session. The reason for the discrepancies between these im-
provements and the theoretical improvements are likely due
to the difference between the transition likelihoods used to
create the optimizations (based on dictionary transcriptions
of the stimuli set of messages) and the targets actually used
by the participants. For example, the target combinations
[AY] to [M] and [DH] to [AE] are near each other on the
optimized interface due to the high number of occurrences of
the words “I’m” and “that” in the stimuli set. However, if
participants routinely used [EY-M] and [TH-AE] instead,
their communication rates would not be increased over
someone using the random layout.

Interface was not a significant contributor to communi-
cation rate during early sessions. The optimization assumes
that users go directly from one target to the next by Euclidean
distance. However, individuals in this study were contending
with two additional issues that preclude this usage (aside
from previous remarks about accuracy). First, they were learn-
ing the access method. Previous work suggests that, during
early training sessions using this access method, participants
used separate facial gestures (e.g., first left and then up) but
learned to coordinate gestures to go directly to the target
diagonally by the fourth session (Cler & Stepp, 2015). Fitts’
law optimizations used the Euclidean distance between
targets to determine optimized layout under the assumption
that participants would move directly to the targets using co-
ordinated facial gestures; it is likely that they were not doing
this until later sessions. Second, participants had to learn
which phonemes were in each message and where those tar-
gets were on the interface. This likely led to additional cog-
nitive/searching time between selections, masking possible
effects of the optimization. As they got more experience
with the interface and the task, these cognitive demands and
search times decreased. Thus, in the final session, differences
between the random and optimized interfaces were evident.
word with the [TH/DH] entirely (often a quiet “the” at the beginning
of the prompt); 28 trials had [T-HH] instead of the [TH/DH]; 18 used just
[T] for the [TH/DH]; and 40 used just [D] for the [TH/DH]. The remaining
six prompts were unclassifiable. These varied responses highlight the
difficulty of assessing accuracy automatically. Even the [T-HH] or [T]-
or [D]-only trials are generally intelligible to the listener.
Effects of Prediction
Both of the studies in this article assessed the effects

of phonemic prediction. In the study of individuals without
2076 Journal of Speech, Language, and Hearing Research • Vol. 62 •
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motor impairments, prediction had a significant effect on
communication rate. In the study of participants with motor
impairments, participants generally preferred the prediction,
but our study was not designed to assess quantitative dif-
ference in communication rates between the predictive and
static versions of the interface.

Teaching Users the Phonemic System
The prediction had the effect of drawing the users’

attention to phoneme labels that they may not have chosen
otherwise. One unanticipated effect was that the prediction
seemed to teach the users which sounds to choose. These
effects can be elucidated by comparing the dictionary series
of phonemes for each prompt to what the participants ac-
tually selected. Mismatching selections could have many
different sources: a motor error (i.e., clicked a target acciden-
tally), a phoneme identification error (i.e., could not identify
that the word started with an /aɪ/ sound), or a target label
identification error (i.e., the participant knew the sound was
/aɪ/ but not which target represented that sound). One benefit
of phonemic interfaces is that participants may choose a
variety of targets to create a message and thus are protected
from certain types of “errors” (Cler et al., 2016). Swapping
/θ/ and /ð/ or even /aɪ/ and /eɪ/ will result in messages that are
still intelligible. However, if the prediction’s main effect was
to teach the user to use the interface dictionary’s phonemic
system, then users may benefit more from the motor-based
optimization and perhaps make faster selections as the cogni-
tive effort of choosing the intended target is lessened. We
illustrate the possible influence of prediction on prompt-to-
selection mismatches with three different examples.

Of all of the 20,849 trials, 3,962 matched the prompt
exactly (19.0%); this ranged per individual from 2.3% to
45.4%. Individuals in the static groups produced 13.4%
completely “correct” messages, whereas individuals in the
predictive groups produced 23.9% completely correct mes-
sages. Although we do not know if there is an intelligibility
difference between the groups, it is likely that the predic-
tion at least trained users to produce messages using the
dictionary transcriptions.

