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ABSTRACT 

In this paper, optimized communication interfaces in which users 

select phonemes (sounds) instead of letters or whole words are 

presented and evaluated. Optimization is based on phoneme 

transition likelihoods (i.e., the probability of transitioning from 

one phoneme to another in a particular communication corpus), 

similar to letter-to-letter transition likelihoods used to optimize 

orthographic interfaces. However, it is unknown to what extent 

phoneme transition likelihoods vary by corpus, nor how 

optimizing based on different corpora affects the final interface 

efficiency. Here we used computational evaluations to compare 

phoneme transition likelihoods between various phonemic corpora 

and optimize phonemic interfaces with each corpus. Each 

interface’s efficiency was evaluated against all the corpora. 

Phoneme-to-phoneme transitions were highly correlated across 

corpora (r = 0.7-0.86). Optimization based on phoneme-to-

phoneme transition likelihoods improved efficiency by around 20-

30% compared to random phonemic layouts, regardless of the 

corpus used to optimize the interface. Optimizations using 

different corpora were similar, varying only by 3-5%. We 

conclude that, if possible, future phonemic interfaces should be 

optimized via a corpus from the intended user’s communication. 

If this is not possible, however, optimization still improved 

efficiency using all testing corpora, suggesting that optimizing via 

any relevant corpus is indicated over other layouts. 

CCS Concepts 

• Human-centered computing → Human computer interaction 

(HCI) → Interaction devices → Keyboards • Human-centered 

computing → Accessibility → Accessibility design and 

evaluation methods • Human-centered computing → 

Interaction design → Interaction design process and methods 

→ User interface design 
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1. INTRODUCTION 
Some individuals use augmentative and alternative 

communication (AAC) methods to communicate, including those 

who have concomitant motor impairments. For these individuals, 

AAC use requires both an interface from which to select targets 

and a method by which to select those targets. Alternative access 

methods for people with motor impairments range from devices 

that track head movements [e.g., 30, 31], eye movements [e.g., 11, 

12, 16], tongue movements [e.g., 13], sip and puff actions [e.g., 

12], or brain signals [e.g., 4, 32]. However, all of these access 

methods remain noisy and effortful for the user. Despite the 

technological advances achieved in these areas, target selection 

can remain slow and effortful, particularly in people with minimal 

movement capabilities [2, 12]. To improve communication speed 

and flexibility, further efforts are necessary to improve both AAC 

access methods and AAC communication interfaces.  

1.1 Phonemic Interfaces 
AAC interfaces typically provide targets consisting of letters, 

whole words, or symbols. Each presents benefits and drawbacks, 

typically compromising between speed and flexibility. Some AAC 

interfaces have been developed that use phonemes (which 

represent a particular sound in a spoken language) as targets 

instead. Phoneme selection allows individuals to create any set of 

sounds in their language, rather than relying on text-to-speech 

methods. Of particular interest to speakers with motor 

impairments, common AAC messages have 14-20% fewer 

phonemes than letters, depending on the set of vocabulary or 

messages evaluated (e.g., [5]). This may reduce the time needed to 

produce messages while retaining full flexibility. The drawback to 

using phonemes as interface targets is that one must learn to 

translate intended thoughts into a phoneme set rather than into 

letters. Typically we spend many years as children learning to 

translate thoughts into letters (i.e., writing). Sequencing phonemes 

(or syllables), although more similar to typical oral 

communication, is also likely to require training in order to 

produce intended messages. However, the speed and flexibility 

advantages to phonemic input suggest that it may be appropriate 

for some users, and thus effort should be expended to develop the 

most efficient phonemic interface possible.  

Phonemic interfaces have previously been proposed for use by a 

variety of user populations, including children and adults with 

learning disabilities and/or motor impairments [3, 20, 24, 27]. 

Some systems contain only a small set of phonemes [3], or display 

a reduced set of phonemes on the screen at one time [24], such 

that users must make several motor actions to select one phoneme 

(e.g., selecting one target to indicate that you wish to select a 

fricative, and then selecting a target on a second screen that 

appears to select /f/). Other systems use a reduced set of 

phonemes and then must disambiguate the intended selections 

based on prior selections [27], somewhat similar to the T9 texting 

system [e.g., 14]. Finally, some phonemic interfaces display all 
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possible phonemes, but disable phonemes that are unlikely to be 

selected next [20]. Unfortunately, these final two methods for 

increasing efficiency restrict users to selecting only those words 

contained in the system’s dictionary, without allowing for non-

words, proper names, or novel utterances. 

It has previously been shown that participants without motor 

impairments could use a noisy AAC access method [8] to produce 

speech using a phonemic interface in which all phonemes are 

available to select at all times [5]. This interface had phonemic 

targets arranged a priori based on articulatory features. However, 

other ways to improve efficiency of phonemic interfaces in which 

all phonemes are available to select at all times have not yet been 

explored.  

