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Kinesthetic Motor Imagery Modulates
Intermuscular Coherence

Cara E. Stepp, Member, IEEE, Nominerdene Oyunerdene, and Yoky Matsuoka, Member, IEEE

Abstract—Intermuscular coherence can identify oscillatory
coupling between two electromyographic (EMG) signals, mea-
suring common presynaptic drive to motor neurons. Beta band
oscillations (15–30 Hz) are hypothesized to originate largely from
primary motor cortex, and are reduced during dynamic relative
to static motor tasks. It has yet to be established whether motor
imagery modulates beta intermuscular coherence. Using visual
feedback, 10 unimpaired participants completed eighteen trials
of pinching their right thumb and index finger at a constant
force. During the 60-second trials, participants simultaneously
engaged in one of three types of kinesthetic imagery: the right
thumb and index finger executing a constant force pinch (static),
the fingers of the right hand sequentially flexing and extending
(dynamic), and the right foot pushing down with constant force
(foot). Motor imagery of a dynamic motor task resulted in sig-
nificantly lower intermuscular beta coherence than imagery of
a static motor pinch task, without any difference in task perfor-
mance or root-mean-square EMG. Thus, motor imagery affects
intermuscular coherence in the beta band, even while measures
of task performance remain constant. This finding provides in-
sight for incorporation of beta band intermuscular coherence in
future motor rehabilitation schemes and brain computer interface
design.

Index Terms—Electromyography (EMG), man–machine sys-
tems, neural engineering.

I. INTRODUCTION

A LTHOUGH not yet fully understood, neurophysiological
oscillations and their modulation may offer insight into

motor learning and control. Purposeful manipulation of these
oscillations could provide new modalities of motor rehabili-
tation. Coherence measures the linear dependency or strength
of coupling between two processes, e.g., [1]. Coherence has
been used to identify coupling between an electromyographic
(EMG) signal and the central nervous system via electroen-
cephalography or magnetoencephalography (corticomuscular
coherence) [2], [3]. Intermuscular coherence assesses oscilla-
tory coupling between two EMG signals, measuring common
presynaptic drive to motor neurons [4]–[6].
Oscillations in the beta band (15–30 Hz) are thought to orig-

inate largely from the primary motor cortex [7]. Although cor-
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ticomuscular coherence represents transmission from the pri-
mary motor cortex to spinal motoneurons [3], intermuscular co-
herence reflects all oscillatory presynaptic drives to spinal mo-
toneurons. However, in the beta band, intermusuclar coherence
has been shown to be qualitatively similar to corticomuscular
coherence [5], [6] and to originate from corticospinal pathways
[4].
Much is still unknown about the role of beta oscillations in the

neural control of movement. However, beta band oscillations
are clearly associated with both the production of static motor
tasks (decreasing with onset of movement) [5] and intact so-
matosensation [8], [9]. Beta band coherence decreases with di-
vided attention and increases with increased precision of motor
tasks [10] and has also been implicated in motor learning and
rehabilitation. Individuals who have weakened or damaged cor-
ticomuscular neural pathways after brain injury or stroke have
poor fine motor skills or control of their movements as a re-
sult. This weakness is also reflected in low beta band cortico-
muscular and intermuscular coherence in the affected limbs of
post-stroke individuals [4], [11]. In unimpaired individuals, cor-
ticomuscular coherence in the beta band has been linked with
learning during motor tasks, e.g., [12] and [13]. Further, in-
creases in intermuscular beta coherence have been shown to ac-
company locomotor recovery after incomplete spinal cord in-
jury [14]. These studies suggest a possible role for feedback
based on corticomuscular or intermuscular coherence for motor
rehabilitation. Intermuscular coherence has pragmatic potential
due to the ease of recording high quality surface EMG in clinical
settings in which patients have decreased motor function, but
can still generate EMG. While motor imagery has been shown
to stimulate activation of the motor cortex [15], and to increase
corticospinal excitability [16], its effects on beta band coher-
ence are still unknown.
In this paper, we examine for the first time the effects of motor

imagery on beta oscillations. We hypothesize that concurrent
kinesthetic motor imagery will modulate beta band intermus-
cular coherence during a motor task without affecting motor
task performance or root-mean-square (rms) measures of EMG.
If true, beta band intermuscular coherence may provide a quan-
titative tool to gauge the effects of motor imagery for clinical re-
habilitation or brain computer interface control, as well as a po-
tential method of modulating beta oscillations through biofeed-
back during training or retraining (rehabilitation) of movement.

