Multimode Nonlinear Fiber Optics

Siddharth Ramachandran

High Dimensional Photonics Lab, Boston University

sidr@bu.edu; http://sites.bu.edu/ramachandranlab

Laser Sources – OPOs/OPAs

 $\theta_{2} (\theta_{1} = -45^{\circ})$

225°

0

a)

-45°

0°

45°

90°

Optical Parametric Oscillator

A recent QKD experiment

Replace with?

Outline

- Background: Single-Mode Fiber Nonlinear Optics
 - Capabilities and Limitations

Multimode Fiber NLO

- Governing principles for phase matching
- A time-line of results from the last 5 decades

Segue: Optical Fiber Modes

- In-depth understanding of their linear properties
- Unique, counter-intuitive behaviour for high order fiber modes

Unique Nonlinear Effects in Multimode Fibers

- Role of group velocity
- Large modal dimensionality
- Role of chirality

> Applications

Brief survey of current and emerging fields that exploit multimode fiber NLO

Nonlinearities in Fibers

but in a fiber, there is only one direction!

four-wave mixing (FWM)

$$\Delta \boldsymbol{\beta} = \boldsymbol{\beta}_s(\boldsymbol{\omega}_s) + \boldsymbol{\beta}_i(\boldsymbol{\omega}_i) - 2\boldsymbol{\beta}_p(\boldsymbol{\omega}_p) + 2\boldsymbol{\gamma}P$$
$$= \boldsymbol{\beta}_2 \cdot \Delta \boldsymbol{\omega}^2 + \dots + 2\boldsymbol{\gamma}P = \mathbf{0}$$

need dispersion, $D = -\frac{2\pi c}{\lambda^2}\beta_2 > 0$

Boyd, Nonlinear Optics, 3rd Ed. Agrawal, Nonlinear Fiber Optics, 4th Ed.

•eg the core is a missing hole among an array of holes

- cladding = glass + holes, core = glass only
- <u>effective</u> cladding index is less than core index ⇒ total internal reflection possible

effective refractive index profile

Courtesy Tim Birks

Dispersion in PCFs

Wavelength - µm

J.C. Knight et al, PTL, v12, p807, 2000

Low Power Nonlinear Optics with PCFs

 $E_{soliton} \propto D \cdot A_{eff}$ sub-nJ pulse energies with PCFs

900

J.K. Ranka et. al, Optics Lett., v25, p25, 2000

B.R. Washburn et. al, Electron Lett., v37, p1510, 2001

Y.Q. Xu et. al, Optics Lett., v33, p1351, 2008

Photonic Crystal Fibers

Bandgap guidance:

- Engineer cladding modes & guidance
- "Designer material"
- Free to use low-index materials:
- Hollow guidance possible!

Gas Nonlinear Optics

Change Dispersion by gas pressure

Cregan et al, Science 285, 1537 (1999)

Bandwidth limitations

Inhibited Coupling/Anti-Resonant/ARROW Guidance

Courtesy Fetah Benabid

Benabid et al. Science, 298, 399 (2002)

Outline

- Background: Single-Mode Fiber Nonlinear Optics
 - Capabilities and Limitations

Multimode Fiber NLO

- Governing principles for phase matching
- A time-line of results from the last 5 decades

Segue: Optical Fiber Modes

- In-depth understanding of their linear properties
- Unique, counter-intuitive behaviour for high order fiber modes

Unique Nonlinear Effects in Multimode Fibers

- Role of group velocity
- Large modal dimensionality
- Role of chirality

> Applications

Brief survey of current and emerging fields that exploit multimode fiber NLO

Modes in Waveguides

 $\widehat{H}\psi(r) = \left[\frac{-\hbar^2}{2m}\nabla^2 + V(r)\right]\psi(r) = E \cdot \psi(r)$

 n= 6, 63.3 eV
n= 5, 46.7 eV
<u>n= 4, 30.5 eV</u>
n= 3, 17.4 eV
n= 2, 7.76 eV n= 1, 1.95 eV
Finite well

Optical Waveguide

$$\left[\nabla_t^2 + k^2 n(r)^2\right] \mathcal{E}(r) = k^2 n_{eff}^2 \cdot \mathcal{E}(r)$$