1.2 Efficiency of Orthographic Interfaces 
A variety of methods for optimizing orthographic arrangements 

have been employed, for both physical keyboards (e.g., the 

Dvorak typewriter keyboard [10]) and onscreen keyboards (e.g., 

OPTI [17], FITALY [22] or ATOMIK [33]). Many of these were 

optimized using some combination of trial-and-error and manual 

incorporation of letter frequency-of-use and letter-to-letter 

transition likelihoods. Due to the ubiquity of QWERTY 

keyboards, most users (with and without motor impairments) do 

not choose a more efficient orthographic keyboard layout. AAC 

users do sometimes use an alphabetic arrangement or a frequency-

based arrangement, particularly if using a very slow scanning 

method of communication access. However, if users choose to 

utilize a phoneme-based interface due to its flexibility and the 

reduced number of selections required, they will not have a 

previously-learned arrangement of targets (such as QWERTY in 

an orthographic interface) to produce interference, so learning an 

optimal target arrangement is likely not appreciably different from 

learning any other target arrangement. 

1.3 Optimizing Interface Efficiency 
Direct selection access methods (e.g., finger pointing, head-

tracking, eye-tracking) are generally considered to be less 

cognitively taxing than scanning methods [21], and thus are 

typically chosen if AAC users have the physical capability to 

directly select. Optimizing the layout of an interface used in 

switch scanning typically involves reordering the targets by 

frequency of use, such that those targets that are likeliest appear in 

the beginning of the scanning process [15]. There are also 

methods of optimizing the arrangements of targets on an interface 

to be used with direct selection; while this efficiency optimization 

has been implemented for orthographic keyboards (e.g. [33]), it 

has not been applied to phonemic interfaces.  

One way to calculate and then maximize the efficiency of an 

interface is based on Fitts’ law, a fundamental model of directed 

movements that suggests that the time it takes to select a target is 

based on the target’s distance and size – a nearer target is faster to 

select because it requires less movement, and a larger target is 

faster to select because it requires less precise movements. To 

optimize the efficiency of an interface, one can arrange the targets 

such that the distance between targets that are often selected 

sequentially is minimized.  

Importantly, methods of calculating efficiency for direct selection 

rely on the frequency of letter-to-letter transitions, or digraph 

statistics, in which “digraph” means letter pairs. For example, if 

the word “the” appears in a corpus many times, the digraphs 

TH and HE (and spaceT and Espace) will have high 

probabilities. For orthographic text entry, many researchers use 

digraph statistics from Mayzner and Tresselt [18]. However, some 

have noted that these traditional digraph likelihoods do not 

represent AAC usage [29]. Various text and conversational 

corpora have been used to calculate digraph likelihoods and to 

train language models for prediction. Results show that while 

testing and training models on the same corpus leads to the best 

keystroke savings, some savings can still be found even when 

training and testing on different text corpora [29]. It is not clear 

whether this holds true with diphone likelihoods (phoneme-to-

phoneme transition likelihoods) and resulting phonemic 

interfaces. 

In this paper we present the results of optimizing and then testing 

the efficiency of phonemic interfaces using a variety of corpora to 

determine if phonemic interfaces optimized for AAC must be 

tailored to each user or if one generic keyboard (e.g., QWERTY, 

ATOMIK orthographic keyboards) is sufficiently efficient for all 

users. 

1.4 Research Questions and Motivation 
It is currently unknown to what extent phoneme transition 

likelihoods vary by corpus, nor how optimizing based on different 

corpora affects the final interface efficiency. In this study, we 

evaluate phoneme transition likelihoods between various 

phonemic corpora and optimize phonemic interfaces with each 

corpus. Then we evaluate each interface’s efficiency by testing 

against all the corpora. If interface efficiency is highly impacted 

by the testing corpus, communication interfaces should be 

optimized per user. If efficiency is stable across testing corpora, 

we would expect AAC users to show similar performance using 

arrangements of phonemes based on any number of corpora. For 

reference, we additionally evaluated the efficiencies of two 

potential phonemic interfaces that were not explicitly optimized 

for efficiency, but potentially offer more immediate ease of use: a 

phonemic interface in which the phonemes are arranged 

alphabetically by their label (“Alphabetic”; developed for this 

study) and a phonemic interface in which phonemes are arranged 

by articulatory features such as manner and place (“Articulatory”; 

developed previously and described in [5]).  

Here we present a theoretical evaluation of seven different 

phonemic interfaces against five different AAC/speech corpora. 

Thoroughly testing this many interface and testing set 

combinations in AAC users is infeasible, particularly as 

performance typically improves over time (thus necessitating 

many testing sessions per interface per user) [6], and because 

access to these individuals is limited. This paper thus focuses on 

thoroughly detailing the quantitative processes involved in 

evaluating various corpora, optimizing interfaces, and performing 

theoretical evaluations as a means to reduce the set of interfaces 

upon which to perform the necessary empirical evaluations by 

AAC users.    

