
Development and Theoretical Evaluation of Optimized

Phonemic Interfaces
Gabriel J. Cler
Boston University

635 Commonwealth Ave
Boston, MA 02215

617-358-1395

gcler@bu.edu

Cara E. Stepp
Boston University

635 Commonwealth Ave
Boston, MA 02215

617-353-7487

cstepp@bu.edu

ABSTRACT

In this paper, optimized communication interfaces in which users

select phonemes (sounds) instead of letters or whole words are

presented and evaluated. Optimization is based on phoneme

transition likelihoods (i.e., the probability of transitioning from

one phoneme to another in a particular communication corpus),

similar to letter-to-letter transition likelihoods used to optimize

orthographic interfaces. However, it is unknown to what extent

phoneme transition likelihoods vary by corpus, nor how

optimizing based on different corpora affects the final interface

efficiency. Here we used computational evaluations to compare

phoneme transition likelihoods between various phonemic corpora

and optimize phonemic interfaces with each corpus. Each

interface’s efficiency was evaluated against all the corpora.

Phoneme-to-phoneme transitions were highly correlated across

corpora (r = 0.7-0.86). Optimization based on phoneme-to-

phoneme transition likelihoods improved efficiency by around 20-

30% compared to random phonemic layouts, regardless of the

corpus used to optimize the interface. Optimizations using

different corpora were similar, varying only by 3-5%. We

conclude that, if possible, future phonemic interfaces should be

optimized via a corpus from the intended user’s communication.

If this is not possible, however, optimization still improved

efficiency using all testing corpora, suggesting that optimizing via

any relevant corpus is indicated over other layouts.

CCS Concepts

• Human-centered computing → Human computer interaction

(HCI) → Interaction devices → Keyboards • Human-centered

computing → Accessibility → Accessibility design and

evaluation methods • Human-centered computing →

Interaction design → Interaction design process and methods

→ User interface design

Keywords

Phonemic interface; augmentative and alternative communication;

metropolis algorithm

1. INTRODUCTION
Some individuals use augmentative and alternative

communication (AAC) methods to communicate, including those

who have concomitant motor impairments. For these individuals,

AAC use requires both an interface from which to select targets

and a method by which to select those targets. Alternative access

methods for people with motor impairments range from devices

that track head movements [e.g., 30, 31], eye movements [e.g., 11,

12, 16], tongue movements [e.g., 13], sip and puff actions [e.g.,

12], or brain signals [e.g., 4, 32]. However, all of these access

methods remain noisy and effortful for the user. Despite the

technological advances achieved in these areas, target selection

can remain slow and effortful, particularly in people with minimal

movement capabilities [2, 12]. To improve communication speed

and flexibility, further efforts are necessary to improve both AAC

access methods and AAC communication interfaces.

1.1 Phonemic Interfaces
AAC interfaces typically provide targets consisting of letters,

whole words, or symbols. Each presents benefits and drawbacks,

typically compromising between speed and flexibility. Some AAC

interfaces have been developed that use phonemes (which

represent a particular sound in a spoken language) as targets

instead. Phoneme selection allows individuals to create any set of

sounds in their language, rather than relying on text-to-speech

methods. Of particular interest to speakers with motor

impairments, common AAC messages have 14-20% fewer

phonemes than letters, depending on the set of vocabulary or

messages evaluated (e.g., [5]). This may reduce the time needed to

produce messages while retaining full flexibility. The drawback to

using phonemes as interface targets is that one must learn to

translate intended thoughts into a phoneme set rather than into

letters. Typically we spend many years as children learning to

translate thoughts into letters (i.e., writing). Sequencing phonemes

(or syllables), although more similar to typical oral

communication, is also likely to require training in order to

produce intended messages. However, the speed and flexibility

advantages to phonemic input suggest that it may be appropriate

for some users, and thus effort should be expended to develop the

most efficient phonemic interface possible.

Phonemic interfaces have previously been proposed for use by a

variety of user populations, including children and adults with

learning disabilities and/or motor impairments [3, 20, 24, 27].

Some systems contain only a small set of phonemes [3], or display

a reduced set of phonemes on the screen at one time [24], such

that users must make several motor actions to select one phoneme

(e.g., selecting one target to indicate that you wish to select a

fricative, and then selecting a target on a second screen that

appears to select /f/). Other systems use a reduced set of

phonemes and then must disambiguate the intended selections

based on prior selections [27], somewhat similar to the T9 texting

system [e.g., 14]. Finally, some phonemic interfaces display all

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from

Permissions@acm.org.

ASSETS '17, October 29-November 1, 2017, Baltimore, MD, USA
© 2017 Copyright is held by the owner/author(s). Publication rights

licensed to ACM.

ACM 978-1-4503-4926-0/17/10…$15.00

https://doi.org/10.1145/3132525.3132537

Session: Supporting Communication ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

230

possible phonemes, but disable phonemes that are unlikely to be

selected next [20]. Unfortunately, these final two methods for

increasing efficiency restrict users to selecting only those words

contained in the system’s dictionary, without allowing for non-

words, proper names, or novel utterances.

It has previously been shown that participants without motor

impairments could use a noisy AAC access method [8] to produce

speech using a phonemic interface in which all phonemes are

available to select at all times [5]. This interface had phonemic

targets arranged a priori based on articulatory features. However,

other ways to improve efficiency of phonemic interfaces in which

all phonemes are available to select at all times have not yet been

explored.