Modes in multimode fibers

 $\frac{\text{Linearly Polarized (LP) modes}}{\vec{E}_t} \sim J_L(k_t \cdot r) \cdot \begin{cases} \cos(L\varphi) \\ \sin(L\varphi) \end{cases} \cdot \begin{cases} \hat{x} \\ \hat{y} \end{cases}$

Increasing *m*

OAM modes

$$\overrightarrow{E_{t}} \sim J_{L}(k_{t} \cdot r) \cdot e^{\pm i \left(\int \varphi \cdot \left\{ \widehat{\sigma}^{+} \right\} \right)}$$

$$L: \text{ Orbital Angular Momentum (OAM)}$$

Dispersive properties of modes

 \Rightarrow behaves like a bulk medium

S. Ramachandran et al., LPR 2, 429 (2008)

 \Rightarrow De-coupled area and dispersion \Rightarrow Anomalous dispersion at 1 μm

Intermodal fiber NLO \Leftrightarrow Free Space Xtal NLO

Interaction length $\Leftrightarrow \bigcirc \text{verlap}: \int E_1 E_2 E_3^* E_4^* \cdot dA = \int F_1 F_2 F_3 F_4 \cdot exp(L_1 + L_2 - L_3 - L_4) \cdot dA$

Phase Matching in Nonlinear Optics

Mode Shaping & Transformations

- Long-period gratings (LPGs)
- Acousto-optic fiber gratings
- Fused couplers
- Phase plates & Axicons
- Algorithmic phase sculpting
- Log-polar transformations
- Multiplane Holography
- MMI couplers
- On-chip multiplexers
- Metasurfaces

A.M. Vengsarkar et. al, JLT 14, p. 58 (1996) K. Lai et. al, OL 32, p. 328 (2007) Y.O. Yilmaz et. al, OL 32, p. 3170 (2007) J-F. Morizur et al, JOSA A 27, 2524 (2010) Berkhout et al, PRL 105,153601 (2010) A. Sridharan et. al, OE 20, p. 28792 (2012) T. Su et al, OpEx 20, 9396 (2012) X. Cai et al, Science 338, 363, (2012) M. Mirhosseini, Nat. Comm. 4, 2781 (2013) Yu & Capasso, Nat. Mat. 13, 139 (2014) J. Demas et al., OE 23, 28531 (2015) S. Wang et al, OL 40, 4711 (2015) S. Pidishetty et al, OL 42, 4347 (2017) Y. Wen et al, Optica 7, 254 (2020) S. Lightman et al, Opt. Lett. 47, 3491-3494 (2022) A.D. White et al, ACS Photonics 10, 803 (2023)

Outline

- Background: Single-Mode Fiber Nonlinear Optics
 - Capabilities and Limitations

Multimode Fiber NLO

- Governing principles for phase matching
- A time-line of results from the last 5 decades

Segue: Optical Fiber Modes

- In-depth understanding of their linear properties
- Unique, counter-intuitive behaviour for high order fiber modes

Unique Nonlinear Effects in Multimode Fibers

- Role of group velocity
- Large modal dimensionality
- Role of chirality

> Applications

Brief survey of current and emerging fields that exploit multimode fiber NLO

Birth of fiber (not just multimode) NLO

Appl. Phys. Lett. 24, 308 (1974)

Phase-matched three-wave mixing in silica fiber optical waveguides

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin

Bell Telephone Laboratories, Holmdel, New Jersey 07733 (Received 6 December 1973)

Intermodal Four-Wave Mixing in Telecom

IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 25, NO. 6, MARCH 15, 2013

Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers

Rene-Jean Essiambre, *Fellow, IEEE*, Miquel A. Mestre, Roland Ryf, *Member, IEEE*, Alan H. Gnauck, *Fellow, IEEE*, Robert W. Tkach, *Fellow, IEEE*, Andrew R. Chraplyvy, *Fellow, IEEE*, Yi Sun, Xinli Jiang, and Robert Lingle, Jr.

