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1 Introduction

The issue of structural breaks has been extensively studied. Much of the literature has

focused on the conditional mean, but in many cases, structural change in the conditional

quantile function is more informative. For example, in studying income inequality, it is

important to assess whether the wage gap between racial groups, conditional on covariates,

has changed over time. Inequality may increase conditional dispersion without affecting the

mean. Similarly, when evaluating a policy aimed at improving outcomes for low-performing

students, attention should focus on lower quantiles. In both cases, it is desirable to estimate

break dates from the data: in the former, the cause of change may be unclear a priori; in

the latter, the policy effect may exhibit an unknown time lag.

To address these issues, Qu (2008) and Su and Xiao (2008) developed tests for detecting

structural change in conditional quantile functions with unknown break dates, but did not

consider estimation and inference for the number of breaks or their locations. Oka and Qu

(2011) studied the estimation of multiple structural breaks at unknown dates in conditional

quantile functions for two models: a time series model, useful for analyzing macroeconomic

data, and a repeated cross-section model, relevant for evaluating social programs and policy

effects. Oka and Qu’s (2011) framework allows for structural change in single or multi-

ple quantiles. Analyzing multiple quantiles requires stronger assumptions but can improve

estimation efficiency.

Key aspects of Oka and Qu’s (2011) procedure are as follows: assuming a known number

of breaks, the methods construct estimates of break dates and coefficients as global mini-

mizers of the check function over admissible break points. For multiple quantiles, the check

function is integrated over the set of quantiles chosen by the user. The assumptions permit

dynamic models and impose restrictions only in neighborhoods around quantiles of interest,

leaving other quantiles unspecified. This flexibility allows researchers to examine slices of

the conditional distribution without imposing global distributional assumptions. The distri-

butions of the break estimators were derived following Picard (1985) and Yao (1987). These

distributions involve consistently estimable parameters, which enables confidence interval

construction without simulation. Their paper also proposes a test for the number of breaks

based on subgradient methods from Qu (2008). These tests do not require variance estima-

tion and have monotonic power even with multiple breaks. Taken together, Qu (2008) and

Oka and Qu (2011) offer the most comprehensive treatment to date of multiple structural

breaks in quantile regression.
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To date, there has been no published software package in any language to test for, esti-

mate, and conduct inference on multiple structural breaks in linear quantile regression mod-

els. This led us to develop an R package that performs these tasks in an easy-to-use fashion.

The resulting package, QR.break, is available on CRAN. Its main function, rq.break(),

returns all testing and estimation results based on user-specified quantiles of interest, the

maximum number of allowed breaks, and the minimum length of a single regime. To use it,

the user simply runs:

rq.break(y, x, vec.tau, N, trim.e, vec.time, m.max, v.a, v.b, verbose)

with the following arguments:

• y: the dependent variable, given as a vector or data frame.

• x: the regressors, provided as a matrix or data frame. A column of ones should not be

included, as it is automatically added during estimation.

• vec.tau: the quantiles of interest, e.g., vec.tau <- seq(0.1, 0.9, by = 0.1).

• N: the size of the cross-section; set to 1 for time series data.

• trim.e: the minimum length of any regime, expressed as a fraction of the total time

span (e.g., trim.e = 0.1).

• vec.time: the time indices of the data, used for reporting the estimated break dates.

• m.max: the maximum number of breaks allowed.

• v.a, v.b: significance levels over a pre-specified set for testing and estimation, respec-

tively.

• verbose: set to 1 to display estimation results in the R console; the default is 0.

We illustrate the application of the function through two empirical examples. The first

revisits the “Great Moderation” in U.S. GDP growth using quarterly data. Results suggest

the decline in volatility mainly affected the upper tail, with the median and lower quantiles

remaining stable. This implies that expansions became less rapid, while recessions remained

as severe. The second application analyzes blood alcohol levels of young drivers in California

from 1983 to 2007. Two breaks are detected, consistent with the 1984 National Minimum

Drinking Age Act and a 1991 beer tax increase. The effects are more pronounced at lower

quantiles, indicating a greater impact on lighter drinkers than on heavier ones. These findings

are documented in Oka and Qu (2011). Here, the focus is on the detailed steps of application

of the methods to obtain these results.
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Below, we first outline the methods implemented in the package, followed by a detailed

description of their application to the two empirical examples.