2. METHODS 

2.1 Phoneme Set 
The full set of phonemes used in American English is subject to 

some debate. For simplicity, the set of phonemes used in this 

study was the reduced set of phonemes used in the Carnegie 

Mellon Pronouncing Dictionary [23]; this machine-readable 

dictionary was used to convert text corpora to phonemes, and its 

set of phonemes is similar to those used in the Buckeye Corpus 

([19]; see 2.2 Corpora). See Table 1 for the set of phonemes used 

for most of the interfaces. Note that the articulatory interface (see 

3.2.3 Articulatory Interface) collapsed the phonemes /AA/ and 

/AO/ into one target.  
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2.2 Corpora 
The usage statistics used to optimize an interface impact its 

arrangement and thus its efficiency for the end-user. However, 

there is no one ideal corpus of AAC messages. Therefore, we 

have compared five corpora (see Table 2 for more details): an 

unabridged vocabulary list of one young adult AAC user [26], a 

list of conversational phrases suggested by AAC specialists [9], a 

bank of simulated AAC messages [28], and the Buckeye corpus of 

conversational speech [19]. Text corpora were converted to 

phoneme transition likelihoods by converting text to phonemes 

via the CMU Pronouncing Dictionary [23] with hand-corrections 

for words not contained in the dictionary (e.g., “aneurysm”). The 

Buckeye Corpus has two types of phonemic transcriptions: one 

that matches the dictionary entry for a given orthographic 

transcription (‘phonemic’ by their terminology, or ‘dictionary’ 

here for clarity) and one with actual phonemes produced by 

speaker (‘phonetic’ by their terminology, but ‘direct’ here). For 

example, one speaker said the phrase “tomorrow’s my dinner”; 

the dictionary transcription of “tomorrow’s” is /T AH M AA R  

Table 1. Reduced set of phonemes 

Arpabet label IPA label Example word 

AA* ɑ father 

AE æ at 

AH ʌ, ə hut 

AO* ɔ ought 

AW aʊ cow 

AY aɪ hide 

B  b be 

CH tʃ cheese 

D  d dee 

DH ð that 

EH ɛ red 

ER ɝ hurt 

EY eɪ ate 

F  f fee 

G  g green 

HH h he 

IH ɪ it 

IY i eat 

JH dʒ just 

K  k key 

L  l lay 

M  m man 

N  n no 

NG ŋ sing 

OW oʊ oat 

OY ɔɪ toy 

P  p pay 

R  r read 

S  s sea 

SH ʃ she 

T  t tier 

TH θ think 

UH ʊ hood 

UW u two 

V  v veer 

W  w we 

Y  j yield 

Z  z zoo 

ZH  ʒ measure 

*These two phonemes are combined into one phoneme in the 

Articulatory interface 

OW Z/, whereas the direct transcription is /T M AA R AH Z/. 

Two separate sets of transition likelihoods were calculated using 

the dictionary and direct transcriptions. For both, any 

transcriptions that included phonemes that were not in our set 

(e.g., ‘AHN’ for a nasalized ‘AH’; syllabic ‘EL’) were converted 

to in-set phonemes (e.g., ‘AH’; ‘AH – L’).  

2.3 Calculating Interface Efficiency 
Fitts’ law (Equation 1) suggests that the movement time (MT) 

necessary to travel between targets i and j is related to the distance 

between the centers of target i and target j (Dij), and the width of 

the second target (Wj). Exact movement times are determined 

experimentally based on the pointing device employed; these are 

then used to derive the constants a and b. 

MT = a + b [log
2
(

Dij

Wj

+1)]                       Eq. (1) 

Table 2. Corpora 

Corpus Description 

Number 

of 

words 

Conversion 

process 

AAC user 

[26] 

(“Actual 

AAC”) 

Unabridged 

vocabulary list 

with use 

statistics from 

one young adult 

AAC user 

49,718 Converted each 

word to 

phonemes via 

CMUDict (thus 

missing word-

to-word 

transitions) 

AAC 

conversation

al phrases 

[9] 

(“Suggested 

AAC”) 

Context-specific 

message list 

compiled by 

AAC specialists 

3,941 
Converted each 

message to 

phonemes via 

CMUDict 

Simulated 

AAC 

messages 

[28] 

(“Simulated 

AAC”) 

Mechanical 

Turk simulated 

AAC messages 

25,182 
Converted each 

message to 

phonemes via 

CMUDict 

Buckeye 

Corpus - 

dictionary 

transcription 

[19] 

(“Conversati

on-

dictionary”) 

40 typical 

speakers 

conversing 

orally with 

interviewer 

284,832 Converted to 

reduced 

phoneme set. 

Calculated 

transitions by 

message from 

dictionary 

phonemic entry 

of orthographic 

transcription 

Buckeye 

Corpus - 

direct 

transcription 

[19] 

(“Conversati

on - direct”) 

40 typical 

speakers 

conversing 

orally with 

interviewer 

284,832 Converted to 

reduced  

phoneme set. 