539

Vol. 24, No. 26 | 26 Dec 2016 | OPTICS EXPRESS 30338

Optics EXPRESS

Research Article

Inter-modal four-wave mixing study in a two-mode fiber

S. M. M. FRIIS,^{1,2,*} I. BEGLERIS,¹ Y. JUNG,¹ K. ROTTWITT,² P. PETROPOULOS,¹ D. J. RICHARDSON,¹ P. HORAK,¹ AND F. PARMIGIANI^{1,3}

Four-Wave Mixing over 2 Octaves

New nanosecond continuum for excited-state spectroscopy

Chinlon Lin and R. H. Stolen

Bell Telephone Laboratories, Holmdel, New Jersey 07733 (Received 20 October 1975; in final form 1 December 1975)

Multimode Supercontinuum in PCF

Multimode Harmonics

Simultaneous generation of second and third harmonics by red-shifted solitons in photonic crystal fibre

Jinhui Yuan, Xinzhu Sang, Chongxiu Yu, Xiangwei Shen, Kuiru Wang, Binbin Yan, Ying Han, Guiyao Zhou and Lantian Hou

ELECTRONICS LETTERS 30th August 2012 Vol. 48 No. 18

M. A. Eftekhar et al, "Instant and efficient second-harmonic generation and downconversion in unprepared graded-index multimode fibers," Opt. Lett. 42, 3478-3481 (2017)

OPTICS LETTERS / Vol. 5, No. 10 / October 1980

Theoretical prediction 416 Self-confinement of multimode optical pulse in a glass fiber

Akira Hasegawa

Bell Laboratories, Murray Hill, New Jersey 07974

L.G. Wright et al, Nat. Photon. 9, 310 (2015)

Nonlinear Beam Cleanup

588 OPTICS LETTERS / Vol. 12, No. 8 / August 1987

Observation of self-focusing in optical fibers with picosecond pulses

P. L. Baldeck, F. Raccah, and R. R. Alfano

SBS: L. Lombard et al, OL, 31, 158, 2006

SRS: H. Pourbeyram, et al, APL 102, 201107 (2013)

Kerr: K. Krupa et al, Nat. Photon. 11, 237 (2017)

Adaptive Nonlinearity Control

ARTICLES

NATURE PHOTONICS | VOL 12 | JUNE 2018 | 368-374

photonics

https://doi.org/10.1038/s41566-018-0167-7

Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres

O. Tzang, A.M. Caravaca-Aguirre, K. Wagner, R. Piestun

LP11b

LP01 LP01 + 11a + 11b LP11a

LP21 LP02 + LP11b LP02

Outline

- Background: Single-Mode Fiber Nonlinear Optics
 - Capabilities and Limitations

Multimode Fiber NLO

- Governing principles for phase matching
- A time-line of results from the last 5 decades

Segue: Optical Fiber Modes

- In-depth understanding of their linear properties
- Unique, counter-intuitive behaviour for high order fiber modes

Unique Nonlinear Effects in Multimode Fibers

- Role of group velocity
- Large modal dimensionality
- Role of chirality

> Applications

Brief survey of current and emerging fields that exploit multimode fiber NLO

Optical Mirages & Mode coupling

r

Natural stability of LP_{0m} modes (Bessel beams)

S. Ramachandran et al, OL, v31, p1797, 2006

Nonlinear Figure of Merit – Step Index Multimode Fibers

 $D \cdot A_{eff} \sim 10^3 - 10^4$ more than PCF

OAM modes in fibers

Z. Ma, S. Ramachandran, Nanophotonics 10, 209 (2021)

Spin-Orbit Interaction

Uncoupled OAM modes \succ High enough |L|Ring-core reduced high-m modes

Mode-count bottleneck?