1.2 Efficiency of Orthographic Interfaces
A variety of methods for optimizing orthographic arrangements

have been employed, for both physical keyboards (e.g., the

Dvorak typewriter keyboard [10]) and onscreen keyboards (e.g.,

OPTI [17], FITALY [22] or ATOMIK [33]). Many of these were

optimized using some combination of trial-and-error and manual

incorporation of letter frequency-of-use and letter-to-letter

transition likelihoods. Due to the ubiquity of QWERTY

keyboards, most users (with and without motor impairments) do

not choose a more efficient orthographic keyboard layout. AAC

users do sometimes use an alphabetic arrangement or a frequency-

based arrangement, particularly if using a very slow scanning

method of communication access. However, if users choose to

utilize a phoneme-based interface due to its flexibility and the

reduced number of selections required, they will not have a

previously-learned arrangement of targets (such as QWERTY in

an orthographic interface) to produce interference, so learning an

optimal target arrangement is likely not appreciably different from

learning any other target arrangement.

1.3 Optimizing Interface Efficiency
Direct selection access methods (e.g., finger pointing, head-

tracking, eye-tracking) are generally considered to be less

cognitively taxing than scanning methods [21], and thus are

typically chosen if AAC users have the physical capability to

directly select. Optimizing the layout of an interface used in

switch scanning typically involves reordering the targets by

frequency of use, such that those targets that are likeliest appear in

the beginning of the scanning process [15]. There are also

methods of optimizing the arrangements of targets on an interface

to be used with direct selection; while this efficiency optimization

has been implemented for orthographic keyboards (e.g. [33]), it

has not been applied to phonemic interfaces.

One way to calculate and then maximize the efficiency of an

interface is based on Fitts’ law, a fundamental model of directed

movements that suggests that the time it takes to select a target is

based on the target’s distance and size – a nearer target is faster to

select because it requires less movement, and a larger target is

faster to select because it requires less precise movements. To

optimize the efficiency of an interface, one can arrange the targets

such that the distance between targets that are often selected

sequentially is minimized.

Importantly, methods of calculating efficiency for direct selection

rely on the frequency of letter-to-letter transitions, or digraph

statistics, in which “digraph” means letter pairs. For example, if

the word “the” appears in a corpus many times, the digraphs

TH and HE (and spaceT and Espace) will have high

probabilities. For orthographic text entry, many researchers use

digraph statistics from Mayzner and Tresselt [18]. However, some

have noted that these traditional digraph likelihoods do not

represent AAC usage [29]. Various text and conversational

corpora have been used to calculate digraph likelihoods and to

train language models for prediction. Results show that while

testing and training models on the same corpus leads to the best

keystroke savings, some savings can still be found even when

training and testing on different text corpora [29]. It is not clear

whether this holds true with diphone likelihoods (phoneme-to-

phoneme transition likelihoods) and resulting phonemic

interfaces.

In this paper we present the results of optimizing and then testing

the efficiency of phonemic interfaces using a variety of corpora to

determine if phonemic interfaces optimized for AAC must be

tailored to each user or if one generic keyboard (e.g., QWERTY,

ATOMIK orthographic keyboards) is sufficiently efficient for all

users.

1.4 Research Questions and Motivation
It is currently unknown to what extent phoneme transition

likelihoods vary by corpus, nor how optimizing based on different

corpora affects the final interface efficiency. In this study, we

evaluate phoneme transition likelihoods between various

phonemic corpora and optimize phonemic interfaces with each

corpus. Then we evaluate each interface’s efficiency by testing

against all the corpora. If interface efficiency is highly impacted

by the testing corpus, communication interfaces should be

optimized per user. If efficiency is stable across testing corpora,

we would expect AAC users to show similar performance using

arrangements of phonemes based on any number of corpora. For

reference, we additionally evaluated the efficiencies of two

potential phonemic interfaces that were not explicitly optimized

for efficiency, but potentially offer more immediate ease of use: a

phonemic interface in which the phonemes are arranged

alphabetically by their label (“Alphabetic”; developed for this

study) and a phonemic interface in which phonemes are arranged

by articulatory features such as manner and place (“Articulatory”;

developed previously and described in [5]).

Here we present a theoretical evaluation of seven different

phonemic interfaces against five different AAC/speech corpora.

Thoroughly testing this many interface and testing set

combinations in AAC users is infeasible, particularly as

performance typically improves over time (thus necessitating

many testing sessions per interface per user) [6], and because

access to these individuals is limited. This paper thus focuses on

thoroughly detailing the quantitative processes involved in

evaluating various corpora, optimizing interfaces, and performing

theoretical evaluations as a means to reduce the set of interfaces

upon which to perform the necessary empirical evaluations by

AAC users.

2. METHODS

2.1 Phoneme Set
The full set of phonemes used in American English is subject to

some debate. For simplicity, the set of phonemes used in this

study was the reduced set of phonemes used in the Carnegie

Mellon Pronouncing Dictionary [23]; this machine-readable

dictionary was used to convert text corpora to phonemes, and its

set of phonemes is similar to those used in the Buckeye Corpus

([19]; see 2.2 Corpora). See Table 1 for the set of phonemes used

for most of the interfaces. Note that the articulatory interface (see

3.2.3 Articulatory Interface) collapsed the phonemes /AA/ and

/AO/ into one target.

