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Article

Introduction

Vocal hyperfunction (VH), “a hypertonic state of both 
intrinsic and extrinsic laryngeal musculature,”1 is associ-
ated with the majority of voice disorders. Current clinical 
assessment often relies on subjective measures based on 
auditory perception (eg, voice quality), visual perception 
(eg, endoscopic imaging), and manual palpation of neck 
musculature,2 which are prone to reliability issues.3-5 This 
can make evaluations completed by different clinicians dif-
ficult to interpret. Objective measures may be useful 
adjuncts to subjective measures. An acoustic measure that 
has shown promising results for the assessment of VH is 
relative fundamental frequency (RFF), a measure of the 
fundamental frequency (f

o
) of an onset or offset vocal cycle 

relative to steady-state (Figure 1). Relative fundamental fre-
quency is lower in individuals with VH compared to those 
with healthy voices,6 potentially due to their increased base-
line laryngeal tension.7

Adoption of RFF for clinical and research applications is 
currently hampered by its time-consuming manual estima-
tion. At least 6 RFF speech sequences are needed for a reli-
able estimate,8 requiring 20 to 40 minutes of analysis. 
Incorporating this additional time into voice evaluation is 

clinically infeasible. In addition, the current protocol 
requires extensive training for operators to be reliable. 
Technicians must first individually inspect each RFF 
instance and make a subjective decision about the location 
of the boundary between voiced and voiceless speech. 
Then, Praat’s f

o
 detection algorithm9 is used to identify 10 

offset and onset cycles. An objective method is particularly 
needed to accomplish the first step of the manual process 
(identifying the boundaries between voiced and voiceless 
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Abstract
Objectives: Relative fundamental frequency (RFF) has shown promise as an acoustic measure of voice, but the subjective 
and time-consuming nature of its manual estimation has made clinical translation infeasible. Here, a faster, more objective 
algorithm for RFF estimation is evaluated in a large and diverse sample of individuals with and without voice disorders.
Methods: Acoustic recordings were collected from 154 individuals with voice disorders and 36 age- and sex-matched controls 
with typical voices. These recordings were split into training and 2 testing sets. Using an algorithm tuned to the training set, 
semi-automated RFF estimates in the testing sets were compared to manual RFF estimates derived from 3 trained technicians.
Results: The semi-automated RFF estimations were highly correlated (r = 0.82-0.91) with the manual RFF estimates.
Conclusions: Fast and more objective estimation of RFF makes large-scale RFF analysis feasible. This algorithm allows for 
future work to optimize RFF measures and expand their potential for clinical voice assessment.
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speech) because f
o
 estimation methods are less effective at 

identifying voicing offsets (voiced to unvoiced transitions) 
and onsets (unvoiced to voiced transitions)10 and user deci-
sions about this boundary are subjective: Technician deci-
sions are based on individual interpretations and potentially 
different criteria. Thus, the development of faster and more 
objective RFF estimation is warranted. The purpose of this 
study is to test the results of an algorithm developed to meet 
this need against manual estimates of RFF.

Method

Participants and Recording Procedure

A control group (C) of 36 adults (27 females) aged 18 to 85 
years (M = 41, SD = 19) all reported no prior history of 
speech, language, or hearing disorders. A group of 154 
adults (116 females) aged 18 to 83 years (M = 41, SD = 17) 
with voice disorders (VD) had been diagnosed with a voice 
disorder by a board-certified laryngologist. A speech-lan-
guage pathologist judged participants’ overall severity of 
dysphonia (0-100) using the Consensus Auditory-Perceptual 
Evaluation of Voice.11 The 0th, 25th, 50th, 75th, and 100th 
percentiles of overall severity in the VD group were 0.0, 
8.7, 22.9, 54.4, and 99.1, respectively. In the VD group, 54 
individuals had nonphonotraumatic VH (muscle tension 
dysphonia, defined as VH without vocal fold damage), 81 
had “secondary” VH (symptoms of VH accompanied by 
vocal fold lesions, inflammation, edema, and/or glottal 
insufficiency), and 19 had voice disorders not primarily 
associated with VH (eg, gastroesophageal reflux disease, 
spasmodic dysphonia, Parkinson’s disease). Participants 
completed written consent in compliance with either the 
Boston University Institutional Review Board or the 
Massachusetts General Hospital (MGH) Institutional 
Review Board.