II. METHODS

A. Participants and Recording Procedures

Participants were ten right-handed young healthy volunteers
(eight males, two females) with no known problems with their
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hands (mean age = 25.2 years, SD = 4.7 years). Informed con-
sent was obtained from all participants in compliance with the
Institutional Review Board of the University of Washington.
The hands of each participant were prepared for electrode
placement by cleaning the skin surface with an alcohol pad
and “peeling” (exfoliation) with tape to reduce electrode-skin
impedance, noise, dc voltages, and motion artifacts.
Surface EMG signals were sampled at 2048 Hz using a

BioSemi Active II system (BioSemi, Amsterdam, Netherlands)
with four active monopolar electrodes. Two electrodes were
placed over the thenar eminence muscles, and two electrodes
were placed over the first dorsal interosseous muscle. The
signals recorded from the two monopolar electrodes over the
thenar eminence muscles were differenced in postprocessing
to define the resulting differential signal as EMG1. The signals
recorded from the two monopolar electrodes over the first in-
terosseous muscle were differenced in postprocessing to define
the resulting differential signal as EMG2. Reference electrodes
were located on the bony area of the right elbow.
Prior to the experiment, the quality of the EMG signal of

each electrode was checked to ensure good skin-electrode
contact and low electrode dc offsets (less than 50 mV). Sur-
face EMG signals were also continuously monitored during
experimentation.

B. Experimental Procedures

Each participant was asked to complete 18 trials that were
each 60 s in length, during which they performed two simul-
taneous tasks: a motor task and a motor imagery task. The
motor task of the participant was to pinch their fingers against
force to produce a constant force production of 10.2 N. Fig. 2
shows two EMG signals and a force trace for a single trial. Two
PHANTOM Premium 1.0 robots were used, one coupled to the
index finger and one coupled to the thumb with custom-made
finger cuffs. Using these robotic devices, a virtual environment
was used in which a virtual spring was simulated between the
thumb and index finger of the participant. As the participant
pinched their fingers so that the endpoints became closer to-
gether, the robot exerted force to both the finger and thumb in
a direction tangential to the path between them. Participants
were able to move a small cursor across a computer screen by
manipulating their finger span—the distance between the tip
of the index finger and the tip of the thumb. When pinching
the cursor moved to the left, and when extending the cursor
moved to the right. A visual display consisting of a small
box with a line in the center was located at the midpoint of
the maximum and minimum finger span of each subject (see
Fig. 1). The virtual spring had a stiffness such that the force
required at this midpoint (the target force) was 10.2 N. This
level of force is easily maintained without fatigue or discomfort
and corresponded to approximately 8%–12% of average MVC
pinch forces [17]. In order to further alleviate possible effects
of fatigue, participants were required to rest for a full minute
between each trial, with longer 5 minute breaks whenever they
asked (at least two times during experimentation). The force
output of the robotic devices was recorded at 9 Hz. Participants
were instructed that the primary goal of the task was to use the

Fig. 1. Experimental methodology. Upper panel shows the experimental setup
and visual feedback of the motor task shown to participant. Schematics of
palmar (left lower panel) and dorsal (middle lower panel) of the right hand,
with locations of EMG electrodes shown. EMG1 electrodes are located over
the thenar eminence muscles in the left panel, and EMG2 electrodes are located
over first dorsal interosseous muscle in right panel. Right lower panel shows a
picture of a participant interacting with robotic devices through custom-made
finger cuffs.