Session: Supporting Communication ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

231

2.2 Corpora
The usage statistics used to optimize an interface impact its

arrangement and thus its efficiency for the end-user. However,

there is no one ideal corpus of AAC messages. Therefore, we

have compared five corpora (see Table 2 for more details): an

unabridged vocabulary list of one young adult AAC user [26], a

list of conversational phrases suggested by AAC specialists [9], a

bank of simulated AAC messages [28], and the Buckeye corpus of

conversational speech [19]. Text corpora were converted to

phoneme transition likelihoods by converting text to phonemes

via the CMU Pronouncing Dictionary [23] with hand-corrections

for words not contained in the dictionary (e.g., “aneurysm”). The

Buckeye Corpus has two types of phonemic transcriptions: one

that matches the dictionary entry for a given orthographic

transcription (‘phonemic’ by their terminology, or ‘dictionary’

here for clarity) and one with actual phonemes produced by

speaker (‘phonetic’ by their terminology, but ‘direct’ here). For

example, one speaker said the phrase “tomorrow’s my dinner”;

the dictionary transcription of “tomorrow’s” is /T AH M AA R

Table 1. Reduced set of phonemes

Arpabet label IPA label Example word

AA* ɑ father

AE æ at

AH ʌ, ə hut

AO* ɔ ought

AW aʊ cow

AY aɪ hide

B b be

CH tʃ cheese

D d dee

DH ð that

EH ɛ red

ER ɝ hurt

EY eɪ ate

F f fee

G g green

HH h he

IH ɪ it

IY i eat

JH dʒ just

K k key

L l lay

M m man

N n no

NG ŋ sing

OW oʊ oat

OY ɔɪ toy

P p pay

R r read

S s sea

SH ʃ she

T t tier

TH θ think

UH ʊ hood

UW u two

V v veer

W w we

Y j yield

Z z zoo

ZH ʒ measure

*These two phonemes are combined into one phoneme in the

Articulatory interface

OW Z/, whereas the direct transcription is /T M AA R AH Z/.

Two separate sets of transition likelihoods were calculated using

the dictionary and direct transcriptions. For both, any

transcriptions that included phonemes that were not in our set

(e.g., ‘AHN’ for a nasalized ‘AH’; syllabic ‘EL’) were converted

to in-set phonemes (e.g., ‘AH’; ‘AH – L’).

2.3 Calculating Interface Efficiency
Fitts’ law (Equation 1) suggests that the movement time (MT)

necessary to travel between targets i and j is related to the distance

between the centers of target i and target j (Dij), and the width of

the second target (Wj). Exact movement times are determined

experimentally based on the pointing device employed; these are

then used to derive the constants a and b.

MT = a + b [log
2
(

Dij

Wj

+1)] Eq. (1)

Table 2. Corpora

Corpus Description

Number

of

words

Conversion

process

AAC user

[26]

(“Actual

AAC”)

Unabridged

vocabulary list

with use

statistics from

one young adult

AAC user

49,718 Converted each

word to

phonemes via

CMUDict (thus

missing word-

to-word

transitions)

AAC

conversation

al phrases

[9]

(“Suggested

AAC”)

Context-specific

message list

compiled by

AAC specialists

3,941
Converted each

message to

phonemes via

CMUDict

Simulated

AAC

messages

[28]

(“Simulated

AAC”)

Mechanical

Turk simulated

AAC messages

25,182
Converted each

message to

phonemes via

CMUDict

Buckeye

Corpus -

dictionary

transcription

[19]

(“Conversati

on-

dictionary”)

40 typical

speakers

conversing

orally with

interviewer

284,832 Converted to

reduced

phoneme set.

Calculated

transitions by

message from

dictionary

phonemic entry

of orthographic

transcription

Buckeye

Corpus -

direct

transcription

[19]

(“Conversati

on - direct”)

40 typical

speakers

conversing

orally with

interviewer

284,832 Converted to

reduced

phoneme set.

Calculated

transitions by

message from

direct phonetic

transcription

The efficiency of a particular target layout is quantified via

Equation 2 [33], which is derived from Fitts’ law, and suggests

Session: Supporting Communication ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

232

that the average movement time (MT̅̅ ̅̅ ̅) of an interface is

characterized by the sum of the probability of transitioning

between each pair of phonemes (i and j) multiplied by the time it

would take to get from phoneme i to phoneme j. Average

movement time is converted to words per minute (WPM) as

shown in Equation 3 for human readability and comparison with

other quantitative orthographic keyboards.

MT̅̅ ̅̅ ̅ = a + ∑ ∑ Prij ∗ b39
j=1

39
i=1 [log

2
(

Dij

Wj

+1)] Eq. (2)

Efficiency (words/min) =
1 word

5 phonemes
×

1 phoneme

MT̅̅ ̅̅ ̅ (sec)
×

60 sec

minute
 Eq. (3)

2.3.1 Fitts’ constants
The constants a and b in Equations 1 and 2 are Fitts’ constants,

which are experimentally derived aspects of the pointing device

itself. Any change in these arising from choosing a different

access method will affect the estimate of efficiency (i.e., some

access methods are slower than others), but will not affect the

comparison of two efficiencies using the optimizing algorithm.

Therefore, we have used constants that apply to a stylus type

pointing device, in which a is assumed to be 0, b = 1 / 4.9, and a =

.127s when i = j in order to compare to other literature [17, 33].

Thus, efficiencies calculated will be considerably higher than

those generated by AAC users with noisy access methods, across

all interfaces.

2.3.2 Distance and widths
Distances between each pair of targets are calculated as the

Euclidean distance between the centers of the targets i and j.

Widths are calculated as the width of the second target j along the

ideal path from the center of the starting phoneme through the

center of the target phoneme. For all of the interfaces developed in

this study, the target width is consistent, whereas for the

articulatory interface (previously developed and discussed in [5]),

the target width varies (see Figure 1).

2.3.3 Transition likelihoods
Transition likelihoods were calculated from each corpus in Table

2 separately. Any text content was translated to phonemes via the

CMU Pronouncing Dictionary [23] and hand-corrected. For the

AAC user’s vocabulary list, each word’s transitions were counted

and multiplied by the number of times it was used. For the

remaining corpora utilizing messages, all phonemes from the

message were concatenated, and each transition was counted.

