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Prediction of Optimal Facial Electromyographic
Sensor Configurations for Human–Machine

Interface Control
Jennifer M. Vojtech , Gabriel J. Cler, and Cara E. Stepp

Abstract— Surface electromyography (sEMG) is a
promising computer access method for individuals with
motor impairments. However, optimal sensor placement
is a tedious task requiring trial-and-error by an expert,
particularly when recording from facial musculature likely
to be spared in individuals with neurological impairments.
We sought to reduce the sEMG sensor configuration
complexity by using quantitative signal features extracted
from a short calibration task to predict human–machine
interface (HMI) performance. A cursor control system
allowed individuals to activate specific sEMG-targeted
muscles to control an onscreen cursor and navigate a target
selection task. The task was repeated for a range of sensor
configurationsto elicit a range of signal qualities.Signal fea-
tures were extracted from the calibration of each configura-
tion and examined via a principle component factor analysis
in order to predict the HMI performance during subsequent
tasks. Feature components most influenced by the energy
and the complexity of the EMG signal and muscle activity
between the sensors were significantly predictive of the HMI
performance. However, configuration order had a greater
effect on performance than the configurations, suggesting
that non-experts can place sEMG sensors in the vicinity
of usable muscle sites for computer access and healthy
individuals will learn to efficiently control the HMI system.

Index Terms— Electromyography, feature extraction,
human-machine interfaces, myoelectric control.

I. INTRODUCTION

FACIAL electromyography has been demonstrated as
a robust input modality for assistive technology

Manuscript received February 28, 2018; revised May 11, 2018;
accepted June 8, 2018. Date of publication June 20, 2018; date of
current version August 7, 2018. This work was supported in part by
the National Science Foundation under Grant 1452169, in part by
the National Science Foundation Graduate Research Fellowship under
Grant 1247312, and in part by the National Institutes of Health’s National
Institute on Deafness and Other Communication Disorders under Grant
DC014872. (Corresponding author: Jennifer M. Vojtech.)

J. M. Vojtech is with the Department of Biomedical Engineering, Boston
University, Boston, MA 02215 USA, and also with the Department of
Speech, Language, and Hearing Sciences, Boston University, Boston,
MA 02215 USA (e-mail: jmvo@bu.edu).

G. J. Cler is with the Graduate Program for Neuroscience–
Computational Neuroscience, Boston University, Boston, MA 02215
USA, and also with the Department of Speech, Language, and Hear-
ing Sciences, Boston University, Boston, MA 02215 USA (e-mail:
gcler@bu.edu).

C. E. Stepp is with the Department of Speech, Language, and Hear-
ing Sciences, Boston University, Boston, MA 02215 USA, also with
the Department of Biomedical Engineering, Boston University, Boston,
MA 02215 USA, and also with the Department of Otolaryngology–
Head and Neck Surgery, Boston University School of Medicine, Boston,
MA 02118 USA (e-mail: cstepp@bu.edu).

Digital Object Identifier 10.1109/TNSRE.2018.2849202

devices [1]–[10]. Using surface electromyography (sEMG),
the electrical activity of face and neck musculature can be
detected by electrodes placed on the surface of the skin.
Individuals can then volitionally activate certain muscles to
control a human-machine interface (HMI), such as a com-
puter pointing device [1], [2], [4]–[7], [11] or even a power
wheelchair [9]–[11]. Unlike the use of eye-tracking systems
for computer access, sEMG is insensitive to lighting condi-
tions and is suitable for all types of skin with proper skin
preparation [12]–[14].

However, when using facial EMG as a computer access
method, control is dependent on appropriate muscle
coordination. Sensor configuration affects this coordination
because the signal recorded using sEMG is mediated by
source characteristics as a function of position (i.e., what
is being recorded) and tissues separating the sources from
recording electrodes [15]–[17]. Electrode configuration is
therefore a crucial factor when using sEMG [17]. As such,
the Surface Electromyography for Non-Invasive Muscle
Assessment (SENIAM) project developed recommendations
for sEMG sensor configuration as a concerted effort to
standardize sensors, sensor configurations, signal processing
methods, and modeling methods within the field of
sEMG [14], [18]. However, SENIAM does not include
facial musculature, for which the methodology of sensor
configuration grows more complex: these small muscles
interdigitate and overlap, and there is considerable variation
in facial structure that can impact the approximate location,
thickness, and use of these muscles [19]–[21]. Not only do
face and neck muscles vary from person to person due to
different facial structures [19], [22], but the ability to use these
muscles also varies. For instance, individuals with neurological
deficits may have volitional control over their face and neck
musculature, but this control may be incomplete. Even though
these individuals are an ideal target population for facial
EMG-based augmentative systems, sensor configuration must
be conducted on a subjective macro-anatomical basis due to
the complexity of facial configuration [20].

It is therefore a tedious task for a trained operator to
place sEMG sensors according to facial anatomy such that
sensor configuration is optimized on a person-to-person basis.
The operator must place each sensor based on knowledge
of optimal sensor configuration, qualitatively evaluate the
amplitude and stability of the signal extracted from this
configuration, and repeat until a signal of reasonable amplitude
and stability during contraction is subjectively achieved. When
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placing multiple sensors, the time required to configure the
sensors increases. Additionally, when using multiple sensors,
complexity arises from the possibility of co-activation, or the
presence of multiple contracted muscles near each sEMG sen-
sor. A method of reducing this tedious, time-consuming task of
configuring sEMG sensors on a user-specific basis is crucial.