2 Methods for estimation and inference

This section explains: (1) the model and the econometric issues of interest; (2) the main steps

for estimating the break locations and regression coefficients when the number of breaks is

known, based on a single quantile; (3) the main steps for estimating the break locations and

regression coefficients when the number of breaks is known, based on multiple quantiles; and

(4) a procedure for determining the number of breaks.

2.1 Econometric models and issues of interest

The methods apply to both time series and repeated cross-sectional data. We begin with

time series data.

2.1.1 Time series models

Let yt be a random variable, xt a p-dimensional vector of covariates, and Qyt(τ |xt) the

conditional τ -quantile of yt given xt, where t is the time index. Let T denote the sample size.

Assume the conditional quantile function is linear and potentially affected by m structural

breaks:

Qyt(τ |xt) =



x′tβ
0
1(τ),

x′tβ
0
2(τ),

...

x′tβ
0
m+1(τ),

t = 1, ..., T 0
1 ,

t = T 0
1 + 1, ..., T 0

2 ,

...

t = T 0
m + 1, ..., T,

(1)

where τ ∈ (0, 1), β0
j (τ) (j = 1, ...,m+ 1) are the unknown parameters, and T 0

j (j = 1, ...,m)

are the unknown break dates. The regressors xt may include discrete as well as continuous

variables. A column of ones is automatically added to the regression when applying the

methods. The following examples, taken from Oka and Qu (2011), illustrate the model.

Example 1 Oka and Qu (2011) studied the following model for U.S. quarterly real GDP
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growth rates for the period 1947:Q2 to 2009:Q2:

Qyt(τ |yt−1, ..., yt−p) = µj(τ) +

p∑
i=1

αi,j(τ)yt−i (t = T 0
j−1 + 1, ..., T 0

j ).

They detect a structural break in 1984 that affects only the upper quantiles of the distribution.

The coefficient estimates suggest that growth was slower during expansions, while recessions

remained just as severe when they occurred. This dataset is included in the package, and we

will use it in Section 3 to illustrate the application of the models in a time-series setting.

Example 2 Cox et al. (1985) considered the following model for a short-term interest rate

rt: drt = (α + βrt) dt + σr
1/2
t dWt, where Wt is a standard Brownian motion process. The

model has the following discrete-time approximation: rt+1 − rt = α+ βrt + (σr
1/2
t )ut+1, with

ut+1 ∼ i.i.d.N(0, 1), implying that the τ th conditional quantile of rt+1 given rt is given by

Qrt+1(τ |rt) = α+(1+β)rt+(σr
1/2
t )F−1

u (τ), where F−1
u (τ) is the τ th quantile of N(0,1). The

methods in the package can be used to estimate structural changes in α, β and σ assuming

that the quantile fucntion is given by the discrete-time approximation.

Example 3 Chernozhukov and Umantsev (2001) studied Value-at-Risk using Qyt(τ |xt) =

x′tβ(τ), where yt is an asset return, and xt is a vector of information variables that may

include returns on other securities, lagged values of yt, and proxies for volatility. An impor-

tant question is whether this risk relationship undergoes structural changes over time. The

methods in this package can be applied to address this question without specifying the change

points a priori.

Example 4 Piehl et al. (2003) applied structural change methods to evaluate the effect of

the Boston Gun Project on youth homicides, allowing the break date to be unknown to account

for potential policy delays. Their focus was on structural change in the conditional mean;

however, the methods in this package could be used to analyze structural changes along the

distribution.

2.1.2 Models for repeated cross-sections

For repeated cross-sectional data, let yit be a random variable, xit a p-dimensional vector

of covariates, and Qyit(τ |xit) the conditional quantile of yit given xit, where i and t are

individual and time indices. Let N be the number of cross-sectional units, assumed constant
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over time, and T the number of time periods. The conditional quantile is potentially affected

by m breaks:

Qyit(τ |xit) =



x′itβ
0
1(τ),

x′itβ
0
2(τ),

...

x′itβ
0
m+1(τ),

t = 1, ..., T 0
1 ,

t = T 0
1 + 1, ..., T 0

2 ,

...

t = T 0
m + 1, ..., T,

(2)

where i = 1, ..., N ; τ ∈ (0, 1); β0
j (τ) (j = 1, ...,m+ 1) are the unknown parameters; T 0

j (j =

1, ...,m) are unknown break dates; and xit can may both discrete and continuous variables.