Then each set of counts was divided by the total number of

transitions in the corpus, such that the sum of the probabilities was

1.

Note that the phoneme set in the articulatory interface was slightly

different than all others (see section 3.2.3 Articulatory Interface).

Therefore, to test this interface, separate transition likelihoods for

each corpus were recalculated to collapse all X/AA/, /AA/X,

X/AO/, /AO/X, /AA//AO/, and /AO//AA/ likelihoods as

appropriate.

2.3.4 Words per minute
Equation 3 includes a standard assumption used for orthographic

keyboards, in which the average word is said to require five

selections per word (four characters plus the space key).

Theoretically, the average number of selections per word for a

phonemic interface should be nearer 3, as no space key is

necessary or provided, and as there are 14-20% fewer phonemes

than letters per word depending on the corpus tested. Regardless,

this is left at the orthographic standard of 5 selections/word;

values in WPM are presented here only for human readability and

could be recalculated at need to represent a “truer” estimate of the

phonemic WPM (see section 4.2 Other Efficiency Calculations).

2.4 Metropolis Optimization Algorithm
Once an interface’s efficiency can be quantified, any number of

optimization algorithms can be used. One such optimization

algorithm is the Metropolis algorithm (see [1] for a review),

which is a Markov chain Monte Carlo algorithm with a variety of

applications; of particular interest here, it has previously been

used to optimize orthographic keyboards.

In this case, the Metropolis algorithm is used as such: one

interface of 39 phonemes is randomly generated, and its efficiency

is calculated. The interface layout is then optimized via a random

walk: two phonemes are randomly swapped and the keyboard

efficiency is recalculated. If the new arrangement is more efficient

than the current layout, then it is kept and the random walk

continues. If the new arrangement is less efficient than the current

layout, it may still be kept, according to Equation 4, in which the

probability of keeping a less efficient arrangement is quantified by

the difference in efficiency (∆E) and the system temperature (T)

multiplied by a scalar (k). The system temperature cycles over

time in a process called annealing; this enables the system to

break out of local MT̅̅ ̅̅ ̅ minima [33].

Pr(keep
new

) = 1 , if MT̅̅ ̅̅ ̅
new < MT̅̅ ̅̅ ̅ old Eq. (4)

Figure 2. Different configurations of 39 targets; (A) shows a

10x10 interface before the Metropolis algorithm has run, in

which 39 hexes have been randomly assigned a phoneme

(blue) and the rest are unassigned (grey) (B) shows an

interface with high efficiency after running the Metropolis

algorithm, which has tightly clustered the targets (max

efficiency noted: 39.655 WPM via Suggested AAC corpus). (C)

has the 39 targets arranged in a consistent layout both before

and after the optimization (max efficiency noted: 39.608 WPM

via Suggested AAC corpus).

Figure 1. Width (Wj) and distance (Dij) calculations for the

interfaces developed and evaluated in this study. Starting

phoneme i outlined in green, with target phoneme j outlined

in red. Width is calculated as the distance between the two

intersection points of the ideal path from the center of the

starting phoneme through the center of the target phoneme

(blue dots).

Session: Supporting Communication ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

233

= e-∆E/(kT) , if MT̅̅ ̅̅ ̅
new ≥ MT̅̅ ̅̅ ̅

old

2.4.1 Interface Shape
The most efficient interface is one in which the targets are tightly

clustered, reducing the distances required to move the cursor.

Thus target arrangements with hexagonal targets are more

efficient than those with rectangular targets arranged in a grid.

The Metropolis algorithm can optimize any interface shape. Initial

simulations were done with a large target space (e.g., 10 rows x

10 columns of target locations for the 39 phonemes; Figure 2A) to

seek the most efficient layout. After running the algorithm, the

most efficient arrangements had targets clustered together (Figure

2B). The tightly clustered targets were in a roughly circular

arrangement, which maximizes efficiency (i.e., with phonemes

assigned in a particular order, Figure 2B had an efficiency of

39.655 WPM, the maximum output of the algorithm through

many iterations), but is less efficient in terms of screen space for

end-users, who will need to have other programs on the screen.

Therefore, the pre-set target arrangement in Figure 2C was chosen

to maximize end-user usability and aesthetics while only slightly

reducing efficiency (i.e., highest efficiency with this shape was

39.608 WPM).

2.4.2 Determining Constants
The width of each target was set at 10 to represent the circle

circumscribed by the hexagon of the target. The distance between

each button was calculated via the Euclidean distance between the

centers of each target. As Equations 1 and 2 show, distance is

divided by width, making the units arbitrary as long as they are

consistent.

The probability of selecting an arrangement that is less efficient

(Equation 4) is dependent on the difference in efficiency and two

scaling variables, k (scalar) and T (system temperature,

systematically varied over time). Zhai, Hunter, and Smith [33]

present this equation but do not suggest ranges for either k or T.

Figure 3 shows the results of example iterations of the Metropolis

algorithm for different values of k, with a static T set at 10. Note

that panels A and B stay near the mean random arrangement

efficiency ~30 WPM); with this high of a k, many sub-optimal

arrangements are kept, and thus the system never approaches an

optimal value. Alternately, panels E and F have very few “kept”

arrangements; these then are highly dependent on the starting

arrangement and do not have the opportunity to get out of local

minima. Panels C and D, however, show behavior closer to the

goal. Panel C shows a WPM that hovers above the mean. Panel D

shows similar behavior to E and F, but with some minor dips in

efficiency that eventually lead to higher WPM. Optimal behavior

Figure 3. Each panel shows the random walk through the

interface space via the Metropolis algorithm with a different

value for scalar k with T (arbitrarily) at 10. Each data point

represents the WPM for an interface arrangement with a

higher efficiency than the “current” arrangement.