Pattern recognition—an advanced signal processing method
for reliably controlling multiple degrees-of-freedom (DOF)
based on user intent—has been evaluated for EMG-based HMI
systems. However, these systems require that performance
remain invariant over time in order to accurately classify
muscle contraction patterns [23], and ultimately, performance
has been found to degrade within hours after initial classifier
training [24]. Therefore, although EMG-based augmentative
systems are capable of targeting spared musculature, such
systems that take advantage of classification algorithms are
not necessarily ideal for individuals suffering from a loss of
complete functional movement.

Instead, direct control methods are an attractive alternative
to classification methods for adequate computer access. Most
notably, direct control via facial sEMG has been shown
to enable 360° cursor movements with four direction-based
sEMG sources [2], while pattern recognition techniques would
only enable cursor movement in the four cardinal directions
with the same number of sensors. Yet, previous studies
using sEMG cursor control (e.g., [1]–[3], [5], [7], [8]) have
not evaluated small adjustments in sensor configuration, but
instead relied on trained operators and trial-and-error to arrive
at an “optimal” sensor configuration. Therefore, we inves-
tigated quantitative sEMG signal features extracted from a
short calibration process in order to determine if user control
performance within an HMI could be quickly and accurately
predicted. Using this short calibration process to predict HMI
performance would bypass the laborious and subjective sensor
configurations obtained by a trained operator, thus minimizing
configuration time and maximizing HMI performance.

II. CURRENT INVESTIGATION

This study sought to determine if there are quantitative
signal features that accurately and rapidly predict future HMI
performance. We extracted EMG signal features across a range
of sensor configurations in order to create a range of signal
qualities. Sensor configuration was varied with respect to
location (the position of the sensor on a muscle site) and
orientation (the direction of the sensor compared to that of
the muscle fibers) [14], [16], [18], [21]. For each sensor con-
figuration, we then used a multidirectional tapping paradigm
to isolate and assess psychomotor performance when using a
sEMG-controlled cursor system as an input device for an HMI.
In this task, participants continuously activated individual
facial muscles to control the four directional cursor actions
(i.e., left, right, up, down) to navigate to a specified target, and
the click action to select the target. We recorded performance
during the task in terms of speed, accuracy, and movement
efficiency through outcome measures of information transfer
rate (ITR) and path efficiency (PE).

We hypothesized that creating a range of sensor con-
figurations would result in a range of signal qualities and

ensuing HMI performance. This would allow us to determine
which quantitative features of signal quality best predict HMI
performance. The development of quick and accurate HMI
prediction methods will mitigate the tedious, trial-and-error
calibration process for EMG-based HMI access modalities.

III. METHODS

A. Participants

Eighteen healthy adults (6 male, 12 female; M = 20.4 years,
SD = 1.3 years) with no history of motor impairments or
facial sEMG control participated in the study. All participants
completed written consent in compliance with the Boston
University Institutional Review Board and were compensated
for their participation.

B. Experimental Design

Participants completed one experimental session that lasted
up to one hour. In the session, participants first carried
out a Fitts’ law-based multidirectional tapping task (MTT),
described in C.4. Multidirectional Tapping Task, with an
ordinary computer mouse in order to become familiarized
with the task. Then, participants underwent skin preparation
and sEMG sensor application (see C.1. Sensor Preparation
& Configuration), followed by a short calibration process
(described in detail in C.3. Calibration). After, participants
completed the MTT again, this time by controlling the on-
screen cursor using facial sEMG rather than a computer
mouse.

Sensor application (section C.1), calibration (section C.3),
and task execution (section C.4) were repeated for three
qualitatively-evaluated sEMG sensor configurations: poor, sat-
isfactory, and optimal. The order of presentation of each sensor
configuration was randomized per subject, as explained in C.1.
Sensor Preparation & Configuration. The calibration and MTT
were carried out using custom Python software.

A principal component factor analysis (PCFA) was per-
formed on a battery of quantitative signal features extracted
from the calibration process in order to reduce multicollinear-
ity. Resulting feature components were then implemented into
general linear mixed models (GLMMs) to determine their
usefulness in predicting the outcome measures of ITR and PE.

C. Data Acquisition

1) Sensor Preparation & Configuration: All sEMG was
recorded using the Delsys Trigno™ Wireless EMG System
(Delsys, Boston, MA) using factory default settings. The
Trigno™ sensors are active sEMG sensors and could be
used continuously for the duration of the session without the
need for recharging. Prior to sensor placement, the surface
of each participant’s skin was slightly abraded using alcohol
wipes, then exfoliated with tape to remove excess skin cells,
oils, and hairs [12]–[14]. Single differential MiniHead sensors
(25×12×7 mm) were then placed over the fibers of the fol-
lowing muscles: (1) left risorius and orbicularis oris, (2) right
risorius and orbicularis oris, (3) frontalis, (4) mentalis, and
(5) orbicularis oculi (see Fig. 1). The corresponding enclosures
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Fig. 1. Depiction of sensor configurations, with sensors 1-5 located
over the muscle site of interest and sensors R1-R5 as the respective
references. Sensors were placed over the (1) left risorius and orbicularis
oris, (2) right risorius and orbicularis oris, (3) frontalis, (4) mentalis, and
(5) orbicularis oculi. Sensors 3 and 5 were placed contralateral to each
other according to each participant’s winking preference. If the participant
had no preference, sensor configuration defaulted to that shown in the
figure.