Calculated 

transitions by 

message from 

direct phonetic 

transcription 

 

The efficiency of a particular target layout is quantified via 

Equation 2 [33], which is derived from Fitts’ law, and suggests 
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that the average movement time (MT̅̅ ̅̅ ̅) of an interface is 

characterized by the sum of the probability of transitioning 

between each pair of phonemes (i and j) multiplied by the time it 

would take to get from phoneme i to phoneme j. Average 

movement time is converted to words per minute (WPM) as 

shown in Equation 3 for human readability and comparison with 

other quantitative orthographic keyboards.  

MT̅̅ ̅̅ ̅ =  a + ∑ ∑ Prij ∗ b39
j=1

39
i=1 [log

2
(

Dij

Wj

+1)]                   Eq. (2) 

Efficiency (words/min) = 
1 word

5 phonemes
×

1 phoneme

MT̅̅ ̅̅ ̅ (sec)
×

60 sec

minute
          Eq. (3) 

 

2.3.1 Fitts’ constants 
The constants a and b in Equations 1 and 2 are Fitts’ constants, 

which are experimentally derived aspects of the pointing device 

itself. Any change in these arising from choosing a different 

access method will affect the estimate of efficiency (i.e., some 

access methods are slower than others), but will not affect the 

comparison of two efficiencies using the optimizing algorithm. 

Therefore, we have used constants that apply to a stylus type 

pointing device, in which a is assumed to be 0, b = 1 / 4.9, and a = 

.127s when i = j in order to compare to other literature [17, 33]. 

Thus, efficiencies calculated will be considerably higher than 

those generated by AAC users with noisy access methods, across 

all interfaces.  

2.3.2 Distance and widths 
Distances between each pair of targets are calculated as the 

Euclidean distance between the centers of the targets i and j. 

Widths are calculated as the width of the second target j along the 

ideal path from the center of the starting phoneme through the 

center of the target phoneme. For all of the interfaces developed in 

this study, the target width is consistent, whereas for the 

articulatory interface (previously developed and discussed in [5]), 

the target width varies (see Figure 1). 

2.3.3 Transition likelihoods 
Transition likelihoods were calculated from each corpus in Table 

2 separately. Any text content was translated to phonemes via the 

CMU Pronouncing Dictionary [23] and hand-corrected. For the 

AAC user’s vocabulary list, each word’s transitions were counted 

and multiplied by the number of times it was used. For the 

remaining corpora utilizing messages, all phonemes from the 

message were concatenated, and each transition was counted. 

Then each set of counts was divided by the total number of 

transitions in the corpus, such that the sum of the probabilities was 

1.  

Note that the phoneme set in the articulatory interface was slightly 

different than all others (see section 3.2.3 Articulatory Interface). 

Therefore, to test this interface, separate transition likelihoods for 

each corpus were recalculated to collapse all X/AA/, /AA/X, 

X/AO/, /AO/X, /AA//AO/, and /AO//AA/ likelihoods as 

appropriate. 

2.3.4 Words per minute 
Equation 3 includes a standard assumption used for orthographic 

keyboards, in which the average word is said to require five 

selections per word (four characters plus the space key). 

Theoretically, the average number of selections per word for a 

phonemic interface should be nearer 3, as no space key is 

necessary or provided, and as there are 14-20% fewer phonemes 

than letters per word depending on the corpus tested. Regardless, 

this is left at the orthographic standard of 5 selections/word; 

values in WPM are presented here only for human readability and 

could be recalculated at need to represent a “truer” estimate of the 

phonemic WPM (see section 4.2 Other Efficiency Calculations). 

2.4 Metropolis Optimization Algorithm  
Once an interface’s efficiency can be quantified, any number of 

optimization algorithms can be used. One such optimization 

algorithm is the Metropolis algorithm (see [1] for a review), 

which is a Markov chain Monte Carlo algorithm with a variety of 

applications; of particular interest here, it has previously been 

used to optimize orthographic keyboards.  

In this case, the Metropolis algorithm is used as such: one 

interface of 39 phonemes is randomly generated, and its efficiency 

is calculated. The interface layout is then optimized via a random 

walk: two phonemes are randomly swapped and the keyboard 

efficiency is recalculated. If the new arrangement is more efficient 

than the current layout, then it is kept and the random walk 

continues. If the new arrangement is less efficient than the current 

layout, it may still be kept, according to Equation 4, in which the 

probability of keeping a less efficient arrangement is quantified by 

the difference in efficiency (∆E) and the system temperature (T) 

multiplied by a scalar (k). The system temperature cycles over 

time in a process called annealing; this enables the system to 

break out of local MT̅̅ ̅̅ ̅ minima [33]. 