Figure 4. Metropolis algorithm. Top panel shows one iteration of the algorithm, consisting of 8 million random swaps and annealing

system temperature. Panel B shows the typical process at the beginning of the algorithm, in which the efficiency quickly rises to the

neighborhood of the final “optimized” version. Panel C shows how the annealing process (system temperature in green raising and

lowering over time) allows the system to come out of local maxima in order to then approach the optimal solution (red dots).

Session: Supporting Communication ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

234

is likely in between these two numbers, as the algorithm optimizes

by periodically choosing a less-optimal solution. Therefore, k was

set at .00001 (Panel D), and system temperature was set to vary

between 10 and 35, such that the final behavior of the algorithm

was between Panels C and D of Figure 3.

For all interfaces, system temperature was varied sinusoidally

between 10 and 35 at twelve cycles per million random swaps.

The optimization ran for 8 million random swaps for each

interface. An example optimization is shown in Figure 4.

2.4.3 Verification of Optimization Outcome
Figure 4 shows the results of one iteration of the optimization

algorithm, which consisted of 8 million random swaps. The

efficiency first increases rapidly from an average random

efficiency (~30 WPM for the suggested AAC messages corpus) to

near the final optimum efficiency (~39 WPM; Figure 4B). Next

the annealing process (in green; Figure 4C especially)

systematically increases and decreases the system temperature,

thus increasing and decreasing the likelihood that the algorithm

will accept an arrangement with a worse efficiency, as in Equation

4. This allows the system to come out of local maxima in order to

then approach the “optimal” solution.

In addition to the efficiency calculations performed at each step

by the Metropolis algorithm, representations of the results of the

optimization process were evaluated visually to verify the

function of the algorithm. Figure 5 shows two different

arrangements of 39 phonemes. The left is a random organization,

whereas the right shows an optimized arrangement based on the

Suggested AAC corpus. The width of the lines represent the

transition likelihood between each pair of phonemes. Note that

while thick lines occur throughout the random interface (left), the

length of thick lines are minimized in the optimized interface; this

suggests that when users try to produce the words and phrases

common in the corpus (e.g., “you” or /Y-UW/, and “don’t” or /D-

OW-N-T/), they will not need to move as far to select the required

targets. The efficiency of the random interface shown here (30.2)

is also the mean efficiency of 100,000 random phoneme layouts

using the Suggested AAC corpus to evaluate efficiency.

2.5 Evaluation
Seven interfaces (Figure 6) were evaluated against five corpora

(see Table 2). Interfaces A-E were optimized as stated in section

2.4 Metropolis Optimization Algorithm using diphone probability

statistics from each of the five respective corpora. Interface F

(Alphabetic) was generated to be the same shape as Interfaces A-

E, but with the phonemes arranged alphabetically according to

their labels. The final interface (Figure 6G; Articulatory) was

included to compare to previous studies [6, 7]. Interfaces F and G

are included primarily as non-optimized controls in order to

evaluate the efficacy of the optimization. Further, while we

hypothesized that the Alphabetic and Articulatory interfaces

would not provide optimal efficiencies, these interfaces are

organized by rules that people can learn, and thus may help users

quickly learn where different targets are on the interface.

Although the interfaces were not evaluated empirically in this

study, future studies may wish to do so. Additionally, if the

differences in efficiency are small, users may choose to use the

Articulatory or Alphabetic interfaces; whereas if the differences in

efficiency are large, they may choose to use an optimized

interface instead.

3. RESULTS

3.1 Corpora similarity
Figure 7 shows the correlation of diphone likelihoods between the

different corpora tested here. Correlations were high, ranging

from .70 to .86. Correlations between text resources (Actual AAC,

suggested AAC, and simulated AAC) and conversational

Figure 5. Visual comparison of results of Metropolis

algorithm. Left shows a random organization of phonemes;

right shows an optimized interface. Width of lines between

two targets represents the likelihood of transitioning between

them in the AAC conversational phrases corpus.

Figure 6. Interfaces developed and evaluated in this study.

Target colors show rough groupings of phonemes: simple

vowels in green, complex vowels (diphthongs, r-colored

vowels) in purple, fricatives and affricates in orange, stops in

red, and liquids, nasals, and semivowels in blue.

Session: Supporting Communication ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

235

resources (Conversation-dictionary and Conversation-direct) were

on the low-to-mid end of the range of correlations, ranging from

.70 to .82, while those within text resources were the highest,

from .85 to .86. Interestingly, the correlation between the

Conversation-dictionary and Conversation-direct probabilities was

only .80, despite both being derived from the same conversational

source.

3.2 Interfaces
Figure 6 shows the different interfaces developed for this project

(A-F) as well as the articulatory interface previously developed

(G).

3.2.1 Optimized Interfaces
The first five interfaces (Figure 6A-E) were generated with the

Metropolis algorithm as in Section 2.4 Metropolis Optimization

Algorithm using the diphone probabilities from each respective

corpus.

3.2.2 Alphabetic Interface
The alphabetic interface (Figure 6F) used the same layout and

phonemes as the optimized interfaces, but arranged the phonemes

in alphabetical order based on their label (see Figure 6).