TABLE I
DESCRIPTION OF SENSOR LOCATIONS

(27×37×15 mm) were attached to the following areas (in
order): (R1) left clavicle, (R2) right clavicle, (R3) glabella, and
(R4 & R5) mastoid processes (see Fig. 1). Each enclosure was
employed as a reference to the collected sEMG signals, where
any bioelectrical noise common to the reference enclosure
and its respective sensor (i.e., common mode voltages) was
rejected. Table I provides an overview of the sensor locations.

Sensors 1–4, controlling the directional movements
(i.e., move left, right, up, and down) were placed in either
“optimal” or “suboptimal” locations and/or orientations by
a trained operator. These sensors were configured by qual-
itatively balancing specific factors: 1) direction of electrode
bars with respect to muscle fiber orientation, 2) position of
electrode bars with respect to the approximate location of the
muscle belly, 3) ease of electrode attachment to the desired

TABLE II
SENSOR CONFIGURATIONS USED TO VARY SIGNAL QUALITY

site (e.g., avoiding bony prominences or excessive skin),
4) location of electrode bars necessary to minimize crosstalk,
and 5) ability of the participant to volitionally produce and
isolate each facial gesture [16], [25]. Resulting signal quality
was qualitatively judged based on operator review of the raw
sEMG signals and knowledge of general anatomical structures
of the face. “Optimal” referred to a configuration in which
sensor placement was parallel to the underlying muscle fibers
(with electrode bars lying perpendicular to the muscle fibers),
centered on isolated muscle tissue [14], [16], [18]. “Subop-
timal” referred to location and/or orientation manipulations
from what the trained operator considered to be optimal.
Specifically, suboptimal location corresponded to a configu-
ration at a distance from the optimal site, while suboptimal
orientation corresponded to a configuration some degrees from
the optimal angle. We chose to manipulate the sensors at
a 12 mm distance (i.e., one sensor width) and 45° angle,
respectively, with manipulation direction depending on the
facial gesture (e.g., the “right” sensor was manipulated 12 mm
distal to the mouth and/or 45° counter-clockwise to avoid sen-
sor placement over the lips). Sensor locations and orientations
were randomly for each participant; however, the fifth sensor,
controlling the “click” of the cursor, was consistently placed in
an optimal configuration to preserve target selection abilities.

Each participant experienced three sensor configurations,
described in detail in Table II, termed optimal, satisfactory,
and poor according to their qualitative placements. These three
sensor configurations were implemented to elicit a range of
signal qualities. Participants were pseudorandomly assigned
to one of six potential combinations of configuration orders.

The sEMG signals were recorded at 2000 Hz, band-pass fil-
tered with roll-off frequencies of 20 and 450 Hz, and amplified
by a gain of 300 using the open-source PyGesture [26] and
custom Python software.

2) Cursor Movement: Combinations of different facial ges-
tures allowed for complete 360° movement within the
two-dimensional onscreen interface. The five sEMG sensors
were mapped to the following cursor actions: move left, move
right, move up, move down, and click (see Table I; adapted
from Cler and Stepp [2]). Participants used the four directional
sensors (i.e., 1–4) to navigate to the target, and the click sensor
(i.e., 5) to select the target. Each directional source enabled
a 1-DOF cursor movement; specifically, x (horizontal) and
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Fig. 2. Schematic of an example calibration. Participants were instructed
to contract twice at each sensor site in the following order: left, right, up,
down, click. In between contractions, participants were asked to click the
mouse (“Mouse Log”), which was used to delimit each contraction. Yellow
lines represent raw sEMG traces, while purple lines represent the RMS.

y (vertical) movements were determined by Eq. (1) and (2),
respectively, as adapted from [2] and [6].

�x =
[(

RMSRIGHT

TRIGHT

)2

−
(

RMSLEFT

TLEFT

)2
]

× gain (1)

�y =
[(

RMSUP

TUP

)2

−
(

RMSDOWN

TDOWN

)2
]

× gain (2)

The root-mean-square (RMS) value calculated from each
directional electrode (i.e., left, right, up, down) was divided
by a threshold, T, measured for the particular sensor during
the calibration period. The threshold for each sensor was cal-
culated as a set percentage of the maximum value of the RMS;
these threshold multipliers, adopted from Cler and Stepp [2],
were as follows: 0.3 for left, 0.3 for right, 0.5 for up, 0.3 for
down, and 0.7 for click. The resulting threshold values were
squared and subtracted from the opposite direction (i.e., left
from right and down from up). We adopted the gain factor
used in Cler and Stepp [2] to define the magnitude of cursor
movement. This enabled the strength of the muscle contraction
of each facial gesture to be proportional to cursor movement
velocity. Concurrent activation of non-opposing directional
sources enabled 2-DOF movements. For instance, simulta-
neous activation of left and down sources would produce a
cursor movement towards the bottom-left of the screen; the
magnitude and speed of this movement would be determined
by the strength of each contraction.