12 for ~km fiber

With OAM present?

$$\frac{d^{2}F(r)}{dr^{2}} + \frac{1}{r}\frac{dF(r)}{dr} + \left[k_{0}^{2}\left(n^{2}(r) - \frac{L^{2}}{k_{0}^{2}r^{2}}\right) - \beta^{2}\right]F(r) = 0$$

$$\swarrow \qquad \land A. \text{ Ghatak et al, Intro. to Fiber Optics (1998)}$$

$$n_{OAM}^{2}(r) = n^{2}(r) - \frac{L^{2}}{k_{0}^{2}r^{2}}$$

Centrifugal barrier effect

OAM-induced confinement

Total internal reflection not satisfied

• $n_{eff} < n_{cl}$

Centrifugal Barriers in other fields of physics

Binary Stars

$$U_{eff} = \frac{\ell^2}{2\mu r^2} - \frac{GMm}{r}$$

Feshbach Molecules (short range potentials)

S. Knoop et al, PRL 100, 083002 (2008) P. Bucksbaum et al, PRL 56, 2590 (1986)

Also in Nuclear Physics (short range potentials)

J. M. Blatt et al, Theoretical Nuclear Physics (1952)

physicscourses.colorado.edu

Radial Dependence of Topological Confinement

1

increases with radial order m

Loss decreases with azimuthal order L

Frustrated coupling of TCMs

Z. Ma et al, CLEO, SM1F.4 (2021)

D. B. Stegall et al, Photon. Tech. Lett. 11, 343 (1999)

Crosstalk: TIR modes vs. TCMs

Same xtalk with 6-mm-radius bend!

topological charge L

Z. Ma et al, CLEO, SM4L.1 (2023)

OAM conservation – Bend Insensitivity & Naturally PM

- OAM conserved
- Modes more stable for higher *L*

N. Bozinovic et al, Opt. Lett. v37p2451 (2012) C. N. Alexeyev, J. Optics, 14 085702 (2012)

P. Gregg et al, *Optica* v2, p267, 2015

Engineered Optical Activity

Controlled Superposition Possible $\vec{E}(r,\varphi) = F(r) \cdot \exp(i\mathcal{L}\varphi) \cdot [\hat{\sigma}^{+} + \hat{\sigma}^{-}]exp(i\frac{2\pi}{\lambda}\Delta n_{eff},z)]$

A.P. Greenberg et al. Nature Comm., 11, 5257 (2020)

Chiral Molecules

Amino acids Source: NASA

Nanostructured Metasurfaces

Twisted Fibers

V. Kopp *et al*, Science 305, 5680 (2004) M. Kuwata-Gonokami *et al*, PRL 95, 227401 (2005) P.St.J Russell *et al*, Phil. Trans. R. Soc. A 375, 20150440 (2017)

Linear Properties of Multimode Fibers

~20 dB PER after ~km even in a strictly circular fiber

L = 40 SOaa

Behaves like a Chiral Medium

Outline

- Background: Single-Mode Fiber Nonlinear Optics
 - Capabilities and Limitations

Multimode Fiber NLO

- Governing principles for phase matching
- A time-line of results from the last 5 decades

Segue: Optical Fiber Modes

- In-depth understanding of their linear properties
- Unique, counter-intuitive behaviour for high order fiber modes

Unique Nonlinear Effects in Multimode Fibers

- Role of group velocity
- Large modal dimensionality
- Role of chirality

> Applications

Brief survey of current and emerging fields that exploit multimode fiber NLO

PRL 116, 183901 (2016) PHYSICAL REVIEW LETTERS

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B.M. Shalaby, A. Bendahmane, G. Millot and S. Wabnitz

Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves

Frequency Detuning [THz]

A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers 🐵 🕫

Straight line in n_{eff} + energy matching \rightarrow phase matching

Pump with $LP_{0,4} + LP_{0,5}$

> Phase matching line falls between n_{eff} curves at λ_{pump}

BOSTON

UNIVERSITY

J. Demas et al, Photon. Res. 7, 1-7 (2019)

Role of Phase in Raman Scattering

Raman Scattering

Phase-insensitive process

- Agnostic to wave-vectors/phases of the light
- Nonlinear response $g_R(\Omega)$ is material dependent

CW or Long Pulses: Cascaded Raman

H. Pourbeyram, G. P. Agrawal, A. Mafi, Appl. Phys. Lett. 102, 201107 (2013)

R. H. Stolen et al., JOSA B 1, 652 (1984) S. Ramachandran et al., Opt. Exp. 18, 23212 (2010)

BOSTON

UNIVERSITY

え

Ultrafast Pulses: Soliton Self-Frequency Shift (SSFS)

Wavelength

F. M. Mitschke & L. F. Mollenauer, Opt. Lett. 11, 10 (1986)

Influence of modal dispersion on Raman

- n_a matching possible in multimode systems
- Raman gain peak is @ 13 THz

Ultrafast intermodal interaction

- Behave like in quasi-CW regime
- > 100% Photon Conversion!