A column of ones is automatically added to the regression. The following application, taken

from Oka and Qu (2011), illustrates the model.

Example 5 Motor vehicle crashes are the leading cause of death among youth aged 15-20,

a high proportion of which involve drunk driving. Blood alcohol concentration (BAC) is a

key measure of alcohol impairment, and changes in BAC among young drivers provide useful

information on how young drivers’ drinking behavior has changed over time. Motivated by

this, Oka and Qu (2011) studied structural change in BAC among young drivers involved in

traffic accidents using the following model:

Qyit(τ |xit) = µj(τ) + x′itγj(τ) (t = T 0
j−1 + 1, ..., T 0

j ),

where yit is the BAC level. The regressors are age, gender, and a dummy variable for

the fourth quarter. They detect breaks in 1985 and 1992. The changes are negative and

meaningful in magnitude. However, the change is smaller for higher quantiles, suggesting

that the policies are more effective for “light drinkers” than for “heavy drinkers” in the

sample. This is encouraging but falls short of expectations, as heavy drinkers are more likely

to cause accidents, suggesting that additional policies are needed to deter heavy drinking.

This dataset is included in the package, and later in Section 3, we will use it to illustrate the

application of the models in a cross-sectional setting.

2.1.3 Econometric issues of interest

The methods in this package address the following issues:

1. Estimation based on a single quantile when the number of breaks is known. The
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method estimates both the break locations and the regression coefficients. If the user

specifies more than one quantile level, the analysis is performed independently for each

quantile, allowing break locations to differ across quantiles. The program returns the

estimated break locations, their confidence intervals, and the corresponding estimates

and intervals for the regression coefficients.

2. Estimation based on multiple quantiles when the number of breaks is known. In

this case, the break locations are assumed to be common across quantiles and are

estimated using information from all specified quantiles. The program returns the

estimated break locations, their confidence intervals, and the corresponding estimates

and intervals for the regression coefficients.

3. Selection of the number of breaks. The user specifies the maximum number of breaks,

and the program determines the number of breaks using a dynamic programming

algorithm.

The package is structured so that a main function performs all of these tasks. This will be

demonstrated through empirical applications. Next, we describe the methods, starting with

estimation of the model when the number of breaks is known, based on a single quantile.

2.2 Estimating break locations based on a single quantile

Consider time series data first. Suppose that the τth quantile is affected by m structural

changes. Define the following function for a set of candidate break dates T b = (T1, ..., Tm):

ST (τ, β(τ), T
b) =

m∑
j=0

Tj+1∑
t=Tj+1

ρτ (yt − x′tβj+1(τ)), (3)

where ρτ (u) is the check function given by ρτ (u) = u(τ − 1(u < 0)), see Koenker (2005);

β(τ) = (β1(τ)
′, ..., βm+1(τ)

′)′; T0 = 0; and Tm+1 = T . We estimate the break dates and

coefficients β(τ) jointly by solving

(β̂(τ), T̂ b) = arg min
β(τ),T b∈Λε

ST (τ, β(τ), T
b), (4)
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where β̂(τ) = (β̂1(τ)
′, ..., β̂m+1(τ)

′)′ and T̂ b = (T̂1, ..., T̂m). In (4), Λε denotes the set of

possible partitions to ensure that each estimated regime is a positive fraction of the sample:

Λε = {(T1, ..., Tm) : Tj − Tj−1 ≥ εT (j = 2, ...,m), T1 ≥ εT, Tm ≤ (1− ε)T} , (5)

where ε is a positive small number specifying the minimum length of a regime. The user will

specify ε when using the package. For repeated cross-sections, the estimation procedure is

similar, except that the objective function ST (τ, β(τ), T
b) is replaced by

SNT (τ, β(τ), T
b) =

m∑
j=0

Tj+1∑
t=Tj+1

N∑
i=1

ρτ (yit − x′itβj+1(τ)),

where an additional summation “
∑N

i=1” is included to incorporate the cross-sectional obser-

vations. For both settings, the computation is carried out using a dynamic programming

algorithm, as in Bai and Perron (2003), such that the computation is of order O(T 2) irre-

spective of the number of breaks allowed in the model.