3) Calibration: The sEMG system was calibrated per partic-
ipant and per configuration prior to executing each MTT. The
first of the three calibrations lasted 5–20 minutes, while the
remaining two calibrations lasted approximately five minutes.
The first calibration process varied in length according to the
amount of time participants needed to learn how to produce
and isolate each facial gesture. Participants were instructed
to contract each muscle to construct the following calibration
sequence: left, left, right, right, up, up, down, down, click,
click. An example calibration can be seen in Fig. 2. The
calibration sequence was delimited by the participant using
mouse clicks, such that individual maximal voluntary contrac-
tions (MVCs) were isolated from the baseline and from other
contractions (see Fig. 2 – “Mouse Log”). After the participant

Fig. 3. Multidirectional tapping task schematic. a) Task design, with
five circles of equivalent diameter W, spaced evenly within a larger circle
at distance D apart. b) Task execution, in which participants navigated
from the centroid of the screen to the first target (“1”), clicked it (shown
here by black rings), then moved to the next highlighted target (“2”) on
the diametric opposite side of the large circle depicted in a). Participants
then selected the second target and repeated until all five targets were
selected. Ideal cursor movements are depicted as black lines.

completed the calibration sequence, a three second quiet period
was recorded, during which the participant was instructed to
“not move your head or neck, or swallow” in order to obtain
a recording of the physiological baseline activity recorded by
each sensor.

The RMS was calculated over 50 ms windows for each sen-
sor. Within each channel, the minimum amount of activation
required by the participant for the sEMG system to recognize
the gesture as a deliberate movement was defined by a set per-
centage of the maximum RMS value (adopted from Cler and
Stepp [2]). This prevented involuntary or unintentional muscle
contractions (e.g., normal blinking) from being recognized as
an intent of movement within the psychomotor task.

4) Multidirectional Tapping Task: Following calibration, each
participant completed a multidirectional tapping task (MTT),
as schematized in Fig. 3. This paradigm was developed using
Fitts’ law, which describes the limitation of controlled body
movements by the information processing capacity of the
human nervous system [27], [28]. In particular, the time it
takes to select a target via a rapidly-aimed movement is
described by the distance to the target and the individual’s
precision in selecting the correct target. Here, this movement
time and target selection precision to calculate the outcome
measures of ITR and PE.

The MTT lasted between 5–15 minutes and was completed
three times for each participant. The design of the task was
identical for each of the three rounds. Specifically, a circle
was displayed at the center of a monitor with a resolution
of 1920×1080 pixels. Five isometric circles were placed
equidistantly around the perimeter of the circle (see Fig. 3a).
Four of the circles were uniformly colored, with one high-
lighted circle to be designated as the target (the target is
depicted in Fig. 3b as a purple circle). The user was instructed
to navigate from the center of the screen to the colored circle
and select it (i.e., hard wink or blink). Once the participant
successfully navigated to and selected the target, a new circle
was designated as the target. The participant then navigated to
this new target, located diametrically opposite to the previous
target; this eliminated the cognitive task of assessing where
the next target would appear prior to navigating to it, thereby
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Fig. 4. Example of a cursor trace for a trial where index of difficulty =
2 bits, information transfer rate = 52.7 bits/min, and path efficiency =
85.7%. Yellow rings designate where the participant clicked the target.
Numbers adjacent to each yellow circle define the order in which targets
were selected. Cursor starting location is labeled by “Start.”

TABLE III
TARGET WIDTH AND DISTANCE FOR EACH INDEX OF DIFFICULTY

isolating psychomotor performance. The sequence of selection
is schematized in Fig. 3b, while Fig. 4 shows an example
cursor trajectory from a participant starting at the first target.

The starting position of the target was randomized in each
block, defined below. Each block was defined by five targets
(“trials”) of a specific index of difficulty (ID). ID is a measure
of the distance between targets (D) and width of targets (W),
as demonstrated in Eq. (3) using the Shannon formulation of
the ID from Fitts’ law [29].

ID = log2

(
D

W
+ 1

)
(3)

The ratio of distance-to-width was altered such that partici-
pants were presented with seven ID blocks per configuration
(see Table III). The distance and width between targets of
each block were determined during pilot testing. Each block
was initiated when the user navigated from the centroid of the
screen to the first target.

IV. DATA ANALYSIS

A. MTT Performance Metrics

ITR was used to compare the speed and accuracy of
cursor movement during the MTT within each configuration.
ITR (bits/min) was calculated using Wolpaw’s method as in
Eq. (4) on a trial-to-trial basis within a block as a func-
tion of accuracy (α), number of targets (NT), number of

selections (NS), and movement time (t, min) [30].

bits

selection
= log2NT +α log2 α + (1 − α) log2

(
1 − α

NT−1

)

ITR

(
bits

min

)
=

(
bits

selection

)
×

(
NS

t

)
(4)

The number of targets available to click was set to a
constant value of five within the study. The total number
of selections corresponded to the number of clicks the user
made within a trial to attempt to successfully select the target.
Total movement time corresponded to the amount of time
the user took to complete each trial. Accuracy was equal to
zero or one for each trial: 100% accuracy (α = 1) was used
to calculate ITR when participants were able to successfully
select the correct target, but 0% accuracy (α = 0) was used
if participants failed to select it. In addition to clicking the
correct target, movement time must not exceed 180 seconds
and the number of clicks must be less than 10 to be considered
100% accurate; these criteria were determined via preliminary
testing and were implemented in the current paradigm to
limit user interaction time with the MTT. Each ITR was
calculated using custom MATLAB 8.2 (Mathworks, Natick,
MA) scripts, and was averaged across trials in a block. These
ITRs were averaged within sensor configuration for additional
comparison and analysis.