Fig. 2. EMG signals and pinch force trace for a single trial (S202, trial 7—dy-
namic imagery task). For each trial, section from 20–58 s was used for analysis.
As shown in example trial, EMG1 consistently showed significant activation
prior to the start of trials due to activation of thenar eminence muscles during
maximal extension of the thumb and index finger.

visual feedback to keep the cursor over the line, and that this
corresponded to constant force production. Prior to experimen-
tation, participants were able to practice trials of the motor task
in isolation.
During the performance of the motor task, the participant

was asked to concurrently perform one of three types of kines-
thetic motor imagery. The three types were termed “static,” “dy-
namic,” and “foot.” In the static task, the participant was asked
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to focus on the feeling of performing a static pinch using con-
stant force with their right thumb and index finger. In the dy-
namic task, the participant was asked to focus on the feeling of
sequentially flexing and extending the four fingers of their right
hand. In the foot task, the participant was asked to focus on the
feeling of producing a constant force with their right foot, sim-
ilar to driving on a highway at a constant speed. The use of the
“foot” imagery task was to serve as a control for the “dynamic”
task by providing a similar cognitive load in that it was quite
different from the static motor task without being dynamic in
nature. Participants were instructed in the kinesthetic motor im-
agery at length prior to the start of experimentation and were
allowed ample time to ask questions and to practice. Prior to
start of the experimental trials, all participants asserted that they
were confident in their ability to perform the motor imagery. To
avoid order effects, the presentation of trials belonging to each
of the three tasks were randomized.

C. Data Analysis

All data analysis was performed on data from time 20–58 s
of each trial (see Fig. 2). The first 20 s were excluded to allow
the participant time to adjust and stabilize force production and
to initiate motor imagery; the last 2 s were excluded to remove
possible effects of anticipation of the end of each trial.
Force data between the finger and thumb were analyzed using

customMATLAB (Mathworks Inc., Natick, MA) software. The
standard deviation of the force collected was calculated for the
time 20–58 s of each trial (see Fig. 2). These values were aver-
aged over the six trials of each participant and task combination,
to provide a single measure of variation in gross force produc-
tion.
Surface EMG data were imported intoMATLAB® for offline

analysis. Signals were filtered (third-order Butterworth band-
pass filter with roll-off frequencies of 12 Hz and 250 Hz) and
two differential signals (referred to as EMG1 and EMG2) were
created offline by subtracting signals recording over the same
muscle. For each trial, any dc offset was removed from EMG1
and EMG2. The rms of EMG1 and EMG2 was computed in
200-ms windows (no overlap) for the time 20–58 s of each trial.
The coefficient of variation of rms values was calculated for
each participant and condition combination to provide a single
measure of the variation in gross EMG activity for each signal.
Similarly, for coherence analysis, the six records of each of

the tasks were pooled by subject, to provide a single measure of
the coherence for each participant and condition to summarize
the correlation structure across the six trials [18]. The pooled
data consisted of the section of the recording from each of the six
trials for each condition from time 20–58 s. For each participant
and condition combination, the coherence estimate was calcu-
lated over a sliding 2048 point (1 s) Hamming window with a
2048 point FFT, using 0% overlap, leading to frequency reso-
lution of 1 Hz [1]. Signals were not rectified, given the recent
work showing that rectification may impair the identification
of common oscillatory input between two EMG signals [19].
For each coherence spectrum, a 95% significance level for co-
herence of 0.0131 was determined based on the sample length,

, e.g., [1].

Fig. 3. Mean coherence spectra for three imagery tasks. Solid dark line refers to
static imagery task, solid lighter line to dynamic imagery task, and broken dark
line to foot imagery task. Grey shading indicates standard error of each imagery
task condition by frequency. Broken horizontal line indicates 95% significant
level.