2.3 Estimating break locations based on multiple quantiles

Suppose that the quantiles in Tω = [ω1, ω2] with 0 < ω1 < ω2 < 1 are affected by structural

changes. A natural approach is to consider a partition of this interval and examine a set of

quantiles denoted by τh, h = 1, ..., q. The estimation can then be carried out in a similar way

as in the single quantile case. Specifically, define the following objective function for a set of

candidate break dates T b = (T1, ..., Tm) and parameter values β(Tω) = (β(τ1)
′, ..., β(τq)

′)′ :

ST (Tω, β(Tω), T
b) =

q∑
h=1

m∑
j=0

Tj+1∑
t=Tj+1

ρτh(yt − x′tβj+1(τh)),

and solve

(β̂(Tω), T̂
b) = arg min

β(Tω),T b∈Λε

ST (Tω, β(Tω), T
b), (6)

where Λε has the same definition as in (5). Regarding the partition, we find that a coarse

partion, such as quantiles spaced by 0.1, is sufficient to deliver informative results. For

repeated cross-sectional data, again the estimation procedure is the same, except that the
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objective function should be replaced by

SNT (τ, β(τ), T
b) =

q∑
h=1

m∑
j=0

Tj+1∑
t=Tj+1

N∑
i=1

ρτ (yit − x′itβj+1(τ)),

where an additional summation “
∑N

i=1” is included to incorporate the cross-sectional obser-

vations. For both settings, the computation is carried out using a dynamic programming

algorithm, as in Bai and Perron (2003), such that the computation is of order O(T 2) irre-

spective of the number of breaks allowed in the model.

For all cases discussed above, confidence intervals can be computed based on the limit-

ing distributions of the break point estimates. For example, in the repeated cross-section,

multiple-quantile case, the limiting distribution is given by, for j = 1, ...,m:

(
π̄∗
j

σ̄∗
j

)2

v2T (T̂j − T 0
j ) →d argmax

s


W (s)− |s|/2 s ≤ 0

(σ̄∗
j+1/σ̄

∗
j )W (s)− (π̄∗

j+1/π̄
∗
j )|s|/2 s > 0

,

where W (s) is the standard two-sided Brownian motion, and π̄∗
j , π̄

∗
j+1, σ̄

∗2
j , and σ̄∗2

j+1 are

constants that can be estimated consistently. This distribution has an analytical density

function and no simulation is needed to obtain the critical values, therefore reducing the

computational cost; see Bai (1995) and Oka and Qu (2011) for details.

2.4 Determining the number of breaks

The package use two test statistics SQτ (for a single quantile) andDQ (for multiple quantiles)

proposed in Qu (2008) to determine the number of breaks for the single and multiple quantile

cases, respectively. We first briefly explain these two tests and then describe a recommended

testing procedure based on them.

2.4.1 Testing for a Single Structural Break

The SQτ test is designed to detect the presence of a structural break in a given quantile τ :

SQτ = sup
λ∈[0,1]

∥∥∥(τ(1− τ))−1/2
[
Hλ,T (β̂(τ))− λH1,T (β̂(τ))

]∥∥∥
∞
,
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where

Hλ,T (β̂(τ)) =

(
T∑
t=1

xtx
′
t

)−1/2 [λT ]∑
t=1

xtψτ (yt − x′tβ̂(τ))

and ψτ (u) = τ − 1(u < 0) if we have a single time series, and

Hλ,T (β̂(τ)) =

(
T∑
t=1

N∑
i=1

xitx
′
it

)−1/2 [λT ]∑
t=1

N∑
i=1

xitψτ (yit − x′itβ̂(τ))

with repeated cross-sectional data, β̂(τ) is the parameter estimate using the full sample

assuming no structural change, and ∥.∥∞ is the sup norm to reveal the strongest evidence

against the null hypothesis, i.e. for a generic vector z = (z1, ..., zk), ∥z∥∞ = max(z1, ..., zk).

The DQ test is designed to detect structural changes in quantiles in an interval Tω:

DQ = sup
τ∈Tω

sup
λ∈[0,1]

∥∥∥Hλ,T (β̂(τ))− λH1,T (β̂(τ))
∥∥∥
∞
.

The expressions in the sup norm as defined as before.