PE =
√

(xn − x0)
2 + (yn − y0)

2

∑n
i=1

√
(xi − xi−1)

2 + (yi − yi−1)
2

(5)

PE, which evaluated user movement over time, was calcu-
lated per trial as the ratio of the ideal path between targets to
the actual path traveled by the participant (see Eq. 5) [6]. The
coordinates where the participant “clicked” (i.e., winked or
blinked) on the previous target were designated as (x0, y0) and
the coordinates that were clicked within the current target were
defined as (xn, yn). The Euclidean distance between these start
and end points was then divided by the actual distance traveled,
which was calculated by summing the distance between each
coordinate and its previous coordinate along the path trav-
eled [6]. PE values were averaged within sensor configuration
for further comparison and analysis.

B. Feature Extraction

A variety of feature extraction methods were applied to the
raw sEMG signals captured during the calibrations of each
configuration. First, each contraction was segmented into a
256 ms window using the cursor delimiter signals on each side
of the contraction (see Fig. 2 – “Mouse Log”). A window size
of 256 ms was chosen in order to adhere to the constraint of
real-time engineering applications in which the response time
should be no greater than 300 ms [31], [32]. Contractions
were segmented by locating the index of the maximum RMS
value within the window and taking 128 ms sections to the
left and right of this index from the raw sEMG signals.
Since there were two contractions for each of five channels,
the contractions were concatenated to produce five 512-sample
chunks.
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When applying feature extraction methods, detailed below,
only time-domain features were considered, as frequency-
domain EMG features have been shown to perform inade-
quately in EMG signal classification [32]. Six features were
ultimately considered to maximize processing efficiency and
minimize feature redundancy [31], [33]. The first author devel-
oped custom MATLAB software to extract (1) mean absolute
value, (2) zero crossing, (3) slope sign change, (4) Willison
amplitude, (5) waveform length, and a (6) coactivation percent-
age. The thresholds described in section C.3. Calibration were
used in calculations for the zero crossing, slope sign change,
Willison amplitude, and coactivation percentage. Within each
extracted feature, an epoch length of 64 ms was used to com-
promise between time sensitivity and quality of the estimated
features [21], [32].

1) Mean Absolute Value: Mean absolute value (MAV) is the
time-windowed average of the absolute value of the EMG
signal [32]–[34]. MAV was preferred over other amplitude
detectors (e.g., RMS) because previous studies indicate that
MAV has a smaller variance in predicting amplitude [35]. The
MAV of an EMG segment is defined in Eq. (6), in which N
corresponds to the window length and xi corresponds to the
i-th sample within segment s of S total segments in the signal.
MAV was calculated as a signal-to-noise ratio with units of
decibels, in which the MAV of each contraction was compared
to the MAV of the physiological baseline (measured during the
quiet period discussed in C.3. Calibration).

MAV =
S∑

s=1

(
1

N

N∑
i=1

|xi|
)

s

(6)

2) Zero Crossing: Zero crossing (ZC) is a time-domain
measure that contains frequency information of the EMG
signal [31]–[34]. The number of times the amplitude of the
raw EMG signal crossed the zero-amplitude level within a
time-window was summed. In addition to crossing the zero-
amplitude level, the signal must also exceed a threshold (T)
in order to mitigate noise-induced ZCs. ZC was calculated for
an EMG time-window by:

ZC =
S∑

s=1

(
N−1∑
i=1

[
f (xi × xi+1) ∩ |xi − xi+1| ≥ T

])
s

f (x) =
{

1, if x ≥ T

0, otherwise
(7)

3) Slope Sign Change: Similar to ZC, slope sign
change (SSC) is a measure of frequency information of the
EMG signal, as calculated in the time domain [31]–[34].
Specifically, SSC is calculated as a count of the number of
times the slope of the raw EMG signal changes sign within a
time-window. The signal must also exceed a threshold (T) in
order to mitigate noise-induced SSCs. SSC can be defined for
an EMG time-window as follows:

SSC =
S∑

s=1

(
N∑

i=2

f
[
(xi − xi−1) × (xi − xi+1)

])
s

f (x) =
{

1, if x ≥ T

0, otherwise
(8)

4) Willison Amplitude: Willison amplitude (WAMP), similar
to ZC and SSC, is a time-domain measure of frequency
information of the EMG signal and is related to muscle
contraction level [32], [36], [37]. WAMP is a summation of
the number of times the difference between two adjoining
segments of a time-window of the raw EMG signal exceeds a
threshold (T). WAMP is defined by:

WAMP =
S∑

s=1

(
N∑

i=1

f |xi+1 − xi|
)

s

f (x) =
{

1, if x ≥ T

0, otherwise
(9)

5) Waveform Length: Waveform length (WFL) is a mea-
sure of the complexity of the EMG signal regarding time,
frequency, and amplitude [31]–[34]. It is the summed absolute
difference between two adjoining segments of a time-window
of the raw EMG signal, described as the cumulative length of
the EMG waveform over a time-window [31]–[33]. WFL can
be calculated as follows:

WFL =
S∑

s=1

(
N∑

i=1

|xi+1 − xi|
)

s

(10)

6) Coactivation Percentage: We developed coactivation per-
centage (CAP) as a measure to quantify the degree of simul-
taneous activation of two channels using the raw EMG signal.
Unique from the other features we selected, CAP compares
muscle activity between sensors via energy and time. Quan-
tifying the CAP for each channel was a multi-step process
that required comparison of the activity in each channel to
that of the other channels. Fig. 5 exemplifies this process
using channels 1 and 4 when channel 1 is voluntarily activated
(i.e., participant is instructed to contract the muscle site).