Soliton Self-Mode Conversion – a new Raman pathway in multimode

Spontaneous SSMC over Seeded SSFS

SSMC: Spontaneous

J.W. Nicholson and M. F. Yan, Opt. Exp. 12, 679 (2004)

H. B. Kabagöz, et al., Opt. Express 29, 18315 (2021)

Fiber Design ⇒ Process Control

Outline

- Background: Single-Mode Fiber Nonlinear Optics
 - Capabilities and Limitations

Multimode Fiber NLO

- Governing principles for phase matching
- A time-line of results from the last 5 decades

Segue: Optical Fiber Modes

- In-depth understanding of their linear properties
- Unique, counter-intuitive behaviour for high order fiber modes

Unique Nonlinear Effects in Multimode Fibers

- Role of group velocity
- Large modal dimensionality
- Role of chirality

> Applications

Brief survey of current and emerging fields that exploit multimode fiber NLO

OAM-FWM Unique Properties – Comparison with LP Modes

Assumption: mode profiles not ω -dependent

OAM Supercontinuum

G. Prabhakar et al., Opt. Express 27, 11547 (2019)

Role of group velocity in continuum generation

Why is fiber different?

BOSTON

UNIVERSITY

OAM not

conserved in bulk

supercontinuum

Selective OAM generation

OAM conserved in all cases

- Diversity of photon pairs
- Selective yet efficient

Parametric Amplification

X. Liu et al, APL Photonics 5, 010802 (2020)

Cascaded Four-wave Mixing... all fiber high-power visible sources

P. Bhumkar et al, SW3G.1, CLEO (2023)

Outline

- Background: Single-Mode Fiber Nonlinear Optics
 - Capabilities and Limitations

Multimode Fiber NLO

- Governing principles for phase matching
- A time-line of results from the last 5 decades

Segue: Optical Fiber Modes

- In-depth understanding of their linear properties
- Unique, counter-intuitive behaviour for high order fiber modes

Unique Nonlinear Effects in Multimode Fibers

- Role of group velocity
- Large modal dimensionality
- Role of chirality

> Applications

Brief survey of current and emerging fields that exploit multimode fiber NLO

Raman dependence on OAM?

- Un-depleted pump
- Strong FWM strength
- Raman in all modes
- 20 dB Raman suppression!

X. Liu et al, Opt. Express 30, 26967 (2022)

Raman Spectra for Different Pump Modes

X. Liu et al, Opt. Express 30, 26967 (2022)

Phase-matching Behavior – Raman Scattering

OA-mediated Raman Characteristics

- 20 dB Raman suppression
 - Fiber laser increase SRS threshold
 - Reducing noise in entanglement source

X. Liu, et al., Opt. Exp. 30, 26967 (2022).

- Wide Raman wavelength tuning
 - Phase plays a role in Raman scattering
 - Can dispersion engineer Raman gain shape

Stimulated Brillouin Scattering – dependence on OAM

A. Y. Okulov, *J. Phys. B* 41,101001 (2008) G. Prabhakar *et al.*, *CLEO* FTh1M.4 (2018) Illustration Source: Wikimedia commons

OAM SBS Polarization Dependence

- Circularly polarized pump highly multimoded SBS
- Linearly polarized pump *complete* spatial phase conjugation

A.P. Greenberg et al, Opt. Express 30, 29708 (2022)

Rotational Phase Matching Condition:

$$\frac{\partial A_{stokes}}{\partial z} \propto \exp(i \left[\Delta \beta (\mathcal{L}_{pump}) - \Delta \beta (\mathcal{L}_{SBS}) \right] z \right)$$

Spin-Orbit Interaction $\Rightarrow \Delta \beta = \beta_{\sigma^+}(\mathcal{L}) - \beta_{\sigma^-}(\mathcal{L})$