Pr(keep
new

) = 1 ,          if MT̅̅ ̅̅ ̅
new < MT̅̅ ̅̅ ̅ old           Eq. (4) 

Figure 2. Different configurations of 39 targets; (A) shows a 

10x10 interface before the Metropolis algorithm has run, in 

which 39 hexes have been randomly assigned a phoneme 

(blue) and the rest are unassigned (grey) (B) shows an 

interface with high efficiency after running the Metropolis 

algorithm, which has tightly clustered the targets (max 

efficiency noted: 39.655 WPM via Suggested AAC corpus). (C) 

has the 39 targets arranged in a consistent layout both before 

and after the optimization (max efficiency noted: 39.608 WPM 

via Suggested AAC corpus). 

Figure 1. Width (Wj) and distance (Dij) calculations for the 

interfaces developed and evaluated in this study. Starting 

phoneme i outlined in green, with target phoneme j outlined 

in red. Width is calculated as the distance between the two 

intersection points of the ideal path from the center of the 

starting phoneme through the center of the target phoneme 

(blue dots). 
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= e-∆E/(kT) ,  if MT̅̅ ̅̅ ̅
new ≥ MT̅̅ ̅̅ ̅

old

2.4.1 Interface Shape 
The most efficient interface is one in which the targets are tightly 

clustered, reducing the distances required to move the cursor. 

Thus target arrangements with hexagonal targets are more 

efficient than those with rectangular targets arranged in a grid. 

The Metropolis algorithm can optimize any interface shape. Initial 

simulations were done with a large target space (e.g., 10 rows x 

10 columns of target locations for the 39 phonemes; Figure 2A) to 

seek the most efficient layout. After running the algorithm, the 

most efficient arrangements had targets clustered together (Figure 

2B). The tightly clustered targets were in a roughly circular 

arrangement, which maximizes efficiency (i.e., with phonemes 

assigned in a particular order, Figure 2B had an efficiency of 

39.655 WPM, the maximum output of the algorithm through 

many iterations), but is less efficient in terms of screen space for 

end-users, who will need to have other programs on the screen. 

Therefore, the pre-set target arrangement in Figure 2C was chosen 

to maximize end-user usability and aesthetics while only slightly 

reducing efficiency (i.e., highest efficiency with this shape was 

39.608 WPM).  

2.4.2 Determining Constants 
The width of each target was set at 10 to represent the circle 

circumscribed by the hexagon of the target. The distance between 

each button was calculated via the Euclidean distance between the 

centers of each target. As Equations 1 and 2 show, distance is 

divided by width, making the units arbitrary as long as they are 

consistent. 

The probability of selecting an arrangement that is less efficient 

(Equation 4) is dependent on the difference in efficiency and two 

scaling variables, k (scalar) and T (system temperature, 

systematically varied over time). Zhai, Hunter, and Smith [33] 

present this equation but do not suggest ranges for either k or T. 

Figure 3 shows the results of example iterations of the Metropolis 

algorithm for different values of k, with a static T set at 10. Note 

that panels A and B stay near the mean random arrangement 

efficiency ~30 WPM); with this high of a k, many sub-optimal 

arrangements are kept, and thus the system never approaches an 

optimal value. Alternately, panels E and F have very few “kept” 

arrangements; these then are highly dependent on the starting 

arrangement and do not have the opportunity to get out of local 

minima. Panels C and D, however, show behavior closer to the 

goal. Panel C shows a WPM that hovers above the mean. Panel D 

shows similar behavior to E and F, but with some minor dips in 

efficiency that eventually lead to higher WPM. Optimal behavior 

Figure 3. Each panel shows the random walk through the 

interface space via the Metropolis algorithm with a different 

value for scalar k with T (arbitrarily) at 10. Each data point 

represents the WPM for an interface arrangement with a 

higher efficiency than the “current” arrangement. 

Figure 4. Metropolis algorithm. Top panel shows one iteration of the algorithm, consisting of 8 million random swaps and annealing 

system temperature. Panel B shows the typical process at the beginning of the algorithm, in which the efficiency quickly rises to the 

neighborhood of the final “optimized” version. Panel C shows how the annealing process (system temperature in green raising and 

lowering over time) allows the system to come out of local maxima in order to then approach the optimal solution (red dots). 
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is likely in between these two numbers, as the algorithm optimizes 

by periodically choosing a less-optimal solution. Therefore, k was 

set at .00001 (Panel D), and system temperature was set to vary 

between 10 and 35, such that the final behavior of the algorithm 

was between Panels C and D of Figure 3. 

For all interfaces, system temperature was varied sinusoidally 

between 10 and 35 at twelve cycles per million random swaps. 

The optimization ran for 8 million random swaps for each 

interface. An example optimization is shown in Figure 4. 

2.4.3 Verification of Optimization Outcome 
Figure 4 shows the results of one iteration of the optimization 

algorithm, which consisted of 8 million random swaps. The 

efficiency first increases rapidly from an average random 

efficiency (~30 WPM for the suggested AAC messages corpus) to 

near the final optimum efficiency (~39 WPM; Figure 4B). Next 

the annealing process (in green; Figure 4C especially) 

systematically increases and decreases the system temperature, 

thus increasing and decreasing the likelihood that the algorithm 

will accept an arrangement with a worse efficiency, as in Equation 

4. This allows the system to come out of local maxima in order to 

then approach the “optimal” solution. 