Thresholds for each of the five channels were implemented
as a way to distinguish contraction activity from physiological
baseline activity, in which a rectified signal above the defined
threshold is considered “active,” (Fig. 5a). A logical array
was computed using methods adapted from Roy et al. [38]
in which the value was one if the rectified signal was above
the threshold for that channel, and zero otherwise (Fig. 5b).

The activation vector for each channel was then multi-
plied by that of each of the other four channels to produce
(N = 5!

2!∗(5−2)!) = 10 logical coactivation vectors comparing
the five channels, two at a time. Each logical coactivation
vector contained a one whenever the two compared channels
were simultaneously active, and a zero otherwise (Fig 5c).

When comparing two channels at a time, each of the
two rectified sEMG signals (Fig. 5a) were multiplied by
their resulting logical coactivation vector (Fig. 5c), and were
normalized. This produced a normalized channel coactivation
vector (NCCV), as shown in Fig. 5d, in which the signal
was zero when both channels were not simultaneously active.
The NCCVs are then summed together to produce an additive
coactivation vector (ACV), as displayed in Fig. 5e, containing
the summed signal of the two channels only during simulta-
neous activation. The CAP of each ACV was then calculated
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Fig. 5. Example of the process used to compute the CAP between two
channels within a 150 ms interval during which channel 1 (C1) is active
and channel 4 (C4) is inactive, where any contraction in C4 represents the
participant involuntarily contracting the muscle site. a) Channel-based
thresholds (dotted black line), distinguish when channels are considered
active. b) Thresholds are applied to respective channels to produce a
logical channel activation vector for each channel. c) C1 and C4 activation
vectors are multiplied together to produce a logical coactivation vector,
which is 1 when both channels are active and 0 otherwise. d) Rectified
sEMG signals for C1 and C4 are each multiplied by the logical coacti-
vation vector, then normalized to produce channel coactivation vectors,
which only contain the signal from a) at time points where both channels
are active. e) Channel coactivation vectors for C1 and C4 are added
together to produce an additive coactivation vector.

as follows:

CAPCX:CY =
∑N

i=1 ACVCX:CYi

2 ∗ ∑N
i=1 NCCVCXi

(11)

Equation 11 shows the calculation for CAP between channel
X (CX) and channel Y (CY), in which X �= Y and CX
is voluntarily activated as instructed. The sum of the ACV
between CX and CY is divided by twice the sum of the NCCV
for CX. This effectively creates a percent of coactivation
between two channels (e.g., CX and CY in Eq. 11) within
the 512-sample window of the voluntarily activated channel
(e.g., CX in Eq. 11). The total degree of coactivation between
two channels is then calculated by averaging each CAP and
its complement CAP (e.g., CAPCX:CY and CAPCY:CX). The
resulting CAP estimates the overlap of muscle activation of
two distinct channels in time and magnitude. Comparing each
set of distinct channels generated 10 CAP values; these values
were averaged together to produce one CAP per configuration.

C. Statistical Analysis

Data analysis was performed using Minitab 18 Statistical
Software (Minitab Inc., State College, PA; [39]). A multi-
variate PCFA was conducted on the sEMG features (CAP,
MAV, ZCR, SSC, WAMP, WFL) extracted from the optimal

TABLE IV
VARIMAX-ROTATED FACTOR LOADINGS AND COMMUNALITIES

configuration calibration period. Principal component analysis
was chosen as the extraction method in order to mitigate
multicollinearity, and varimax rotation was performed on the
factor loadings to maximize the variable loadings according
to the factor (“feature component”) on which each variable
exerted the largest degree of influence [40]. Criterion for the
number of selected feature components was such that the
number of extracted components cumulatively explained 90%
of the variation in the data [41]–[43]. Feature component
scores were computed from the factor score coefficient matrix
and the centered, standardized features were extracted from
all sensor configurations. The resulting scores were used in
subsequent GLMM analyses.

Two GLMMs—one for ITR, one for PE—were constructed
to evaluate the effects of participant, configuration, configu-
ration order, and selected feature components in predicting
HMI performance across each configuration. Order of con-
figuration presentation was used to account for variance due
to the potential effects of learning. The restricted maximum
likelihood estimation method was implemented in each model.
An alpha level of 0.05 was used for significance testing in each
linear regression analysis. Effect sizes for the factors were
calculated using a squared partial curvilinear correlation (η2

p).
The first GLMM analysis was constructed with ITR as a

response when using participant, configuration, and configu-
ration order as factors and the selected feature components as
covariates. Configuration and order were considered to be fixed
factors, whereas participant was considered a random factor.
Resulting statistically significant factors were used to identify
the feature components that were most relevant in predicting
control over the sEMG-controlled cursor system. A second
GLMM analysis was then run in the same manner using
the outcome measure of PE. Tukey’s simultaneous tests were
performed to compare each outcome measure as a function
of the different configurations and configuration orders, which
were significant in each GLMM.

V. RESULTS

A. Feature Selection
Six features were selected to predict outcome measures of

ITR and PE: (1) CAP, (2) MAV, (3) ZC, (4) SSC, (5) WAMP,
and (6) WFL. Results of the PCFA indicated that three feature
components were necessary to explain approximately 92% of
the variation in the data (see Table IV). Therefore, only three
feature components were selected for subsequent processing.
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TABLE V
RESULTS OF GLMMS ON ITR AND PE

Table IV shows the varimax-rotated factor loadings of each
feature for the first three feature components. Here, the factor
loadings describe the relationship between each a feature com-
ponent and an underlying sEMG feature. Feature component 1
was most strongly associated with the time-domain frequency
information features: ZCR, SSC, and WAMP. Feature com-
ponent 2 was influenced to the largest degree by MAV and
WFL, while feature component 3 was most strongly influenced
by CAP. According to the resulting variable communalities,
SSC was represented to the largest degree, and MAV to the
lowest degree. In particular, 96.7% of the variance in SSC was
explained by the three components, while only 79.6% of the
variance was explained in MAV.