Coherence, , was calculated between EMG1 and
EMG2 as in (1) based on cross-spectra and auto spectra

, , e.g., [1]

(1)

Statistical testing on the standard deviation of force produc-
tion was performed by a one-way repeated measure analysis of
variance (ANOVA). Statistical testing on the coefficient of vari-
ance of rms EMG1 and EMG2 was performed by a two-way
(EMG signal, task) repeated measure ANOVA. A two-way re-
peated type measuring ANOVA on the transformed co-
herence data over the frequency range of 15–35 Hz was used
to examine possible effects of both frequency and task. Tukey’s
Simultaneous Paired t-tests were used to test differences among
task conditions (static, dynamic, foot) e.g., [20]. All tests were
considered significant at the level.

III. RESULTS

In the beta range, both task and frequency showed statisti-
cally significant effects on the transformed intermus-
cular coherence (ANOVA). Post hoc testing showed that there
was significantly lower coherence during the dynamic imagery
task than during both foot and static conditions. Post hoc testing
did not show any significant difference between foot and static
motor imagery conditions. The ANOVA did not find a signif-
icant interaction effect between task and frequency (over the
range of 15–35 Hz). The mean intermuscular coherence spectra
for the three imagery tasks are shown in Fig. 3.
Overall, of the ten participants, during the dynamic condi-

tion compared with the static condition showed a trend
of a strong reduction of coherence in the beta band as well as
a upward shift in the frequency of the peak coherence in the
beta and low gamma frequencies, showed both, and one
individual did not show either phenomenon. The individual co-
herence spectra are shown for two representative participants in
Fig. 4. Participant S207 shows a trend for strong reduction of
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Fig. 4. Example coherence spectra for two representative participants. Solid
dark line refers to static imagery task, solid lighter line to dynamic imagery
task, and broken dark line to foot imagery task. Broken horizontal line indicates
the 95% significant level.

beta band coherence, whereas participant S202 shows a trend
for strong reduction of beta band coherence as well as an up-
ward shift in the frequency of the peak coherence.
Results of ANOVA did not show a significant effect of im-

agery task on the standard deviation of force production during
the motor task (see Fig. 5). Further, the coefficient of variance
of rms surface EMG did not show an effect of imagery task or
EMG signal (EMG1 or EMG2) (see Fig. 5).

IV. DISCUSSION

This paper shows the first results on the effects of motor im-
agery on intermuscular coherence in the beta band. Measures
of force production and rms measures of surface EMG did not
show an effect of motor imagery task on performance of the
precision pinch motor task. Changes in motor imagery task did,
however, result in changes in EMG coupling, as reflected by
the intermuscular coherence spectra. Relative to the static im-
agery task, motor imagery of dynamic movement tended to re-
duce beta band coherence. In addition, the average coherence
spectra during dynamic imagery differed qualitatively from that
during static imagery, with an essentially flat profile throughout
the peak static frequencies (17–26 Hz), and a primary peak at 31
Hz. In contrast, there is a qualitative similarity between the pro-
files during the static and foot conditions, and statistical testing

Fig. 5. Measures of motor task performance. Upper panel showsmean standard
deviations of pinch force produced by each participant for each motor imagery
task. Error bars indicate standard deviation of mean. Lower panel shows mean
coefficient of variance of rms EMG signals of each participant for each motor
imagery task. Error bars indicate standard deviation of mean.

did not find a difference in the transformed coherence
between the two conditions.
This is consistent with previous work showing that motor im-

agery can activate the same neural circuits in the central ner-
vous system as performed movement. Previous work in corti-
comuscular coherence has shown that beta band oscillations are
produced during performed static movement and are abolished
during dynamic movement tasks [5]. Further, the expectance
of a request to move has shown decreases in corticomuscular
coherence [21]. Here, it is shown that coupling between coac-
tivated muscles during a static motor task can be reduced by
merely imagining dynamic movement. Our findings are sup-
ported by recent work by Li et al. [22] who found slower reac-
tion times for a finger flexion task when the task was preceded
by motor imagery of finger extension.
Kristeva-Feige and colleagues saw a reduction in the beta