3.2.3 Articulatory Interface
The articulatory interface (Figure 6G) has previously been

described in [5]. Briefly, the targets on the interface were arranged

manually in a circular layout, such that phonemes were organized

based roughly on articulatory features (manner and place of

articulation). Phonemes that are differentiated only by voicing

(e.g., /TH/ and /DH/) are located at the same angle but different

radii. Only 38 phonemes were used for this interface instead of the

set of 39 used in the other interfaces in this study; as noted in

Table 1, the phonemes /AA/ (father) and /AO/ (ought) were

collapsed into one phoneme. Interface targets were allowed to be

directly adjacent (Figure 6G) rather than leaving gaps in between

targets as in [5]; this was so that widths were as large as possible

in relation to distance between targets, as those in the other

hexagonal interfaces are tightly packed.

3.3 Interface efficiency
Efficiency was calculated for each of the seven interfaces against

each of the five testing corpora. Results are shown in Figure 8 in

terms of WPM. The optimized interfaces had relatively high

efficiencies across all testing sets, from 36.5 to 39.6 WPM.

Generally efficiencies were highest when the testing corpus was

the same as the corpus used to generate the diphone probabilities

(shown in Figure 8 on the diagonal, highlighted in black).

Variability in WPM for each interface across the different corpora

was low, with ideal efficiency to lowest efficiency differing by

only 1-3WPM. Efficiencies were lower with both interfaces not

optimized by the Metropolis algorithm (30.0-31.4); these were

even more consistent across testing corpora, with the Alphabetic

only varying by 1.3 WPM across testing corpora, and the

Articulatory only varying by 0.7 WPM depending on which

corpus was used to evaluate its efficiency.

4. DISCUSSION
Interfaces not optimized for efficiency (Alphabetic; Articulatory)

show efficiencies around 30WPM, which is near the mean random

interface efficiency (30.2 WPM). Optimizing an interface using

the Metropolis algorithm yields an improvement of around 9

WPM over a random arrangement and the Alphabetic and

Articulatory interfaces. However, optimizing by one corpus and

testing against another yields differences around 1-3 WPM.

4.1 Benefits of Alp habetic and Articulatory

Interfaces
The Alphabetic and Articulatory interfaces may show advantages

that are not captured in the efficiency calculation. The

organization of the Alphabetic interface gives users some a priori

information about where targets are located on the interface, as

they are arranged via phonemic label. Figure 6F shows that targets

arranged by label are also thus somewhat arranged by type of

phoneme (note that all nasals are together; vowels are largely

grouped). This would likely improve early communication rates

via reducing visual search time when users are first learning to use

the interface. The Articulatory interface similarly shows

Figure 7. Similarity between phoneme-to-phoneme transition

probabilities from different corpora (color represents r-value

of Pearson’s correlation between all diphone probabilities)

Figure 8. Efficiency in words per minute (WPM) for each

interface tested with each corpus. Highlights on the diagonal

show when the interface is being tested against the same

corpus used to optimize its layout.

Session: Supporting Communication ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

236

organization (Figure 6G), such that all vowels are in the center of

the interface, with consonants surrounding them. In addition, the

Articulatory interface pairs phonemes that are similar by manner

and place of articulation (e.g., /f/ and /v/ are neighbors), which

may have initial and ongoing benefits. First, this organization may

allow faster learning of the target locations, similar to the

Alphabetic interface. In addition, however, this leads to some

error tolerance that is not seen in orthographic interfaces or the

other phonemic interfaces. If a user overshoots the target and

accidentally selects the neighboring pair, the output of may still

retain intelligibility that it would not with other interfaces. For

example, if a user intends to select /V-OI-S/ (“voice”) and instead

selects /F-OI-S/ or /V-OI-Z/, a listener would still likely

understand that production in context.

4.2 Other Efficiency Calculations
Calculating efficiency in words per minute here relied on two

main assumptions that may not hold for phonemic interfaces used

by individuals employing alternate access methods.

First, the WPM calculation assumes five letter selections per

word, which includes four characters and a space; phonemic

interfaces do not require a space, and have fewer characters per

word; taking these both into account improves the efficiency

calculation for phonemic interfaces.

In addition, alternate access methods are noisier than typical

access methods, such as a stylus or physical keyboard. The

calculations here used Fitts’ constants from a typical stylus to

compare to previous work (see section 2.3.1 Fitts’ constants). If

we used Fitts’ constants derived from an individual with a spinal

cord injury using electromyography (EMG) to control a cursor

[30], the absolute difference between the interfaces changes.

When recalculating Figure 6 using Fitts’ constant b=1/2.6,

(derived from line of best fit from [30], Figure 5b), the number of

estimated words per minute reduces from 30-39 to 8-9 WPM.

However, these scale linearly (when using the common

assumption that Fitts’ a=0). Figure 9 thus shows the improvement

in efficiency in percent difference rather than in WPM, as WPM

varies by input method, number of characters per word, and by

individual skill.

A final way to consider the improvement of the optimization is

not in words per minute, but rather as the time it would take to

accomplish a task. Table 3 shows time estimates for producing a

list of the 1004 suggested AAC messages (the Suggested AAC

corpus) with different phonemic and orthographic on-screen

interfaces, and using either a typical stylus movement time

estimate (in which b=1/4.9) or the EMG cursor movement time

estimate (in which b=1/2.6). For the phonemic interfaces, no

spaces or punctuation were included. For the orthographic

interfaces, no punctuation was included. Fitts’ constant remained

a=0 for all calculations, as did the special case of movement time

when tapping the same target twice (.127s). In these calculations,

then, no assumptions were made as to the number of phonemes or

letters per word.