In addition to the efficiency calculations performed at each step 

by the Metropolis algorithm, representations of the results of the 

optimization process were evaluated visually to verify the 

function of the algorithm. Figure 5 shows two different 

arrangements of 39 phonemes. The left is a random organization, 

whereas the right shows an optimized arrangement based on the 

Suggested AAC corpus. The width of the lines represent the 

transition likelihood between each pair of phonemes. Note that 

while thick lines occur throughout the random interface (left), the 

length of thick lines are minimized in the optimized interface; this 

suggests that when users try to produce the words and phrases 

common in the corpus (e.g., “you” or /Y-UW/, and “don’t” or /D-

OW-N-T/), they will not need to move as far to select the required 

targets. The efficiency of the random interface shown here (30.2) 

is also the mean efficiency of 100,000 random phoneme layouts 

using the Suggested AAC corpus to evaluate efficiency. 

2.5 Evaluation 
Seven interfaces (Figure 6) were evaluated against five corpora 

(see Table 2). Interfaces A-E were optimized as stated in section 

2.4 Metropolis Optimization Algorithm using diphone probability 

statistics from each of the five respective corpora. Interface F 

(Alphabetic) was generated to be the same shape as Interfaces A-

E, but with the phonemes arranged alphabetically according to 

their labels. The final interface (Figure 6G; Articulatory) was 

included to compare to previous studies [6, 7]. Interfaces F and G 

are included primarily as non-optimized controls in order to 

evaluate the efficacy of the optimization. Further, while we 

hypothesized that the Alphabetic and Articulatory interfaces 

would not provide optimal efficiencies, these interfaces are 

organized by rules that people can learn, and thus may help users 

quickly learn where different targets are on the interface. 

Although the interfaces were not evaluated empirically in this 

study, future studies may wish to do so. Additionally, if the 

differences in efficiency are small, users may choose to use the 

Articulatory or Alphabetic interfaces; whereas if the differences in 

efficiency are large, they may choose to use an optimized 

interface instead. 

3. RESULTS 

3.1 Corpora similarity 
Figure 7 shows the correlation of diphone likelihoods between the 

different corpora tested here. Correlations were high, ranging 

from .70 to .86. Correlations between text resources (Actual AAC, 

suggested AAC, and simulated AAC) and conversational 

Figure 5. Visual comparison of results of Metropolis 

algorithm. Left shows a random organization of phonemes; 

right shows an optimized interface. Width of lines between 

two targets represents the likelihood of transitioning between 

them in the AAC conversational phrases corpus. 

Figure 6. Interfaces developed and evaluated in this study. 

Target colors show rough groupings of phonemes: simple 

vowels in green, complex vowels (diphthongs, r-colored 

vowels) in purple, fricatives and affricates in orange, stops in 

red, and liquids, nasals, and semivowels in blue. 
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resources (Conversation-dictionary and Conversation-direct) were 

on the low-to-mid end of the range of correlations, ranging from 

.70 to .82, while those within text resources were the highest, 

from .85 to .86. Interestingly, the correlation between the 

Conversation-dictionary and Conversation-direct probabilities was 

only .80, despite both being derived from the same conversational 

source. 

3.2 Interfaces 
Figure 6 shows the different interfaces developed for this project 

(A-F) as well as the articulatory  interface previously developed 

(G). 

3.2.1 Optimized Interfaces  
The first five interfaces (Figure 6A-E) were generated with the 

Metropolis algorithm as in Section 2.4 Metropolis Optimization 

Algorithm using the diphone probabilities from each respective 

corpus.  

3.2.2 Alphabetic Interface 
The alphabetic interface (Figure 6F) used the same layout and 

phonemes as the optimized interfaces, but arranged the phonemes 

in alphabetical order based on their label (see Figure 6).  

3.2.3 Articulatory Interface 
The articulatory interface (Figure 6G) has previously been 

described in [5]. Briefly, the targets on the interface were arranged 

manually in a circular layout, such that phonemes were organized 

based roughly on articulatory features (manner and place of 

articulation). Phonemes that are differentiated only by voicing 

(e.g., /TH/ and /DH/) are located at the same angle but different 

radii. Only 38 phonemes were used for this interface instead of the 

set of 39 used in the other interfaces in this study; as noted in 

Table 1, the phonemes /AA/ (father) and /AO/ (ought) were 

collapsed into one phoneme. Interface targets were allowed to be 

directly adjacent (Figure 6G) rather than leaving gaps in between 

targets as in [5]; this was so that widths were as large as possible 

in relation to distance between targets, as those in the other 

hexagonal interfaces are tightly packed.  

3.3 Interface efficiency 
Efficiency was calculated for each of the seven interfaces against 

each of the five testing corpora. Results are shown in Figure 8 in 

terms of WPM. The optimized interfaces had relatively high 

efficiencies across all testing sets, from 36.5 to 39.6 WPM. 