B. Predicting ITR and PE Using sEMG Features

Table V displays the model summaries constructed for ITR
and PE. Approximately 30% percent of the variance (29%
adjusted) of the data was explained by the model for ITR.
Only the third feature component had a significant effect on
ITR (p = 0.048). More than 48% of the variance (47%
adjusted) of the data was explained by the model for PE.
Feature components 2 ( p = 0.025) and 3 (p = 0.039) had a
significant effect on PE, but not feature component 1. In both
GLMMs, configuration (ITR: p = 0.028, PE: p = 0.007)
and order of configuration presentation (ITR: p < 0.001, PE:
p < 0.001) had statistically significant effects on the outcome
measures; order of configuration presentation had a larger
effect size (ITR: η2

p = 0.10, PE: η2
p = 0.09) than configuration

(η2
p = 0.03 for ITR and PE) in both models [44].
Post-hoc Tukey tests for both ITR and PE indicated that

participants demonstrated an improved performance in the task
for configurations presented second or third when compared
to the first configuration ( p < 0.001 for each comparison for
both ITR and PE; see Fig. 6 and Table VI). When averaged
across participants (N = 18) and configurations (i.e., poor,
satisfactory, optimal), the mean ITR was 17.0 bits/min
(SD = 12.9). ITRs elicited from the satisfactory configuration
(M = 19.0 bits/min, SD = 13.2) were significantly larger than
those of the optimal (M = 16.3 bits/min, SD = 12.9) and
poor (M = 15.6, SD = 11.9) configurations (optimal and
satisfactory: p = 0.036; poor and satisfactory: p = 0.031).
Mean PE was measured to be 56.7% (SD = 13.9%) when

Fig. 6. Results of Tukey post-hoc tests comparing difference in means
(±SE; CI = 95%) of a) ITR and b) PE with respect to configuration order.∗p < 0.05.

TABLE VI
POST-HOC ANALYSIS ON ITR AND PE

averaged across participants (N = 18) and configurations.
The satisfactory configuration PEs were significantly larger
than those of the poor configuration (p = 0.005); however,
optimal and poor configurations and optimal and satisfactory
configurations were not statistically different.

VI. DISCUSSION

Surface electromyography is a simple and non-invasive way
to quantitatively assess muscle activity. Within the past decade,
sEMG has been proposed as an attractive choice for HMI
control, as it provides an inexpensive and accessible means
of communication and movement for those who suffer from
disorders or impairments that limit their daily life [3]–[9].
EMG sensor placement is an enigmatic, yet crucial factor
in detecting signals from desired muscles and in recording
these signals with maximum fidelity [14]–[16], [21]. Not only
does the quality of a sEMG signal depend on the physical and
electrical characteristics of the sensors used to record muscle
activity, but it also depends on the characteristics of the person
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whose muscles are being recorded [14], [16], [20]. Calibrating
sEMG sensors can thus be a complex and time-consuming
endeavor.

The present study sought to determine if quantitative fea-
tures exist that are capable of accurately and rapidly predicting
HMI performance when using sEMG as an input modality.
The identification of these features was desired so to mitigate
the qualitative nature of sEMG sensor calibration that requires
trained operators and can still lead to day-to-day differences
in cursor performance. For example, if a specific combina-
tion of features was highly predictive of ITR, a calibration
procedure could be used to quantify the quality of the sensor
configuration and suggest possible configuration adjustments.
Performance was assessed via ITR and PE. Six features
were extracted from each calibration signal: MAV, ZC, SSC,
WAMP, WFL, and CAP [33], [45]. A PCFA was performed
using these features to reduce the dimensionality of the model
from six feature components (FCs) to three FCs. The scores of
these three FCs were then implemented in GLMMs to predict
ITR and PE.

Only the third FC was significant in predicting ITR, yet
the second and third FCs each had a significant effect on
predicting PE. The time-domain frequency information mea-
sures (i.e., ZC, SSC, and WAMP) had the largest association
with the first FC. The MAV and WFL measures were the
most influential features comprising the second FC, while
CAP influenced the third FC to the greatest degree. MAV is
a measure of the signal energy, whereas WFL is a measure
of signal complexity (i.e., time, amplitude, and frequency).
Yet, CAP was the only feature we selected that represents
a quantified comparison of muscle activity between sensors
via energy and time. Thus, the FCs most associated with the
energy and complexity of the EMG signal, in addition to the
muscle activity between sensors, had a significant effect, albeit
a small effect size [44], in estimating HMI performance via
PE within the sEMG cursor system.