Next, to explore voicing errors, we tallied trials with
either a [TH] or [DH] in the prompt4 and calculated the types
2065–2081 • July 2019

, Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



Figure 6. Session in which each participant reached criterion of
80% accuracy of selecting [AY] on /aɪ/-initial trials over other vowel
labels. Red (dark) bars: predictive groups. Note that these participants
largely reach criterion in the first two sessions. Gray striped bars:
static groups. Note that these participants take longer to reach criterion,
and one participant never reaches criterion (gray checked box).
of differences seen across all participants. In trials with a
[TH] in the prompt, participants used [TH] correctly 93.3%
of the time, with substitutions of DH (5.4%), T-HH (0.3%),
or T (0.8%). Of trials with [DH], participants correctly used
[DH] 37.6% of the time, with substitutions of TH (60.5%),
T-HH (0.6%), or D (1.0%). These mismatches are likely the
result of both phonemic errors (i.e., users do not consciously
realize that /θ/ and /ð/ are different or are different than /t h/)
and label errors (users may know that /θ/ and /ð/ are differ-
ent, but not that they are represented by [TH] and [DH] on
the interface). These may also represent pronunciation differ-
ences, as the common words “with” and “thank” can be
variably pronounced with either phoneme. The “correctness”
of the [DH] trials varied by cohort, with the static groups
producing correct [DH] trials only 23.3% of the time, whereas
predictive groups produced 53.7% correct [DH] trials. This
suggests that the prediction may have indicated pronunciation,
phoneme, and phoneme label suggestions to the users.

Finally, we can illustrate the effect of prediction by
evaluating trials with the initial /aɪ/ sound (the English
word “I”). Many of the sentences in the stimuli set begin
with the word “I” or “I’m” and thus the sound /aɪ/. This is
reflected by the size of the [AY] target in the starting con-
figuration of the predictive interfaces, as shown in Figure 2.
Any mismatches are unlikely to be phoneme errors, as the
phonological mapping of the word “I” to the sound /aɪ/ is
simple and consistent across dialects. If participants select
only sounds with confusable labels, then we can infer that
the likely cause of the errors is the label. If they select tar-
gets surrounding [AY], this would indicate a motor-based
error, in which participants attempted to select the correct
target but hit a nearby target instead. Of all trials starting
with an /aɪ/ sound, participants used the correct label, [AY],
85.8% of the time. Most other trials (12.5%) began instead
with sounds with easily confused labels ([IY, IH, EY, AH,
AE]; range from 4.6% to 0.7% each), with only 1.7% of tri-
als starting with any other sound. These errors varied across
time and by cohort: Figure 6 indicates during which session
a participant reached an (arbitrary) accuracy criterion of
80% correct in selecting [AY] in /aɪ/-initial trials. Note that
participants using interfaces with no prediction (gray-striped
bars) took longer to reach 80% accuracy than those in pre-
dictive cohorts (red bars), with one participant in a static
cohort who never reached criterion. All groups heard the
phonemes that they selected synthesized together as audi-
tory feedback, and all groups produced the same message
bank (in a random order). Thus, it would appear that pre-
diction increased the accuracy of the messages produced
by participants.

The possible accuracy increases provided by predic-
tion are not explicitly incorporated in the main results in
Figure 4 or in the statistical results, as the main outcome
measure (communication rate) does not consider accuracy.
The results may implicitly reflect these differences if in fact
prediction allowed participants to select sounds faster; that
is, they perhaps hesitated less or better remembered the loca-
tion of the intended targets on the interface. Although it is
clear that prediction increased communication rates and
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affected how participants learned the target labels, fur-
ther research could reveal the precise mechanisms behind
these improvements.

Effects of Prediction During Final Session
During the final session, prediction was no longer a

significant factor in communication rate. This suggests that
the effects expected via Fitts’ law (i.e., that larger targets
are faster to select) were not consistent. This could be due to
a variety of factors. In particular, the underlying prediction
could have been inaccurate. Only 19% of the messages pro-
duced by participants completely matched those that were
used to build the prediction that was based on dictionary-
based automated transcription. This suggests that the ef-
fects of prediction were not maximized here. Future work
could base prediction, at least in part, on the series of sounds
these participants used, rather than a dictionary transcrip-
tion. A final interface delivered to end users should cer-
tainly incorporate each user’s selection history into the
prediction algorithm. Because the participants often used
nondictionary transcriptions for their messages, they per-
haps learned to disregard the prediction entirely. In this
way, the prediction could have actively made their per-
formance worse if it made their preferred targets smaller
and thus harder to select.