Polarization Overlap

- $\mathcal{L}_{SBS} = \mathcal{L}_{pump} \rightarrow$ retraces rotation high nonlinear gain
- $\mathcal{L}_{SBS} \neq \mathcal{L}_{pump} \rightarrow rotational walk-off$ low nonlinear gain

Control over SBS gain via polarization and *L*

Angular Momentum Modulated SBS Power Thresholds

 Circular vs. linear polarization nonlinear gain

 Different gain dynamics changes SBS thresholds

• SBS Threshold:

 $P_{th} \approx 0.01 * P_{pump}$

Up to 30% Threshold Enhancement

> ~38% Efficiency *Reduction*

A.P. Greenberg et al, STh5K.3, CLEO-2022
Outline

- Background: Single-Mode Fiber Nonlinear Optics
 - Capabilities and Limitations

Multimode Fiber NLO

- Governing principles for phase matching
- A time-line of results from the last 5 decades

Segue: Optical Fiber Modes

- In-depth understanding of their linear properties
- Unique, counter-intuitive behaviour for high order fiber modes

Unique Nonlinear Effects in Multimode Fibers

- Role of group velocity
- Large modal dimensionality
- Role of chirality

> Applications

Brief survey of current and emerging fields that exploit multimode fiber NLO

Power-scalable Raman fiber lasers

Broadband and Wideband FWM Gain

All-fiber "Ti:Sapphire" Laser

J. Demas et al, Photon. Res. 7, 1-7 (2019)

Output of Soliton Self-Mode Conversion (SSMC)

SSMC-based microscopy

High-Harmonic Nerve Imaging

3-Photon Microscopy

Dimensionality of Entanglement

M. Erhard, M. Krenn, A. Zeilinger, "Advances in high-dimensional quantum entanglement," Nat Rev Phys 2, 365–381 (2020)

NATURE | VOL 412 | 19 JULY 2001 |313Entanglement of the orbital angularmomentum states of photons

Alois Mair*, Alipasha Vaziri, Gregor Weihs & Anton Zeilinger

A. C. Dada et al., Nature Physics 7 677-68

Controlling Joint Spectral Densities

$$\phi(\omega_{as}, \omega_{s}) = sinc(\Delta k\mathbf{z}/2) \exp(i\Delta k\mathbf{z}/2)$$

Propagation distance: Z

B. Fang et al., *Optica* 1, 281 (2014).M. Cordier et al., *Opt. Express* 27, 9803 (2019).

Quantum Sources with Multimode Fibers

$\phi(\omega_{as}, \omega_s) = sinc(\Delta k z/2) \exp(i\Delta k z/2)$

D. Cruz-Delgado et al., Sci. Rep. 6, 1-9 (2016).

The Raman Noise Problem

Engineering goal

A. I. Lvovsky et al., Nat. Photonics 3, 706 (2009).

J. Chesnoy ed., "Undersea fiber communication systems", Academic press (2015).

Pump modal sculpting to control bi-photon spectral sidebands

Degenerate pump:

 $L_{as}=23$

1000

 \mathcal{L}_q =19

1000

C_p=20

1200

=18

1200

wavelength (nm)

1.48

1.47

1.46

1.45

1.44

1.48

1.47

1.46

1.45

1.44

800

 n_{eff}

800

Non-degenerate pump:

 n_{eff}

 λ_{as} (nm)

B. Fang et al., Opt. Express 21, 2707-2717 (2013)

Bi-photon spectral engineering with low noise

100

Machine Learning via multimode nonlinear Optics

Nonlinear Optics with Spatial Modes of Fibers

Rich physics in individual modes

- Angular momentum conservation laws
- Chirality & influence of light's 3D path
- New nonlinear selection rules
- Guidance even in "forbidden" regime!

Applications

Power scalable λ conversion

(at any fiber–transparent λ : no dispersion constraint)

- CW/long pulse and ultrafast
- Fiber alternative to OPOs
- Endoscopic/Remote-deliverable Sources

Quantum Source Engineering

(many modes... many phase matching possibilities)

- Integrated high-dimensional sources
- User-defined joint spectral densities
- Compatible with quantum networking fiber

Emerging applications

(exploit the existence of many modes)

- All-optical machine-learning
- Emulate complex/chaotic physical phenomena
- ≻ ...???...