Generally efficiencies were highest when the testing corpus was 

the same as the corpus used to generate the diphone probabilities 

(shown in Figure 8 on the diagonal, highlighted in black). 

Variability in WPM for each interface across the different corpora 

was low, with ideal efficiency to lowest efficiency differing by 

only 1-3WPM. Efficiencies were lower with both interfaces not 

optimized by the Metropolis algorithm (30.0-31.4); these were 

even more consistent across testing corpora, with the Alphabetic 

only varying by 1.3 WPM across testing corpora, and the 

Articulatory only varying by 0.7 WPM depending on which 

corpus was used to evaluate its efficiency.  

4. DISCUSSION 
Interfaces not optimized for efficiency (Alphabetic; Articulatory) 

show efficiencies around 30WPM, which is near the mean random 

interface efficiency (30.2 WPM). Optimizing an interface using 

the Metropolis algorithm yields an improvement of around 9 

WPM over a random arrangement and the Alphabetic and 

Articulatory interfaces. However, optimizing by one corpus and 

testing against another yields differences around 1-3 WPM.  

4.1 Benefits of Alp habetic and Articulatory 

Interfaces 
The Alphabetic and Articulatory interfaces may show advantages 

that are not captured in the efficiency calculation. The 

organization of the Alphabetic interface gives users some a priori 

information about where targets are located on the interface, as 

they are arranged via phonemic label. Figure 6F shows that targets 

arranged by label are also thus somewhat arranged by type of 

phoneme (note that all nasals are together; vowels are largely 

grouped). This would likely improve early communication rates 

via reducing visual search time when users are first learning to use 

the interface. The Articulatory interface similarly shows 

Figure 7. Similarity between phoneme-to-phoneme transition 

probabilities from different corpora (color represents r-value 

of Pearson’s correlation between all diphone probabilities) 

Figure 8. Efficiency in words per minute (WPM) for each 

interface tested with each corpus. Highlights on the diagonal 

show when the interface is being tested against the same 

corpus used to optimize its layout. 
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organization (Figure 6G), such that all vowels are in the center of 

the interface, with consonants surrounding them. In addition, the 

Articulatory interface pairs phonemes that are similar by manner 

and place of articulation (e.g., /f/ and /v/ are neighbors), which 

may have initial and ongoing benefits. First, this organization may 

allow faster learning of the target locations, similar to the 

Alphabetic interface. In addition, however, this leads to some 

error tolerance that is not seen in orthographic interfaces or the 

other phonemic interfaces. If a user overshoots the target and 

accidentally selects the neighboring pair, the output of may still 

retain intelligibility that it would not with other interfaces. For 

example, if a user intends to select /V-OI-S/ (“voice”) and instead 

selects /F-OI-S/ or /V-OI-Z/, a listener would still likely 

understand that production in context.  

4.2 Other Efficiency Calculations 
Calculating efficiency in words per minute here relied on two 

main assumptions that may not hold for phonemic interfaces used 

by individuals employing alternate access methods. 

First, the WPM calculation assumes five letter selections per 

word, which includes four characters and a space; phonemic 

interfaces do not require a space, and have fewer characters per 

word; taking these both into account improves the efficiency 

calculation for phonemic interfaces.  

In addition, alternate access methods are noisier than typical 

access methods, such as a stylus or physical keyboard. The 

calculations here used Fitts’ constants from a typical stylus to 

compare to previous work (see section 2.3.1 Fitts’ constants). If 

we used Fitts’ constants derived from an individual with a spinal 

cord injury using electromyography (EMG) to control a cursor 

[30], the absolute difference between the interfaces changes. 

When recalculating Figure 6 using Fitts’ constant b=1/2.6, 

(derived from line of best fit from [30], Figure 5b), the number of 

estimated words per minute reduces from 30-39 to 8-9 WPM. 

However, these scale linearly (when using the common 

assumption that Fitts’ a=0). Figure 9 thus shows the improvement 

in efficiency in percent difference rather than in WPM, as WPM 

varies by input method, number of characters per word, and by 

individual skill.  

A final way to consider the improvement of the optimization is 

not in words per minute, but rather as the time it would take to 

accomplish a task. Table 3 shows time estimates for producing a 

list of the 1004 suggested AAC messages (the Suggested AAC 

corpus) with different phonemic and orthographic on-screen 

interfaces, and using either a typical stylus movement time 

estimate (in which b=1/4.9) or the EMG cursor movement time 

estimate (in which b=1/2.6). For the phonemic interfaces, no 

spaces or punctuation were included. For the orthographic 

interfaces, no punctuation was included. Fitts’ constant remained 

a=0 for all calculations, as did the special case of movement time 

when tapping the same target twice (.127s). In these calculations, 

then, no assumptions were made as to the number of phonemes or 

letters per word.  