In Individuals With Motor Impairments
Within-participant assessments of prediction enabled

us to gather participant preferences and reactions. Following
the results of Study 1, an expected effect of the prediction is
in helping participants learn the location and identity of
various targets. However, alternating blocks of predictive
and static interfaces in the within-participant design of Study
2 means that any learning effects would likely carry over to
the static blocks and thus be washed out. As a result, the
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trends in Figure 5 that show no block-to-block changes in
communication rates with predictive interfaces versus static
interfaces were expected. Our main outcomes were the rat-
ings of the interfaces, which will help drive further inter-
face development and implementation.
Verisimilitude of Participants Acting as Model
of Motor Impairments

Although the main outcome of this study was feasibility
and user feedback, we were also able to assess communica-
tion rate and thus evaluate the success of our participants
without motor impairments acting as a model of participants
with motor impairments. Participants without motor im-
pairments used the sEMG cursor to produce communication
rates of 5.0–15.6 phonemes/min on the first day (M = 9.5,
SD = 2.2). Participants with motor impairments used a va-
riety of access methods to produce communication rates of
2.8–11.6 phonemes/min (M = 8.4, SD = 4.2) on their first
day. Participants with motor impairments produced be-
tween 4 and 35 trials on their first day (M = 22, SD = 10),
whereas participants without motor impairments produced
between 10 and 35 trials on their first day. Although this
suggests that participants without motor impairments were
a reasonable model of participants with motor impairments
on their first day, it is not clear whether their learning tra-
jectories would be the same. The four participants with
motor impairments who completed 2 days of sessions had
a mean percent increase of 23.8% from Day 1 to Day 2
(range: −27.0 to 69.1). The 36 participants without motor
impairments had a mean percent increase from Day 1 to
Day 2 of 41.6% (range: −12.9 to 82.9). Thus, although both
groups saw improvement with training, the participants
without motor impairments made larger strides on average.
This is likely due to varying factors: (a) All participants
without motor impairments were learning a new access
method, whereas participants with motor impairments ei-
ther used their daily access methods (P1, P3, P4, P5) or
used new-to-them access methods due to the recency of
their injuries (P2, P5). (b) The pattern of motivation might
be quite different between the groups; for example, par-
ticipants without motor impairments were sufficiently moti-
vated by the automated feedback provided as a score after
each trial. The participants with motor impairments were
more motivated by accuracy and would spend many seconds
searching for the “correct” target, even when prompted to
just do their best and go quickly. This resulted in less overall
practice if they only completed a few trials. We also asked
them to rate the interfaces in between each block, which
may have interfered both with the learning process and em-
phasized that their motivation was to evaluate the interfaces
rather than produce messages quickly. (c) Finally, the
cognitive load of the task may have differentially affected
the participants with motor impairments. They were gener-
ally older than the participants without motor impairments
and more likely to deal with other effects of their impair-
ments, including chronic pain and medication side effects.
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Limitations and Future Directions
In order to assess the different aspects of these pho-

nemic interfaces in a longitudinal design, we recruited
36 individuals without motor impairments. This enabled
large cohorts over many time points but may not represent
how individuals who use AAC will use the interfaces. The
participants did use an alternate access method to interact
with the interfaces, and the access method was designed
for individuals with motor impairments who use AAC
(Cler et al., 2016; Cler & Stepp, 2015; Vojtech et al., 2018).
However, this also meant that the participants were
learning to use the access method at the same time that
they were learning to use the phonemic interfaces. This
may not always be the case in AAC users, as some may be
long-term users of a particular access method who start to
use a phonemic interface or who may use a phonemic inter-
face with a variety of access methods as their abilities and
preferences change. Some AAC users may learn to use an
access method and interface simultaneously (e.g., those with
spinal cord injury). In addition, we were not able to com-
plete a direct comparison to an orthographic interface. Fur-
ther study will involve benchmarking these interfaces against
orthographic interfaces with a variety of access methods.