range corticomuscular coherence during an isometric constant
force task when the task was performed while the subject di-
vided his or her attention from the motor task by doing mental
arithmetic [10], an effect that has not yet been shown in inter-
muscular coherence. It is possible that the differences seen in the
current study between the dynamic and static tasks were the re-
sult of divided attention during the dynamic task since the static
imagery was so similar to the motor task being performed. How-
ever, foot imagery condition also resulted in higher beta band
coherence than the dynamic task, but likely required a similar
amount of attention. This condition provided an imagery task of
a similar cognitive load, but one that was not in direct conflict
with the central nervous system control of the concurrent motor
task. For this reason, it is unlikely that the differences between
the static and dynamic task conditions were a result of overall
reduction in attention to the motor task.
Previous work has also shown that beta band coherence in-

creases with increased precision of force production is required
[10]. However, the present study required a similar degree of
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force precision during the motor task during all trials, but found
a reduction in intermuscular coherence as a result of imagining
decreases in the precision of force production. This finding
could be a result of activation of the same neural circuits in the
central nervous system during imagined movement as during
performed movement. However, although the vast majority of
force output during a static task occurs below 4 Hz [23], it is
also possible that there were differences in force production at
higher frequencies that were not measured in the current study.
Surprisingly, although the effect was not significant, the foot

condition shows a trend of slightly higher coherence in the beta
band than the static condition. The reason for this phenomenon
is unclear, but it could be a result of poorer attention by subjects
during the static task. Because the subjects were performing a
motor task that was identical to the imagery task, there could
have been some confusion about what was imagined and what
was executed. In some cases we suspect participants may have
used less attention for the static imagery task than during the
foot and dynamic conditions.
Despite the robust patterns seen in the average coherence

spectra, there was some variability in the individual produc-
tion of beta intermuscular coherence, with different individuals
showing some, all, or none of the observed patterns. However,
of the ten participants, only one individual did not show either
reduction of beta band coherence or an upward shift in the peak
frequency. These results are compatible with previous intermus-
cular coherence work, in which intersubject variability can be
seen [4].
These results have broad impacts for the use of motor im-

agery and intermuscular coherence in the field of rehabilitation
and brain computer interfaces. There is currently interest in ex-
ploring motor imagery for neurorehabilitation after stroke, e.g.,
[24] and [25]. However, studying the effects of motor imagery
on rehabilitation is impeded by the inability to measure patient
adherence. This is a significant issue, since up to 40% of sub-
cortical stroke patients may not be able to perform imagery on
request [25]. Surface EMG is safe, easy to measure in a clinical
setting, and reliable. Intermuscular coherence could be used as
a biofeedback tool to provide quantitative assessment of patient
adherence for clinical studies of motor imagery for motor reha-
bilitation. Although the task in the current study was for healthy
individuals to maintain constant force, which is a task that was
seemingly simple to reproduce even under the dynamic motor
imagery condition, it was shown that motor imagery can modu-
late intermuscular beta band coherence. Future experiments will
test whether manipulation of motor imagery and intermuscular
coherence through visual feedback may improve task perfor-
mance during training and retraining of movement. In addition,
augmentation of current brain computer interface schemes to
incorporate intermuscular beta coherence could improve relia-
bility of control.
In summary, motor imagery can modulate intermuscular co-

herence in the beta band, even while task performance and gross
measures of EMG remain constant. Our work supports the idea
that, along with increasing cortical excitability, motor imagery
modulates functional coupling from the cortex to the muscle
(reflected by increased intermuscular coherence). In addition,
similar effects were seen in beta intermuscular coherence in re-

sponse to motor imagery as have been previously shown in cor-
ticomuscular coherence in preparation for expected movement
[21] and during executedmovement [5]. Future work will assess
the robustness of intermuscular beta coherence as a biomarker
as well as a control signal for rehabilitation and orthotic devices.
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