2.4.2 Testing l against l + 1 breaks

We also need the following tests for the purpose of testing l against l+ 1 breaks, labelled as

SQτ (l + 1|l) test and DQ(l + 1|l) test. Suppose a model with l breaks has been estimated

with the break estimates denoted by T̂1, ..., T̂l. These values partition the sample into (l+1)

segments, with the jth segment being [T̂j−1 + 1, T̂j]. The strategy proceeds by testing each

of the (l+1) segments for the presence of an additional break. We let SQτ,j and DQj denote

the SQτ and DQ test applied to the jth segment, i.e.,

SQτ,j = sup
λ∈[0,1]

∥∥∥(τ(1− τ))−1/2
[
Hλ,T̂j−1,T̂j

(β̂j(τ))− λH1,T̂j−1,T̂j
(β̂j(τ))

]∥∥∥
∞
,

DQj = sup
τ∈Tω

sup
λ∈[0,1]

∥∥∥Hλ,T̂j−1,T̂j
(β̂j(τ))− λH1,T̂j−1,T̂j

(β̂j(τ))
∥∥∥
∞
,

where

Hλ,Tj−1,Tj
(β̂j(τ)) =

 Tj∑
t=Tj−1+1

xtx
′
t

−1/2
[λ(Tj−Tj−1)]∑
t=Tj−1+1

xtψτ (yt − x′tβ̂j(τ))
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if we have a single time series, and

Hλ,Tj−1,Tj
(β̂j(τ)) =

 Tj∑
t=Tj−1+1

N∑
i=1

xitx
′
it

−1/2
[λ(Tj−Tj−1)]∑
t=Tj−1+1

N∑
i=1

xitψτ (yit − x′itβ̂j(τ))

for repeated cross-sectional data, where β̂j(τ) is the parameter estimate using the jth regime.

SQτ (l + 1|l) and DQ(l + 1|l) represent the maximum of the SQτ,j and DQj over the l + 1

segments:

SQτ (l + 1|l) = max
1≤j≤l+1

SQτ,j,

DQ(l + 1|l) = max
1≤j≤l+1

DQj.

We reject the null hypothesis in favor of a model with l + 1 breaks if the resulting value

exceed the corresponding critical value.

2.4.3 Critical values

These tests are asymptotically nuisance parameter free, and tables for critical values are

provided in Qu (2008). They do not require the estimation of any variance parameter,

thus having monotonic power even when multiple breaks are present. Qu (2008) provided a

simulation study. The results suggest that these two tests perform favorably compared to

Wald-based tests (see Figure 1 in Qu, 2008).

2.4.4 The recommended procedure

We can use this procedure to determine the number of breaks (we consider the interval Tω

and focus on the quantile grid τ1, ..., τq ∈ Tω).

• Step 1. Apply the DQ test. If the test does not reject, conclude that there is no break

and terminate the procedure. If it rejects, then estimate the model allowing one break.

Save the estimated break date and proceed to Step 2.

• Step 2. Apply the DQ(l + 1|l) tests starting with l = 1. Increase the value of l if the

test rejects the null hypothesis. In each stage, the model is re-estimated and the break

dates are the global minimizers of the objective function allowing l breaks. Continue

the process until the test fails to reject the null.
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• Step 3. Let l̂ denote the first value for which the test fails to reject. Estimate the

model allowing l̂ breaks. Save the estimated break dates and confidence intervals.

• Step 4. This step treats the q quantiles separately. Specifically, for every quantile τh

(h = 1, ..., q), apply the SQτ and SQτ (l+ 1|l) tests. Carry out the same operations as

in Steps 1 to 3. Examine whether the estimated breaks are in agreement with those

from Step 3.

2.4.5 Size control

Since this is a sequential procedure, it is important to consider its overall rejection error

under the null hypothesis. Suppose there is no break, and a 5% significance level is used.

Then, there is a 95% chance that the procedure will be terminated in Step 1, implying the

probability of finding one or more breaks is 5% in large samples. If there are m breaks

with m > 0, then, similarly, the probability of finding more than m breaks will be at most

5%. The probability of finding less than m breaks in finite samples will vary from case to

case depending on the magnitude of the breaks. This means that the overall significance

level of this procedure is bounded from above by 5% under the null hypothesis. It does not

over-reject the null hypothesis.

3 Applications

The section illustrates how to use the main function using: a time series dataset on U.S.

real GDP growth rates and a repeated cross-sectional dataset on youth drinking and driving

behavior. Both datasets are included in the package.