In each model, configuration had a small effect size. Upon
examining mean performance across configuration in post-
hoc analysis, the difference between suboptimal and poor
configurations was significantly different in both models, with
the difference between optimal and suboptimal significant only
for ITR. Since sEMG sensor configuration is considered to
be a precise and complex task [14]–[16], [20], these results
were unexpected for such sensitive and specific recording of
facial muscles during typical movement (it must be taken
into account that the present study is co-opting sEMG for
non-homologous control). These findings may be a result of
recording from muscle groups rather than individual muscles
due to the relatively small and interdigitating nature of facial
musculature. The sEMG sensors employed here are configured
with detection surfaces spaced only 1 cm apart to create a
differential capable of recording from difficult-to-isolate mus-
cles. Still, perhaps the comparatively large size of the sEMG
sensors to that of facial musculature meant that small changes
in configuration did not substantially affect the signal. This,
however, may represent one benefit of using sEMG as opposed
to invasive options: although our sensor manipulations may not
have affected the quantitative measures of the resulting signals,

gross muscle group activity was such that an individual could
still exercise adequate control when source configurations
were within the vicinity of the targeted muscle. In contrast,
however, the order of configuration presentation had a larger
effect size than the configurations themselves in each model.
An improvement in task performance was observed during the
second and third rounds when compared to the first, no matter
the configuration of the sensors. Configuration order was
included in the GLMMs to minimize the effects of learning;
indeed, the results of each model show that, even over a very
short period of time, learning occurred.

Our findings suggest that when sEMG sensors are config-
ured within the vicinity of usable muscle sites, the duration of
time that a healthy individual is exposed to using the sEMG
system will have a greater effect on HMI performance than
the precise placement of the sEMG sensors. As such, our
results support less rigid recommendations for configuring
facial sEMG sensors when used by healthy individuals to
control a HMI. These results are encouraging for individuals
requiring an alternate access method (e.g., adaptive scanners,
brain interfaces, eye- or head-trackers) [46]–[48]. At present,
one of the main clinically-used augmentative systems is eye-
tracking [2], [49]; however, the calibration and setup processes
for such systems are laborious, in that the level of support
required to provide adequate control over the system is pro-
hibitive [49], [50]. Our results further support sEMG as a
promising input modality [3]–[5], [7], [8], [11], specifically as
an alternative to eye-tracking. The sEMG sensors must only
be calibrated once per session, whereas eye trackers must be
recalibrated multiple times per session [51], [52]. Eye-tracking
systems also require experienced operators or competent users
to ensure that the user’s point-of-regard accurately corresponds
to the location on the display [51], [53], [54]; conversely,
sEMG is simple enough that a trained operator can place
sensors within the vicinity of usable muscle sites and the
participant will learn how to control the system.

One limitation in this study is that it was not designed to
characterize the ability of EMG features to predict control
performance over time; yet, it is possible that EMG signal
characteristics were altered with respect to time due to changes
in the factors that control muscular force production. For
instance, a study by Tkach, Huang, and Kuiken (2010) found
that although muscle fatigue did not significantly affect EMG
characteristics over time, variation in level of effort had
a substantial, significant effect [23]. Future studies should
therefore investigate the ability of EMG features to predict
control performance as a result of such changes in the facial
sEMG signal characteristics. Also, the threshold multipliers for
each sEMG sensor were static throughout this study in order
to determine the relationship between sensor configuration and
HMI performance; however, it is unclear whether different
thresholds could systematically change the results. Thus, more
work is needed to examine the effects of changing these
threshold multipliers on resulting HMI performance. More-
over, the present study demonstrates that trained operators can
place sEMG sensors in the vicinity of usable muscle sites and
healthy individuals will rapidly learn to control the system
using the gross measure of electrical activity. Additional work
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should focus on instructing untrained operators to config-
ure sEMG sensors in a similar paradigm and evaluating cursor
control performance. This would provide insight into stream-
lining sensor application so that healthy individuals could
perform at an adequate level of control with minimal setup and
calibration time, and without the need for a skilled operator to
configure the sensors. Finally, the identification of quantitative
features was assessed in a healthy population, whereas the
methods we developed aim to advance the use of sEMG as
a computer access method for individuals with neurological
impairments. Previous work by Cler et al. [1] included a case
study of an individual with Guillain-Barré Syndrome who used
the same sEMG-controlled cursor system and calibration task;
the results of this study showed promise in the ability of
handicapped persons to perform the calibration task. However,
given the diverse manifestation of neurological disorders, it is
difficult to generalize the ability of all handicapped persons
to perform the calibration. As such, the ability of individuals
with neurological impairments to perform sensor configuration
and calibration tasks must be assessed. Therefore, the current
study should be repeated using similar methodology in these
users in order to fully assess the effects of our configuration
prediction methods in the target population.

VII. CONCLUSION

We have presented a method of predicting optimal facial
sEMG configurations for HMI control. Six features were
extracted from the EMG signals during participant calibra-
tion: MAV, ZC, SSC, WAMP, WFL, and CAP. A principal
component factor analysis was performed using these features
to develop a set of feature components influenced by the
time-domain frequency information, energy, complexity, and
muscle activity between sensors. Following, three feature
components were incorporated into general linear mixed mod-
els to predict HMI performance. Feature components most
influenced by the energy and complexity of the EMG signal,
in addition to the muscle activity between sensors, were sig-
nificant in predicting HMI performance, while the component
influenced by frequency information within the time-domain
was not. Three sensor configurations were evaluated; however,
the order of configuration presentation was more predictive of
HMI performance than the individual configurations. In this
regard, our results show that sEMG sensors can be configured
approximately in the vicinity of a usable muscle site, and
healthy individuals will learn to efficiently control the system.
Future development will focus on repeating the present study
in a disordered population, such as in those with severe speech
and motor impairments who rely on augmentative devices.
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