The times in Table 3 represent long-term interface usage (i.e.,

combined time to produce 1004 utterances) using different

phonemic (Suggested AAC and Alphabetic, from this study) and

orthographic interfaces (orthographic Metropolis interface from

[33]; QWERTY keyboard in common use). The optimized

phonemic interface shows substantial improvements over

orthographic input methods. These improvements increase when

the input method is noisy, such as the EMG cursor [30]. Thus,

while users with access to typical stylus use may not choose to

switch to a phonemic interface, those for whom access is more

time-consuming and difficult may find the initial costs of learning

a phonemic interface worthwhile (e.g., decreasing time to produce

messages from 210 hrs to 102 hrs – roughly 50%). Note, however,

that these do not include any prediction, which improves both

phonemic and orthographic input rates substantially [25, 27].

 Table 3. Time Estimates to Produce Suggested AAC Corpus

Interface Access Method

Stylus

(b = 1/4.9)

EMG cursor by person

with spinal cord injury

(b = 1/2.6)

Suggested AAC

(phonemic)
54 hrs 102 hrs

Alphabetic

(phonemic)
70 hrs 133 hrs

METROPOLIS

(orthographic) [33]
78 hrs 147 hrs

QWERTY

(orthographic;

square targets)

111 hrs 210 hrs

4.3 Clinically Meaningful Speed

Improvements
It is not yet clear what degree of improvement in efficiency is

clinically meaningful, particularly as AAC users have many

different access methods and preferences. Therefore it is also

unclear whether the 5-8% improvements due to optimizing per

corpus are worthwhile. While producing a new optimized

interface once a corpus is obtained is not particularly difficult, it

can be somewhat time consuming (converting a given corpus to

phonemes often involves some level of hand-correcting for out-of-

dictionary terms; running the actual optimization process as

described in 2.4 Metropolis Optimization Algorithm takes

approximately twelve hours of computing on a shared computing

cluster). Further, it can be difficult to obtain an appropriate

Figure 9. Percent difference in efficiency compared to a

random arrangement of phonemes.

Session: Supporting Communication ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

237

corpus. If a user already has an AAC device, they may be willing

to allow their AAC specialist to record their usage for some length

of time. Although this would be an ideal situation for optimizing

an individual AAC interface, only some AAC devices have this

recording capability, and recording a person’s communication

output has privacy concerns.

4.4 Future Directions

4.4.1 Empirical evaluations
An empirical evaluation of these phonemic interfaces is a

necessary next step. Although it was not possible to thoroughly

evaluate all of the interfaces presented here in AAC users, an

empirical evaluation of a small number of interfaces using only

one testing set can now be completed to validate the theoretical

results. This evaluation should be carried out by users with a

variety of motor impairments and access methods. Empirical

evaluations should be done to compare the interfaces developed in

this study to other existing phonemic interfaces [3, 20, 24, 27].

4.4.2 Individualized optimizations
This paper includes the technical details of the varied quantitative

processes that were involved in generating and evaluating the

interfaces. These are included specifically so that others can

recreate them and produce interfaces optimized based on any

given corpus or with weighting factors other than just Fitts’-based

efficiency. For example, if a particular user finds left-and-right

movements less fatiguing than up-and-down movements, an

additional weighting factor could be added for reduced efficiency

when the next target is above or below the current target rather

than on the same row. Alternate efficiency formulae and

weighting could also allow these same algorithms to optimize

interfaces intended for use with scanning rather than direct

selection methods. In that case, efficiency would be calculated

based on time from the onset of scanning to the target’s selection,

rather than the Euclidean distance between two targets.

4.4.3 Prediction
Finally, another vital way to optimize communication rates is to

incorporate online prediction. Studies of existing phonemic

interfaces have focused on prediction as the primary way of

increasing communication rates [20, 24, 27], without the offline

optimizations shown here, and predictive language models can

increase phonemic interface communication rates by as much as

100% [24]. Adding prediction to the interfaces presented here is

needed in order to compare to other phonemic or orthographic

interfaces and to maximize communication rates.

5. CONCLUSIONS
Phoneme-to-phoneme transition likelihoods are highly correlated

across corpora, particularly corpora generated from text or AAC

use instead of from oral conversation. Optimization based on any

corpus increased efficiency from random layouts or from the

Alphabetic and Articulatory interfaces by 19-31%. Optimizing

and testing on the same corpus led to efficiency improvements of

5-8%, compared to testing on other corpora. Therefore, if

possible, future phonemic interfaces should be optimized via a

corpus from the intended user’s speech. If this is not possible,

however, optimization still improved efficiency using all testing

corpora, suggesting that choosing an optimized corpus is indicated

over other layouts. Future directions include empirical testing and

adding prediction to further increase communication rates.

6. ACKNOWLEDGMENTS
This research is supported by NIH grant F31 DC014872 and NSF

grant 1452169. Our thanks to Alfonso Nieto Castañón and Frank

Guenther for access to their phonemic interface, which was

developed under NIH grant R01DC002852.

7. REFERENCES
[1] Beichl, I. and Sullivan, F. 2000. The Metropolis algorithm.

Computing in Science & Engineering. 2, 1 (2000), 65–69.

[2] Beukelman, D.R. et al. 2007. AAC for adults with acquired

neurological conditions: a review. Augmentative and

Alternative Communication. 23, 3 (2007), 230–242.

[3] Black, R. et al. Introducing the PhonicStick: Preliminary

evaluation with seven children.

[4] Brumberg, J.S. et al. 2010. Brain-computer interfaces for

speech communication. Speech Communication. 52, 4

(2010), 367–379.

[5] Cler, M.J. et al. 2016. Surface electromyographic control of a

novel phonemic interface for speech synthesis. Augmentative

and Alternative Communication. 32, 2 (2016), 120–130.

[6] Cler, M.J. et al. 2016. Surface electromyographic control of a

novel phonemic interface for speech synthesis. AAC:

Augmentative and Alternative Communication. 32, 2 (2016).