3.1 Time series example

After loading the package using library(QR.break), the US GDP data can be loaded using

the command

> data(gdp)

Moreover, the dataset can be viewed by running:

> gdp
yq gdp lag1 lag2

1947 Q4 6.06552 -0.32868 -0.61348
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1948 Q1 6.35664 6.06552 -0.32868
...
2009 Q1 -6.58992 -5.48400 -2.70336
2009 Q2 -0.73980 -6.58992 -5.48400

The yq column contains the dates, the gdp column contains the dependent variable, and

the remaining two columns contain the first and second lagged values of gdp to be used as

regressors.

3.1.1 Using the function

Below is the main function to estimate this model:

> result = rq.break(y, x, vec.tau, N, trim.e, vec.time, m.max, v.a, v.b, verbose)

We now take a closer look at the inputs to this function. The following commands define

the y and x variables in the quantile regression:

> y = gdp[,"gdp"]
> x = gdp[, c("lag1", "lag2")]

A column of ones are always added to the regressors when estimating the model. Therefore,

in this case, the model has three parameters that are allowed to be affected by structural

breaks: the intercept, the coefficient for the first lag, and that for the second lag.

The next command specifies the quantiles of interest:

> vec.tau = seq(0.20, 0.80, by = 0.15)

Using these inputs, the function will perform two sets of calculations. First, it conducts

analysis using the quantiles in vec.tau independently, which means that the number of

breaks and their locations can be different across quantiles. Then, it carries out the analysis

using all quantiles simultaneously. In this case, the breaks are assumed to be common across

quantiles, and information across quantiles is pooled together to estimate the break dates.

Since this is a time series regression, the number of cross-sectional units should be set as:

> N=1

The program requires the specification of the minimum length of a regime. This parameter

is important because if the regime length is too small, then the model fit might be non-unique

and the estimation might pick up spurious breaks. In this example, we can set:

> trim.e = 0.15
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This implies a regime is at least 15% of the sample size. We recommend setting this value

between 10% and 20% in applications.

An issue related to the minimum length of a regime is the maximum number of breaks

allowed. In this example, we can set:

> m.max = 3

This means that we allow at most 3 breaks and therefore 4 regimes for the entire sample

period.

The next two parameters are for the significance levels of the analysis. The input v.a

controls the significance level used for determining the number of breaks; 1, 2 or 3 for 10%,

5% or 1%, respectively. The input v.b controls the coverage level for the confidence intervals

of break dates; 1 or 2 for 90% and 95%, respectively. In this example, we can set:

> v.a = 2
> v.b = 2

There are two additional inputs that control the printing and displaying functions while

running the code. If we set:

> vec.time = gdp[,"yq"]

then the program will use vec.time as the time index to display the break dates. Here a

break date is the final date of the existing regime, not the starting date of a new regime.

Alternatively, one can set:

> vec.time = NULL

so that the break dates are expressed in terms of integers, e.g., 50 if the break is estimated to

be the 50-th observation of the sample. The input verbose controls whether to automatically

display the results in the R console. The default is FALSE, while setting it to TRUE will

display the results:

> verbose = TRUE

Either way, the results from estimation and testing are all saved when running the code,

and they can be displayed using:

> print(result)

3.1.2 Interpreting the results

The results consist of two parts: one based on individual quantiles (result$s.out) and one

based on all quantiles (result$m.out).
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Output based on separate quantiles The entries in result$s.out are ordered accord-

ing to vec.tau: first for τ = 0.2, then for τ = 0.35, and so on. For each quantile, the break

testing results are shown first; if at least one significant break is detected, the break locations

and parameter estimation results follow.

For example, for τ = 0.2, the results are:

> $s.out
$s.out$test_0.2 #testing results at the chosen significance level

1 Breaks 2 Breaks 3 Breaks
SQ test 1.423269 1.373012 0
Critical values 1.529859 1.637547 0

$s.out$nbreak_0.2 #number of breaks detected
[1] 0

For this quantile, the test for the null hypothesis of no break against a single break is equal

to 1.423269, while the critical value is 1.529859. The value is insignificant at the chosen level,

so no break is detected. The final column is equal to zero because the test is not computed

when the previous tests are insignificant at the 10% level. No break estimation results are

produced. The results for other quantiles also show insignificance until the quantile level

0.65. At that point, one significant break is detected, followed by its confidence intervals

reported in two ways: first in terms of index values, then in terms of dates.