There are a variety of different aspects of these inter-
faces that could be evaluated and refined. As previously
mentioned, different phoneme labels would likely expedite
learning of sound/label mappings. In this study, we provided
limited formal instruction: Participants were shown a 1-min
video on the first day that selected each sound and provided
an exemplar. They were not permitted to watch the video
again and were provided no feedback (beyond motivation,
e.g., “That one sounded good!”) or answers to specific
questions (“Which one is /aɪ/?” and “What does ‘DH’

mean?”). Clinical implementation would likely involve a
structured training program, which would include adjust-
ing settings for phoneme labels and the degree of scaling
for predicted targets as well as specific instruction in trans-
lating intended messages to phonemes.

Although the prediction was beneficial in this study,
there are additional improvements that would make it more
effective. Our method of generating predictions based only
on the stimuli set is limiting and perhaps unfair. Previous
work suggests that text prediction for AAC is best when
prediction is trained on a large set of text combined with
a small set of AAC or AAC-like messages (Vertanen &
Kristensson, 2011). Future evaluation should involve broader
prediction strategies, including larger corpora and more
sophisticated markers to assign prediction weights (e.g.,
language rules; a user’s past selection history or eye gaze),
as well as more refinement of the method of indicating pre-
diction to the user.

Finally, our study in people who use AAC was limited
and preliminary and was primarily designed as a measure
of feasibility and to gather feedback on our design. Our
methods for soliciting feedback were informal (i.e., not a
given set of qualitative research questions), and our VAS
scales were purpose built and not validated. Much future
2065–2081 • July 2019
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work is needed to refine the interfaces, determine who may
or may not benefit from such an interface, and establish
what training may be needed.
Applications to Nonphonemic Interfaces
Some of these advances may be applied to ortho-

graphic or symbol-based interfaces. Orthographic interface
layouts have already been optimized with these methods
(e.g., MacKenzie & Zhang, 1999; Zhai et al., 2002). How-
ever, these interfaces have not generally been adopted,
likely because users have a large amount of experience
with QWERTY interfaces. The method used to indicate
predicted targets, weighted Voronoi diagrams, has not
been explored in AAC or in other computer interface ap-
plications. Expanding targets have been shown to increase
selection speed in center-out tasks (Zhai et al., 2003) or in
a line of tightly packed targets (e.g., the Mac OSX dock,
in which icons are dynamically enlarged on hover; McGuffin
& Balakrishnan, 2005). Visually highlighting targets on a
keyboard via bolding or increasing the font size of labels
on predicted targets (Magnien et al., 2004; Sears et al., 2001)
has similarly been shown to increase selection rates, even if
prediction is noisy. However, the use of expanding targets
in a grid (which are also paired with increased font sizes) is
novel and likely to be beneficial in a variety of uses. This
prediction could be applied to orthographic interfaces or
even interfaces with grids of symbolic targets. The underly-
ing algorithm requires only a set of seeds (here, positioned
at the center of each target) and a set of weights; further-
more, this algorithm implementation (via pyvoro) is fast
enough that it is usable with even overtrained access methods
(e.g., typical mouse and touch screen input) without a no-
ticeable delay.
Conclusions
These studies empirically assessed the effects of com-

putational optimization and prediction on communication
rates generated by participants with and without motor im-
pairments. Optimization was derived from corpus-based
statistics and involved organizing phonemic targets so that
targets likely to be selected in sequence were located in
proximity. Predicted targets were dynamically enlarged based
on past selections and corpus statistics. Empirical evalua-
tions revealed that dynamically enlarging targets based on
prediction provided faster communication rates for par-
ticipants without motor impairments during training
(Sessions 1–9), as users were learning the interface target
locations and the novel access method. After training, opti-
mization acted to increase communication rates. The opti-
mization likely became relevant only after training when
participants knew the target locations and moved directly
to the targets. Assessments in participants with motor im-
pairments revealed that the participants could use the in-
terfaces to generate messages and that most participants
preferred the interface with prediction. Future work is
needed to validate these novel methods of optimization
Downloaded from: https://pubs.asha.org Boston University on 07/17/2019
and prediction for AAC and to translate these results into
clinical practice.
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