The times in Table 3 represent long-term interface usage (i.e., 

combined time to produce 1004 utterances) using different 

phonemic (Suggested AAC and Alphabetic, from this study) and 

orthographic interfaces (orthographic Metropolis interface from 

[33]; QWERTY keyboard in common use). The optimized 

phonemic interface shows substantial improvements over 

orthographic input methods. These improvements increase when 

the input method is noisy, such as the EMG cursor [30]. Thus, 

while users with access to typical stylus use may not choose to 

switch to a phonemic interface, those for whom access is more 

time-consuming and difficult may find the initial costs of learning 

a phonemic interface worthwhile (e.g., decreasing time to produce 

messages from 210 hrs to 102 hrs – roughly 50%). Note, however, 

that these do not include any prediction, which improves both 

phonemic and orthographic input rates substantially [25, 27].  

 Table 3. Time Estimates to Produce Suggested AAC Corpus 

Interface Access Method 

 
Stylus 

(b = 1/4.9) 

EMG cursor by person 

with spinal cord injury 

(b = 1/2.6) 

Suggested AAC 

(phonemic) 
54 hrs 102 hrs 

Alphabetic 

(phonemic) 
70 hrs 133 hrs 

METROPOLIS 

(orthographic) [33] 
78 hrs 147 hrs 

QWERTY 

(orthographic; 

square targets) 

111 hrs 210 hrs 

4.3 Clinically Meaningful Speed 

Improvements  
It is not yet clear what degree of improvement in efficiency is 

clinically meaningful, particularly as AAC users have many 

different access methods and preferences. Therefore it is also 

unclear whether the 5-8% improvements due to optimizing per 

corpus are worthwhile. While producing a new optimized 

interface once a corpus is obtained is not particularly difficult, it 

can be somewhat time consuming (converting a given corpus to 

phonemes often involves some level of hand-correcting for out-of-

dictionary terms; running the actual optimization process as 

described in 2.4 Metropolis Optimization Algorithm takes 

approximately twelve hours of computing on a shared computing 

cluster). Further, it can be difficult to obtain an appropriate 

Figure 9. Percent difference in efficiency compared to a 

random arrangement of phonemes. 
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corpus. If a user already has an AAC device, they may be willing 

to allow their AAC specialist to record their usage for some length 

of time. Although this would be an ideal situation for optimizing 

an individual AAC interface, only some AAC devices have this 

recording capability, and recording a person’s communication 

output has privacy concerns. 

4.4 Future Directions 

4.4.1 Empirical evaluations 
An empirical evaluation of these phonemic interfaces is a 

necessary next step. Although it was not possible to thoroughly 

evaluate all of the interfaces presented here in AAC users, an 

empirical evaluation of a small number of interfaces using only 

one testing set can now be completed to validate the theoretical 

results. This evaluation should be carried out by users with a 

variety of motor impairments and access methods. Empirical 

evaluations should be done to compare the interfaces developed in 

this study to other existing phonemic interfaces [3, 20, 24, 27]. 

4.4.2 Individualized optimizations 
This paper includes the technical details of the varied quantitative 

processes that were involved in generating and evaluating the 

interfaces. These are included specifically so that others can 

recreate them and produce interfaces optimized based on any 

given corpus or with weighting factors other than just Fitts’-based 

efficiency. For example, if a particular user finds left-and-right 

movements less fatiguing than up-and-down movements, an 

additional weighting factor could be added for reduced efficiency 

when the next target is above or below the current target rather 

than on the same row. Alternate efficiency formulae and 

weighting could also allow these same algorithms to optimize 

interfaces intended for use with scanning rather than direct 

selection methods. In that case, efficiency would be calculated 

based on time from the onset of scanning to the target’s selection, 

rather than the Euclidean distance between two targets. 

4.4.3 Prediction 
Finally, another vital way to optimize communication rates is to 

incorporate online prediction. Studies of existing phonemic 

interfaces have focused on prediction as the primary way of 

increasing communication rates [20, 24, 27], without the offline 

optimizations shown here, and predictive language models can 

increase phonemic interface communication rates by as much as 

100% [24]. Adding prediction to the interfaces presented here is 

needed in order to compare to other phonemic or orthographic 

interfaces and to maximize communication rates.  

5. CONCLUSIONS 
Phoneme-to-phoneme transition likelihoods are highly correlated 

across corpora, particularly corpora generated from text or AAC 

use instead of from oral conversation. Optimization based on any 

corpus increased efficiency from random layouts or from the 

Alphabetic and Articulatory interfaces by 19-31%. Optimizing 

and testing on the same corpus led to efficiency improvements of 

5-8%, compared to testing on other corpora. Therefore, if 

possible, future phonemic interfaces should be optimized via a 

corpus from the intended user’s speech. If this is not possible, 

however, optimization still improved efficiency using all testing 

corpora, suggesting that choosing an optimized corpus is indicated 

over other layouts. Future directions include empirical testing and 

adding prediction to further increase communication rates.  
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