[7] Cler, M.J. et al. 2014. Surface electromyographic control of

speech synthesis. Conference proceedings : ... Annual

International Conference of the IEEE Engineering in

Medicine and Biology Society. IEEE Engineering in

Medicine and Biology Society. Annual Conference. 2014,

(2014).

[8] Cler, M.J. and Stepp, C.E. 2015. Discrete vs. continuous

mapping of facial electromyography for human-machine-

interface control: Performance and training effects. IEEE

Transactions on Neural Systems and Rehabilitation

Engineering. 23, 4 (2015), 572–580.

[9] Context Specific Messages (Suggested by AAC Specialists):

http://cehs.unl.edu/aac/aac-messaging-and-vocabulary/.

Accessed: 2017-01-01.

[10] Dvorak, A. and Dealey, W.L. 1932. US2040248. US2040248

A. 1932.

[11] Frey, L.A. et al. 1990. Eye-Gaze Word Processing. IEEE

Transactions on Systems, Man and Cybernetics. 20, 4 (1990),

944–950.

[12] Higginbotham, D.J. et al. 2007. Access to AAC: present,

past, and future. Augmentative and alternative

communication (Baltimore, Md. : 1985). 23, 3 (2007), 243–

257.

[13] Huo, X. et al. 2008. Introduction and preliminary evaluation

of the Tongue Drive System: Wireless tongue-operated

assistive technology for people with little or no upper-limb

function. Journal of Rehabilitation Research &

Development. 45, 6 (2008), 921–930.

[14] Kushler, C. 1998. AAC: Using a Reduced Keyboard. CSUN

Conference on Technology for persons with disabilities

(California State University, Nortridge CA, 1998).

[15] Lesher, G. et al. 1998. Techniques for augmenting scanning

communication. Augmentative and Alternative

Communication. 14, June (1998), 81–101.

[16] Lesher, G.W. et al. 1998. Optimal character arrangements for

ambiguous keyboards. IEEE Transactions on Rehabilitation

Engineering. 6, 4 (1998), 415–423.

[17] MacKenzie, I.S. and Zhang, S.X. 1999. The design and

Session: Supporting Communication ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

238

evaluation of a high-performance soft keyboard. CHI 99

Conference on Human Factors in Computing Systems.

[18] Mayzner, M.S. and Tresselt, M.E. 1965. Tables of single-

letter and digram frequency counts for various word-length

and letter-position combinations. Psychonomic Monograph

Supplements. Vol 1(2), (1965), 13–32.

[19] Pitt, M.A. et al. 2005. The Buckeye corpus of conversational

speech: labeling conventions and a test of transcriber

reliability. Speech Communication. 45, (2005), 89–95.

[20] Schroeder, J.E. 2005. Improved spelling for persons with

learning disabilities. 20th Annual International Conference

on Technology and Persons with Disabilities (Northridge,

CA, 2005).

[21] Sevcik, R.A. and Romski, M.B.T.-A.L. 2000. AAC: More

Than Three Decades of Growth and Development. 5, 19 (Jul.

2000), 5.

[22] Textware Solutions 1998. The Fitaly one-finger keyboard.

[23] The Carnegie Mellon Pronouncing Dictionary [cmudict. 0.6]:

2005. http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

[24] Trinh, H. et al. 2012. iSCAN: A Phoneme-based Predictive

Communication Aid for Nonspeaking Individuals.

ASSETS’12.

[25] Trnka, K. and McCoy, K.F. 2007. Corpus studies in word

prediction. Proceedings of the 9th international ACM

SIGACCESS conference on Computers and accessibility -

Assets ’07. (2007), 195.

[26] Unabridged Vocabulary Lists with Use Statistics - AAC

User: http://cehs.unl.edu/aac/aac-messaging-and-

vocabulary/.

[27] Vertanen, K. et al. 2012. Applying prediction techniques to

phoneme-based AAC systems. NAACL-HLT 2012 Workshop

on Speech and Language Processing for Assistive

Technologies (SLPAT).

[28] Vertanen, K. and Kristensson, P.O. 2011. The imagination of

crowds: conversational AAC language modeling using

crowdsourcing and large data sources. Proceedings of the

Conference on Empirical Methods in Natural Language

Processing (2011), 700–711.

[29] Wandmacher, T. and Antoine, J.-Y. 2006. Training language

models without appropriate language resources: Experiments

with an AAC system for disabled people. Proceedings of

LREC (2006).

[30] Williams, M.R. and Kirsch, R.F. 2016. Case study: Head

orientation and neck electromyography for cursor control in

persons with high cervical tetraplegia. Journal of

Rehabilitation Research and Development. 53, 4 (2016),

519–530.

[31] Williams, M.R. and Kirsch, R.F. 2008. Evaluation of head

orientation and neck muscle EMG signals as command

inputs to a human-computer interface for individuals with

high tetraplegia. IEEE Transactions on Neural Systems and

Rehabilitation Engineering. 16, 5 (2008), 485–496.

[32] Wolpaw, J.R. et al. 2002. Brain-computer interfaces for

communication and control. Clinical Neurophysiology. 113,

6 (2002), 767–791.

[33] Zhai, S.M. et al. 2002. Performance optimization of virtual

keyboards. Human-Computer Interaction. 17, 2–3 (2002),

229–269.

Session: Supporting Communication ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

239

Accessibility Report

		Filename:

		fp037-clerSC.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 2

		Passed manually: 0

		Failed manually: 0

		Skipped: 5

		Passed: 24

		Failed: 1

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Skipped		All annotations are tagged

		Tab order		Failed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Skipped		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Skipped		Tables should have headers

		Regularity		Skipped		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