Roughly half the speakers were recorded in a waiting 
area or quiet room in Boston Medical Center (BMC) using 
a Shure WH20XLR microphone (Shure, Niles, Illinois, 
USA), sampled at 44.1 kHz with 16-bit resolution. The 
remaining speakers were recorded in a sound-treated room 
at MGH using a Sennheiser MKE104 microphone 

(Sennheiser, Wedemark, Germany), sampled at 20 kHz with 
16-bit resolution. The VD participants in the 2 settings var-
ied in severity, etiology, and occupation.

Participants produced a set of 3 /afa/ utterances, took a 
breath, produced a set of 3 /ifi/ utterances, took a breath, 
and produced a set of 3 /ufu/ utterances; they were instructed 
to use their typical pitch and loudness. These stimuli were 
chosen as they yield low intraspeaker variability compared 
to running speech stimuli and other voiceless phonemes.12 
These tokens also shorten the recording protocol and facili-
tate algorithmic processing.

Manual RFF Analysis

Manual RFF analysis was independently performed on each 
audio sample by 3 trained technicians using Praat software 
to estimate pulse timings before and after each voiceless 
consonant.9 Technicians manually altered Praat settings on 
a per sample basis. Technicians then decided if the sample 
should be rejected due to aperiodicity, glottalization, or lack 
of steady-state voicing. Offset f

o
 values were normalized (in 

semitones; STs) to the f
o
 of the first offset cycle and onset f

o
 

values to the f
o
 of the 10th onset cycle (cycles furthest from 

the consonant).
Each technician reestimated 15% of their samples in a 

different sitting. The intrarater reliability, calculated using 
the Pearson’s product-moment correlation coefficients and 
the resultant RFF values, ranged from 0.90 to 0.95. The 
interrater reliability, calculated using the intraclass correla-
tion coefficients, type (2, k, absolute), was 0.97.

Semi-automated Algorithm Design

The RFF estimation algorithm was implemented in 
MATLAB (MathWorks, Natick, Massachusetts, USA) in 4 
steps. First, fricatives and vowels of the 3 RFF instances in 
the acoustic waveform were identified using ratios of high- 
and low-frequency energy. Second, the speaker’s f

o
 range 

was estimated via autocorrelation from the vowels. The 
acoustic signal was band-pass filtered ±3 ST around the f

o
 

range. After this pre-processing, starting from the center of 
the fricative in the band-pass filtered signal, a sliding win-
dow set to the reciprocal of the f

o
 estimate was shifted back-

ward and forward to find the peaks and troughs of potential 
vocal cycles in the offset and onset sonorants, respectively.  
Third, the boundary between voiced and voiceless wave-
forms was determined on a cycle-by-cycle basis by analyz-
ing 3 parameters: the number of zero-crossings, shape 
dissimilarity between adjacent cycles, and peak-to-peak 
amplitude. A threshold for each of these parameters was 
chosen by maximizing the effect size of the difference 
between potential voiced and unvoiced segments. This 
threshold was then further tuned to manual estimates by 
adjusting the threshold in step sizes of 5% from 80% to 

Figure 1.  An acoustic waveform of a relative fundamental 
frequency (RFF) instance, /ufu/. The 1st and 10th vocal cycles are 
denoted.



714	 Annals of Otology, Rhinology & Laryngology 126(10) 

120% to maximize the performance in a training set (see the 
following). Finally, a peak or trough was accepted as part of 
the offset vocal cycle if all cycles before it satisfied at least 
2 out of the 3 parameter thresholds. Lastly, RFF instances 
that did not meet certain criteria (eg, those without at least 
10 vocal cycles) were rejected. Otherwise, RFF was calcu-
lated based on the identified vocal cycles, similar to the 
manual process. Full details about algorithm design and 
implementation are found in chapter 6 of Lien.13

Semi-automated Algorithm Performance 
Evaluation

RFF Instance Identification.  The accuracy of identifying frica-
tive locations was calculated using a graphical interface in 
MATLAB with visualizations of the waveform. For those 
that were incorrectly identified, the interface was then used 
by an operator to correct the fricative location before evalu-
ating the remainder of the algorithm. This allowed the user 
to briefly visualize each individual instance, allowing for 
quality control. This procedure is not fully automated but 
likely to provide more reliable results by end-users than a 
“blind” approach. In addition to allowing for correction of 
potential algorithm errors, it provides information about 
signal quality (eg, recording issues, competing noise, or 
inappropriate stimuli).