$s.out$test_0.65 #testing results at the chosen significance level
1 Breaks 2 Breaks 3 Breaks

SQ test 1.817933 1.023126 0
Critical values 1.529859 1.637547 0

$s.out$nbreak_0.65 #number of breaks detected
[1] 1

$s.out$br_est_0.65 #point estimate and confidence interval for break date
Estimate CI_Lower_Bound CI_Upper_Bound

Break 1 147 83 161

$s.out$br_est_time_0.65
Estimate CI_Lower_Bound CI_Upper_Bound

Break 1 "1984 Q2" "1968 Q2" "1987 Q4"

Therefore, one break is detected, with a point estimate of t = 147, corresponding to the sec-

ond quarter of 1984, with a confidence interval of [83,161], or equivelantly [1968Q2:1987Q4].

For this quantile, the output also includes the estimated coefficients for the two regimes:
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$s.out$coef_0.65
$s.out$coef_0.65$Regime_1

Value Std. Error t value Pr(>|t|)
Intercept 4.5169837 0.63003316 7.169438 3.625833e-11
x1 0.4199469 0.09643037 4.354924 2.512308e-05
x2 -0.1051057 0.09458095 -1.111277 2.683010e-01

$s.out$coef_0.65$Regime_2
Value Std. Error t value Pr(>|t|)

Intercept 2.2855100 0.4866286 4.696620 8.711282e-06
x1 0.1724133 0.1218581 1.414869 1.603091e-01
x2 0.2386392 0.1320517 1.807164 7.383669e-02

In this case, the sum of the autoregressive coefficients changes little, but the intercept de-

creases significantly, indicating a notably lower 0.65 quantile after the break:

$s.out$‘bsize_0.65_Regime_2_minus Regime_1‘
Value Std. Error t value Pr(>|t|)

Intercept -2.2314737 0.7957371 -2.804285 0.005453863
x1 -0.2475336 0.1375265 -1.799898 0.073127343
x2 0.3437448 0.1418386 2.423492 0.016109478

Similarly, the method detects a break in the 0.80 quantile; we omit the details.

Output based on multiple quantiles The results are structured in a similar way as the

single quantile case. Here the break testing and estimation results are based on all chosen

quantiles in vec.tau:

> $m.out
$m.out$test_joint #testing results at the chosen significance level

1 Breaks 2 Breaks 3 Breaks
DQ test 1.0275870 0.5892746 0
Critical values 0.9098714 0.9584567 0

$m.out$nbreak_joint #number of breaks detected
[1] 1

$m.out$br_est_joint #point estimate and confidence interval for break date
Estimate CI_Lower_Bound CI_Upper_Bound

Break 1 146 120 147

$m.out$br_est_joint_time
Estimate CI_Lower_Bound CI_Upper_Bound

Break 1 "1984 Q1" "1977 Q3" "1984 Q2"
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A single break is detected, as in the analysis based on individual upper quantiles. The

rest of the output contains the coefficient estimates and their confidence intervals as in the

single quantile case; we omit the details.

In summary, the findings here shed light on the “Great Moderation” debate on U.S.

GDP growth. Results suggest the decline in volatility mainly affected the upper tail, with

the median and lower quantiles remaining stable. This implies that expansions became less

rapid, while recessions remained as severe.

3.1.3 Computational time

The package uses a dynamic programming algorithm, as in Bai and Perron (2003), to de-

termine the globally optimal break partitions. The resulting computational cost grows with

the square of the sample size, regardless of the number of breaks allowed. In this example,

the program is expected to finish within a few minutes on a typical desktop computer with

a single processor.

The package has built-in critical values for common configurations: for the SQ test when

the number of regressors is less than 100, and for the DQ test when the number of regressors

is less than 20 and the quantile trimming is symmetric, as in the example. With more

than 20 regressors, or when the quantile trimming is asymmetric—as in the cross-sectional

example below—the critical values for the DQ test are computed via simulation, which can

add a few minutes or more of computational time when running the function.

3.1.4 Potential error messages

The function is structured to display error messages if the input configurations are not set

up properly. Here we give some examples. Suppose we set:

> trim.e = 0.2
> m.max = 6

The product of these two values exceeds 1 because it is not possible to allow 6 breaks when

each regime is at least 20% of the sample size. Running the code will produce:

Error: m.max*trim.e exceeds 1. This occurs because too many regimes are allowed
or the minimum length of a regime is too large. Consider decreasing m.max,
trim.e, or both.

As another example, if we set trim.e too small, we will get an error message with a

suggestion to increase it:
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> trim.e = 0.01
Error: trim.e * nrow(x) must be at least the number of regressors; otherwise,
the estimation results are not unique. Consider increasing trim.e.

When an error message is produced, the program will exit with no saved results and the user

can modify the input parameters and re-start the program.

3.2 Repeated cross-section example

The main steps and the output structure are both similar to the time series case. In partic-

ular, the data can be loaded and the variables defined by running the following commands:

> data(driver)
> Driving_data<-driver
> y <- Driving_data[,"bac"]
> x <- Driving_data[, c("age", "gender", "winter")]
> N <- 108

Here the variable y is the dependent variable, x contains the three regeressors, N is the

number of entities in each time period. The data are organized such that the first N rows

are for the first time period, the next N rows for the next time period, and so forth.

Other input parameters can be specified as follows, with the same interpretations as in

the time series case:

> vec.tau = seq(0.70, 0.85, 0.05)
> trim.e <- 0.05
> vec.time <- unique(Driving_data[,"yq"])
> m.max <- 3
> v.a <-2
> v.b <-2

The function to run is:

> result <- rq.break(y, x, vec.tau, N, trim.e, vec.time, m.max, v.a, v.b)

We now highlight some outputs from the function. As in the time series case, the first part

of the output is for analysis based on separate quantiles. The first quantile is τ = 0.7, for

which two breaks are detected, along with their confidence intervals:

$s.out$test_0.7
1 Breaks 2 Breaks 3 Breaks

SQ test 5.179373 2.205150 1.339123
Critical values 1.574681 1.679331 1.737955
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$s.out$nbreak_0.7
[1] 2

$s.out$br_est_0.7
Estimate CI_Lower_Bound CI_Upper_Bound

Break 1 10 6 15
Break 2 38 35 39

$s.out$br_est_time_0.7
Estimate CI_Lower_Bound CI_Upper_Bound

Break 1 "1985 Q2" "1984 Q2" "1986 Q3"
Break 2 "1992 Q2" "1991 Q3" "1992 Q3"

The breaks are consistent with the 1984 National Minimum Drinking Age Act and a 1991

beer tax increase. The output continues with the parameter estimates for the three regimes;

we omit the details. After that, it continues with the next quantile, τ = 0.75, and reports

the same types of results.

The results for the multipe-quantile case are saved in

$m.out
$m.out$test_joint

1 Breaks 2 Breaks 3 Breaks
DQ test 2.3734870 1.0105268 0.5995825
Critical values 0.7761262 0.8223711 0.8486304

$m.out$nbreak_joint
[1] 2

$m.out$br_est_joint
Estimate CI_Lower_Bound CI_Upper_Bound

Break 1 9 5 13
Break 2 38 34 39

$m.out$br_est_joint_time
Estimate CI_Lower_Bound CI_Upper_Bound

Break 1 "1985 Q1" "1984 Q1" "1986 Q1"
Break 2 "1992 Q2" "1991 Q2" "1992 Q3"

The rest of the output contains the coefficient estimates for each quantile followed by

break size estimates at each quantile. We omit the details.
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4 Conclusion

This paper has introduced the QR.break package, which implements a set of tools for detect-

ing and estimating structural breaks in quantile regression models. The methods accommo-

date both time series and repeated cross-sectional data and allow researchers to work with

a single quantile or a range of quantiles. Estimation is based on a dynamic programming

algorithm, and confidence intervals for break dates are derived from analytical limiting dis-

tributions. The package also includes sequential testing procedures to determine the number

of breaks.

There are several directions in which the current framework can be extended. Allowing

break points to depend on covariates, adapting the methods to high-dimensional settings,

incorporting partial structural breaks where only a subset of coefficients is allowed to change,

or developing versions for panel data with fixed effects are all natural next steps. We hope

this package provides a useful foundation for researchers working with quantile models in

environments where structural stability cannot be taken for granted.
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