RFF Accuracy.  The semi-automated RFF estimates were 
compared to the manual RFF estimates using Pearson’s 
product-moment correlation coefficients, root mean 
square error (RMSE), and average difference of offset 10 
and onset 1 estimates (automated estimates subtracted 
from manual estimates). A training set of 126 speakers 
(two-thirds of total data set) was used to tune the boundary 
between voiced and voiceless waveforms to maximize the 
correlation coefficient between manual and semi-automated 
RFF for offset cycle 10 and onset cycle 1 (values used in 
previous studies6,7). The training set was chosen to have 
similar makeup to the overall sample with respect to over-
all severity, voice disorder type, and recording condition 
(BMC vs MGH). The training set included 20 speakers 
from the C group (4 recorded at BMC and 16 recorded at 
MGH) and 106 speakers from the VD group (59 recorded 
at BMC and 47 recorded at MGH; 0th, 25th, 50th, 75th, 
and 100th percentiles of overall severity of 0.0, 8.5, 22.5, 
54.7, and 99.1, respectively). Two testing sets were com-
posed of the remaining 64 participants: (1) a group of 8 
controls and 27 speakers with VD recorded at BMC and 
(2) a group of 8 controls and 21 speakers with VD recorded 
at MGH. The overall severity of the VD speakers in each 
group varied; the 0th, 25th, 50th, 75th, and 100th percen-
tiles of overall severity was 2.3, 16.4, 35.6, 73.6, and 91.4 
for the BMC test group and 4.3, 6.5, 13.5, 28.1, and 63.3 
for the MGH group, respectively. These 2 test groups were 

used to evaluate the algorithm, using the boundary settings 
determined in the training set. As in the first step of evalu-
ation, the algorithm allows the user to visualize each 
instance and the location of the cycles that were used for 
analysis. For the purposes of this study, the cycles used 
were not adjusted by the user; however, this feature allows 
future users to quickly gain more information about the 
basis of the resulting RFF values. The semi-automated 
RFF estimates were compared to manual RFF estimates 
for all speakers with at least 1 usable RFF instance in the 
testing set.

Results

Usable RFF Tokens

The average number of usable offset and onset semi-auto-
mated RFF instances per speaker in the BMC testing set 
were 4.5 (SD = 2.3) and 4.5 (SD = 2.2), respectively; these 
were lower than the average usable instances via manual 
estimation (7.8, SD = 1.7; 6.5, SD = 2.1). Out of the 35 
speakers, 1 did not have any usable offset RFF instances, 
and 2 did not have any usable onset RFF instances.

The average number of usable offset and onset semi-
automated RFF instances per speaker in the MGH testing 
set were 7.0 (SD = 2.1) and 8.2 (SD = 1.4), respectively; 
again, these were lower than the average usable instances 
via manual estimation (8.9, SD = .3; 8.6, SD = .8). Out of 
the 29 speakers, all had at least 1 usable offset and onset 
RFF instance. 

Examining the algorithm’s “usable” samples data from 
both test groups, there was a strong effect of order. There 
was a reduction in usable samples within each set of utter-
ances as a function of order as well as a reduction of usable 
samples as a function of the set order. The percentage of 
usable samples for offset and onset RFF for the /afa/ stimu-
lus were 100% and 97% for the first production, 94% and 
94% for the second production, and 83% and 91% for the 
third production. The percentage of usable samples for off-
set and onset RFF for the /ifi/ stimulus were 77% and 83% 
for the first production, 67% and 72% for the second pro-
duction, and 61% and 59% for the third production. The 
percentage of usable samples for offset and onset RFF for 
the /ufu/ stimulus were 42% and 51% for the first produc-
tion, 27% and 42% for the second production, and 16% and 
28% for the third production.

RFF Accuracy

Semi-automated RFF estimates for each speaker are plotted 
as a function of their manual RFF estimates in Figure 2. The 
semi-automated RFF estimates tended to have a smaller 
range compared to the manual RFF estimates. In the BMC 
testing set, the correlation coefficient and RMSE were .82 
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and .37 ST, respectively. The average difference in the BMC 
testing set between the manual estimates and semi-auto-
mated estimates was –.41 ST for offset 10 values and .10 ST 
for onset 1 values. In the MGH testing set, the correlation 
coefficient and RMSE were .91 and .28 ST, respectively. 
The average difference in the MGH testing set between the 
manual estimates and semi-automated estimates was –.22 
ST for offset 10 values and .11 ST for onset 1 values.

Discussion

In both testing groups, semi-automated RFF estimates were 
highly correlated (r ≥ 0.82) with manual RFF estimates 
(comparable to correlations between manual RFF estimates 
completed by different technicians).6-8,12,14 The RMSE 
between the estimates was .28 to .27 ST, a difference that is 
partially explained by the fact that the semi-automated RFF 
estimates were derived from a band-pass filtered waveform 
with a pass-band around the speaker’s f

o
, whereas the man-

ual RFF estimates were derived directly from the raw wave-
form. Band-pass filtering reduces the high-frequency 
content of the signal, which has a smoothing effect, reduc-
ing the cycle-to-cycle variation in f

o

15 and thus the RFF. Due 
to this bias, in future, semi-automated RFF estimates should 
not be directly compared to manual estimates.

Two different samples were included in this study to test 
the robustness of the algorithm in diverse populations. In 
general, the automated RFF values were more similar to the 
manual RFF values in the MGH group than in the BMC 
group, with a higher correlation and lower RMSE. The 
BMC VD speakers had higher average overall severity than 

the MGH VD speakers (40.4 vs 21.0), and the testing sam-
ples differed in terms of signal quality. The MGH speakers 
were recorded in a sound-treated room, whereas the BMC 
speakers were not. While all our samples were qualitatively 
deemed of sufficient quality for inclusion, they were 
recorded under varying conditions and with varying instru-
mentation, representing the diversity present in current 
clinical practice. Thus, differences in the algorithm perfor-
mance between the 2 testing groups could be due to differ-
ences in recording condition, differences in overall severity, 
or both. Regardless, these results give best-case (low sever-
ity, ideal recording conditions) and worst-case (high sever-
ity, nonoptimal recording conditions) parameters for future 
clinical and research applications: On average, users of 
these algorithms can expect differences of –.41 ST to –.22 
ST for RFF offset 10 values and .10 to .11 ST for onset 1 
values. These differences are systematic and consistent with 
the algorithmic processing: Automated values will tend to 
be higher for offset 10 and lower for onset 1.

An unexpected finding was that there was a strong effect 
of order on the percentage of the algorithm’s samples that 
were usable. The study was not designed to study this, so the 
order of production was not randomized: Participants pro-
duced a set of 3 /afa/ utterances, took a breath, produced a set 
of 3 /ifi/ utterances, took a breath, and produced a set of 3 /
ufu/ utterances. Since the study was not designed to examine 
this effect, it is not clear to what extent this is an actual func-
tion of order or rather a result of stimuli type or breath group.

Although the RFF estimates computed with these algo-
rithms were found to have systematic differences when 
compared to manual estimates, it is not clear that these are 
indeed errors. Manual RFF estimation, although the current 
gold standard, is subjective. The algorithmic estimates are 
objective and may provide more clinically appropriate 
information; thus far, they have been successfully applied to 
study the relationship between RFF and laryngeal tension,16 
whether RFF is sensitive to hydration and vocal loading,17 
and whether RFF can discriminate between hyperfunctional 
voice disorders with and without vocal lesions.18

Finally, like many acoustic measures, RFF estimation 
requires periodicity. In the VD group examined, only a 
small percentage did not have any sufficiently periodic 
samples to use for RFF estimates, even though one-fourth 
of the samples had overall severity ratings of 54.2 or greater. 
Nevertheless, the requirement for a periodic signal limits 
applicability to mild to moderate dysphonia. Future algo-
rithms may benefit from using RFF in conjunction with 
overall measures of periodicity, expanding its usefulness 
across the spectrum of severity.

Conclusion

An algorithm that provides faster, more objective RFF esti-
mation was examined. The semi-automated RFF estimations 

Figure 2.  Testing sets: semi-automated relative fundamental 
frequency estimates plotted as a function of manual relative 
fundamental frequency estimates.
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were highly correlated with the manual RFF estimates, 
although the degree of correlation was impacted by sample 
characteristics. Future users of these algorithms can expect 
differences of –.41 ST to –.22 ST for RFF offset 10 values 
and .10 to .11 ST for onset 1 values when compared to man-
ual estimates. These systematic differences are small, and 
due to the objective nature of the algorithms, these estimates 
are more reliable than current manual methods. Future 
research to improve RFF algorithms should include estimates 
of voice overall severity and acoustic signal quality (eg, room 
acoustics) in their design.
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